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Abstract — in this paper, the performance of parallel 

computing will be thoroughly discussed in the domain of 

image matching. The concept of image matching is widely 

used in the areas of security, medical and computer vision 

which require comparing two images for similarities. 

However, depending on the size of images, it is highly possible 

that the application computation cannot be handled in a single 

processor running a sequential algorithm. In order to 

overcome this limitation, parallel computing is introduced 

through the Message Passing Interface (MPI) library. In this 

project, for the comparison of two images, both images are 

first converted into grayscale and then are compared using 

the Sum of Square Differences (SSD) algorithm. Further, a 

parallel network of 12 processors was implemented to 

calculate the performance of the SSD algorithm between both 

images. The performance gain of 12, 8, 4 and 2 processors 

was compared with the performance of a single processor. 

The comparison results presented a linear relationship 

between the performance gain and the number of processors 

used for execution. Hence, it proves that there are significant 

benefits of parallelism on SSD applications. Keywords—MPI; 

parallel; multiprocessor; image matching; SSD; performance; 

gain; distributed memory 

 

I. INTRODUCTION 

Image matching is widely used and a really important process 

in the field of digital image processing. There are many other 

fields which are heavily dependent on image processing such 

as security, medical and computer vision [1]. The term image 

matching refers to searching a template image inside a bigger 

main image through similarities between both images’ pixels.  

 

Some of the most common methods of image comparison are 

sum of absolute differences (SAD), sum of square differences 

(SSD) and normalized cross correlation (NCC) [2].  

 

SAD algorithm is about taking the absolute difference between 

each pixel of the main image with the corresponding pixel of 

the template image. The minimum SAD value on the main 

image will result in the most similar portion of the template 

image.  

 

SSD algorithm is about dividing the main image into multiple 

independent blocks of the size of the template image and 

calculating the sum of the square difference