
Parallel Implementation of Image Matching with MPI

Sheikh, Ismail
Dept. of Electrical & Computer Engineering (ECE)

Ryerson University, Toronto, Canada

misheikh@ryerson.ca

Alfonso Oviedo, Alejandro Emerio
Dept. of Electrical & Computer Engineering (ECE)

Ryerson University, Toronto, Canada

alejandro.alfonso@ryerson.ca

Dr. Nagi Mekhiel
Dept. of Electrical & Computer Engineering (ECE)

Associate Professor, Ryerson University, Toronto, Canada

nmekhiel@ee.ryerson.ca

Abstract — in this paper, the performance of parallel

computing will be thoroughly discussed in the domain of

image matching. The concept of image matching is widely

used in the areas of security, medical and computer vision

which require comparing two images for similarities.

However, depending on the size of images, it is highly possible

that the application computation cannot be handled in a single

processor running a sequential algorithm. In order to

overcome this limitation, parallel computing is introduced

through the Message Passing Interface (MPI) library. In this

project, for the comparison of two images, both images are

first converted into grayscale and then are compared using

the Sum of Square Differences (SSD) algorithm. Further, a

parallel network of 12 processors was implemented to

calculate the performance of the SSD algorithm between both

images. The performance gain of 12, 8, 4 and 2 processors

was compared with the performance of a single processor.

The comparison results presented a linear relationship

between the performance gain and the number of processors

used for execution. Hence, it proves that there are significant

benefits of parallelism on SSD applications. Keywords—MPI;

parallel; multiprocessor; image matching; SSD; performance;

gain; distributed memory

I. INTRODUCTION

Image matching is widely used and a really important process

in the field of digital image processing. There are many other

fields which are heavily dependent on image processing such

as security, medical and computer vision [1]. The term image

matching refers to searching a template image inside a bigger

main image through similarities between both images’ pixels.

Some of the most common methods of image comparison are

sum of absolute differences (SAD), sum of square differences

(SSD) and normalized cross correlation (NCC) [2].

SAD algorithm is about taking the absolute difference between

each pixel of the main image with the corresponding pixel of

the template image. The minimum SAD value on the main

image will result in the most similar portion of the template

image.

SSD algorithm is about dividing the main image into multiple

independent blocks of the size of the template image and

calculating the sum of the square difference between both

images. SSD algorithm outputs the comparison value to be

exactly zero for two identical images.

NCC algorithm is about normalizing each pixel of both images

by subtracting it from the mean and dividing it by the standard

deviation of the image, before the comparison. The comparison

using NCC algorithm results in a single value between 1 and

-1, where 1 refers to a perfect match between both images and

-1 indicates completely anti-correlated comparison.

All these methods are computational intensive due to repetitive

operations on tremendous amount of data and require parallel

processing for better performance. SAD is the least

computational intensive algorithm but the communication

overhead of parallel processing is very large which results in

poor performance. NCC is a highly computational intensive

algorithm since it requires the calculation of mean and standard

deviation of both images before the comparison. However, the

SSD algorithm is not as computational intensive as NCC and

provides really low communication overhead as compared to

SAD when processed in the parallel network. Thus, this paper

uses SSD algorithm for the parallel implementation of the

image matching for the best performance.

II. PARALLEL DISTRIBUTION MODELS

There are two types of multiprocessor models, Shared Memory

Multiprocessor (SMM) and Distributed Memory

Multiprocessor (DMM). In SMM models, the computation is

divided among different threads of a single CPU using

OPENMP. Similarly, in DMM models, the computation is

divided in the network of several computers using MPI. This

research paper mainly focuses on the DMM model since it

provides better performance compared to SMM models due to

high quality of work-load distribution [4][5]. However, even

for the DMM models, it is really important that the problem is

decomposed and executed independently among all the

computers in the network. There are four key steps of parallel

programming which can be used to design good parallel code.

A. Decomposition

Decomposition is about breaking the problem into small

independent tasks. The goal is to find as many independent

tasks so that each processor is busy all the time [6][7].

B. Assignment

Assignment is about converting decomposed tasks into

processes. The objective is to balance work load among all the

processors in the network [6].

C. Orchestration:

Orchestration is about labeling or naming data. The purpose of

orchestration is to reduce synchronization and communication

overhead from the processes before they can be assigned to

processors for the computation [6].

D. Mapping:

Mapping is the last step in parallel programming. In this, each

individual process is assigned to each available processor in

the network [6]. Each individual processor computes their

assigned data and upon completion, sends the final result to

the host processor.

Thus, through these four steps of parallel programming, the

image matching computation can be decomposed into small

independent tasks. These four steps also reduce

synchronization overhead and cost of communication which

ultimately results in the best performance of parallel

computation.

III. SSD ALGORITHM

The SSD algorithm is based on the comparison of two images,
the image template (T), and a known image which we try to
find inside the strange image (S). The image T is the size of
NxN and it is presented by the function T(m, n); where (m, n)
are the coordinates of each pixel. On the other hand, S is the
size of MxM, a bigger image than T. The image S is presented
by the function S(m, n)ij; where the representation is only a
sub-image of S, and same size as T. The coordinates of the top-
left corner are presented by i and j; the starting point where T is
being search on S [1]. The SSD algorithm is defined by eq (1)
below.

(1)

As D gets closer to zero the similarity gets higher.

In this research, we decided to use the SSD algorithm since it is
simple and computational intensive. These two factors
motivate the idea of using parallel programming models to
accelerate the process. In addition, each computed D is the
completely independent to the others, which is another key
factor for building a parallel model.

IV. SINGLE PROCESSOR

The analytical results of the single processor model

performance of the SSD problem is defined by (2). Where TSP

is the time a single processor takes to compute all the D values

in an S image. TPC is the time that any specific processor takes

to compute one cycle of pixel sum of squared differences. It

linearly depends on TPC and exponentially on S and T sizes. In

this specific model, S and T have their own height (H) and

width (W).

TSP= (SH ̶ TH ̶ 1)* (SW ̶ TW ̶ 1)*(TH *TW)*TPC (2)

Fig. 1 below shows the maximum of computation level is

reached when T size is half of S size.

V. MPI

MPI is a parallel model based on messages passing among
processes. The message passing approach is another factor that
can also affect the performance of the parallel model beside the
computation time [4]. According to this argument, we
developed a model to determine the behavior of the parallel
approach and from it, the ideal computation power is balanced
with communication over-head (Com-oh) for the problem to
really benefit from parallelism.

A. Master-Slave Mode

When Master-Slave mode is implemented, the master provides
workload distribution and collects results. Each processor is
assigned the computation of all the Ds defined by the same i
for all values of j which means a complete column of S by T
width.

Fig. 1. Highest computation time when T size is half of S size

This approach infers that each processor compares all its own

Ds and finally only has to send one D, the minimum D, to the

master; resulting in a very low Com-oh. Thus, this Com-oh

linearly depends on the amount of processors of the model.

Equation (3) presents the model according to these arguments,

where TMP is the time a multiprocessor system takes to

compute all the Ds values from one S. P is the number of

processors used in the system and TcomOH is the time of Com-oh

per processor [8]. TcomOH depends on the network topology,

bandwidth, the time that each slave processor has to spend

preparing the message and the time that the master processor

has to spend receiving and interpreting messages from slaves.

TMP= (TSP/P) + (TcomOH*P) (3)

A three dimension plot is shown in Fig. 2 below to present the

relationship between the number of processors,

communication overhead and TMP.

Fig. 2. Behaviour of Tmp vs P and TcomOH

Fig. 2 above presents the dependency of TMP with the number
of processors and the TcomOH. In the above figure, x-axis is
presented by TComOH and y-axis represents the number of
processors in the network and finally the z-axis represents the
TMP. It is very clear in the figure that the time a multiprocessor
takes to compute one full cycle over S drops dramatically with
the increase in the number of processors used in the system.
However, if the TcomOH is really large, it increases TMP in
accordance to the number of processors.

The performance gain is another significant objective on these

systems. The goal is having the gain as close as possible to the

number of processors, to benefit from the implemented parallel

system. Equation (4) gives the gain function depending on the

time of a single processor over multiprocessor [8].

Gain=TSP/TMP (4)

A three dimension plot is shown in Fig. 3 below to present the

relationship between the performance gain, number of

processors and time for communication over-head.

Fig. 3. Behaviour of Tmp vs P and TcomOH

In Fig. 3 above, the x-axis presents the communication
overhead, the y-axis shows the number of processors and the z-
axis presents the performance gain of the application. It is clear
in Fig. 3 that the system performance gain is high when TcomOH

is close to zero. Similarly as the TComOH increases, it
dramatically reduces the gain of the system. Finally, when the
TComOH is maximum, any additional number of processors has
no impact on the performance gain of the system.

VI. METHOD OF IMAGE MATCHING

In order to compare two images through parallel computation,

the main image S has been divided into multiple blocks of the

same size as the template image T. After the decomposition, a

copy of the template image T and the decomposed blocks are

assigned to each processor. Each processor computes the SSD

of both images and stores the minimum value of SSD; thus it

has no communication overhead. Each processor can compute

the assigned block without waiting to receive any data from

other processors. Thus, it results in the best performance of

parallel computing. After the execution of all decomposed

blocks, each processor in the system sends its minimum value

of SSD as well as the point of location to the host processor.

Host processor, upon receiving the SSD results, compares it

with its own SSD value. If the received SSD value is higher

than the SSD value stored in the host processor, it is ignored.

Similarly, if the received SSD value is smaller than the SSD

value stored in the host processor, the host processor updates

its SSD value to a new value. Finally, after finding the

minimum SSD value between two images, the host processor

sequentially converts the main image to RGB from grayscale

and draws red lines of the same size as the template image on

the point where the SSD is minimum. This process of image

matching can be seen in the Fig. 4 below.

Fig. 4. Sample of Template and Main image

The Fig. 4 above shows the decomposition of the application

with the main image size to be 10x10 and template image to

be 3x3. The problem is executed in the system of 5 computers.

In the decomposition process, there will be 64 independent

blocks and processors p0, p1, p2 and p3 compare 13 blocks

and p4 only compares 12 blocks.

VII. PERFORMANCE GAIN

Using the same image matching process as in section V, the

performance of the parallel processor can be easily compared

by running its computation sequentially in one computer and

in MPI. The time in seconds was recorded and considered the

computational time of the application. The application details

used for the result comparison are processor: Intel® Core™

i7-3770 with CPU clock speed of 3.40GHz. Size of main

image is 3000 x 2000 pixels, and size of the template image is

500 x 500 pixels.

Table 1 below, shows the performance of the application in

one computer, and in the network of 2, 4, 8 and 12 computers.

TABLE I. PERFORMANCE OF SYSTEM OF 1, 2, 4, 8, AND 12 COMPUTERS

Processors Time (Sec) Time (Min) Gain

1 4724.79 78.74 1.00

2 2363.62 39.39 1.99

4 1183.32 19.72 3.99

8 593.00 9.88 7.95

12 396.59 6.61 11.92

One processor running sequential algorithm took 4724.79

seconds (78.74 minutes) to find template image inside the

main image. However, running the same application on the

network of 12 processors took only 396.59 seconds (6.610

minutes) to compute the result.

Further, the gain of the parallel program is dependent on the

decomposition of the problem. Reducing the communication

overhead, latency and delay in the decomposition will result in

higher performance gain. Fig. 5 below represents the achieved

gain of running the application in up to 12 processors.

Fig. 5. Application Performance gain in the network

In Fig. 5 above it is clear that there is an almost linear

relationship between number of processors in MPI and

application performance gain due to the low communication

over-head. This linear relationship means that the

implemented parallel program in this paper benefits the image

matching performance. However, as the number of processors

increases the gain slightly starts to reduce. This is due to the

increase in communication overhead and the saturation of

performance gain. Thus, it is really important to determine the

number of processors required for the computation in order to

achieve the best performance of parallel computation.

VIII. CONCLUSION

This paper represents an almost linear relationship between

the number of processors in the network and the application

computation of the image matching application using the SSD

algorithm. This relationship is achieved through the reduction

of communication overhead. However, it is really important to

determine the required number of processors for the

application to avoid the gain saturation problem. The best

performance gain of parallel implementation of the application

is only possible if the cost of communication is at its

minimum. In this paper, a unique approach of the SSD

algorithm of image comparison is suggested to compute the

results parallel in the network of computers with the minimum

cost of communication. In the SSD algorithm, the image

matching computation is divided in such a way that each

computer in the network can execute their assigned workload

independently without waiting for another processor to

complete its execution.

IX. FUTURE WORK

At this stage, we are able to successfully match only template

images if they exist in the main image with similar resolution.

The SSD algorithm might result in a different value for a

different resolution. In order to improve our approach, we can

add some other layers of algorithms to scale the templates

before comparison. This will allow us to compare all possible

resolutions of the main and template images.

REFERENCES

[1] Liang Zong; Yanhui Wu, "A Parallel Matching Algorithm Based on
Image Gray Scale," in Computational Sciences and Optimization, 2009.
CSO 2009. International Joint Conference on , vol.1, no., pp.109-111,
24-26 April

[2] Pham, I.; Jalovecky, R.; Polasek, M., "Using template matching for
object recognition in infrared video sequences," in Digital Avionics
Systems Conference (DASC), 2015 IEEE/AIAA 34th , vol., no.,
pp.8C5-1-8C5-9, 13-17 Sept. 2015

[3] Jin Lu; Kaisheng Zhang; Ming Chen; Ke Ma, "Implementation of
parallel convolution based on MPI," in Computer Science and Network
Technology (ICCSNT), 2013 3rd International Conference on , vol., no.,
pp.28-31, 12-13 Oct. 2013

[4] Xueping Luo; Jinping Bai; Yunping Chen; Ling Tong, "Parallel
implementation of MPI-based SAR image soil moisture inversion," in
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE
International , vol., no., pp.1692-1695, 21-26 July 2013

[5] Xiaoxin Tang; Mills, S.; Eyers, D.; Zhiyi Huang; Kai-Cheung Leung;
Minyi Guo, "Performance Tuning on Multicore Systems for Feature
Matching within Image Collections," in Parallel Processing (ICPP),
2013 42nd International Conference on , vol., no., pp.718-727, 1-4 Oct.
2013

[6] Culler, D., & Singh, J. (1999). Parallel computer architecture: A
hardware/software approach. San Francisco: Morgan Kaufmann.

[7] Hartmann, O.; Kunemann, M.; Rauber, T.; Ruger, G., "A decomposition
approach for optimizing the performance of MPI libraries," in Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International , vol., no., pp.8 pp.-, 25-29 April 2006

[8] Ruixin Ding; Junming Wu; Qinghua Huang, "Parallelism of Extended-
Field-of-View Sonography based on Scale Invariant Feature
Transform," in Biomedical Engineering and Informatics (BMEI), 2011
4th International Conference on , vol.1, no., pp.426-429, 15-17 Oct.
2011

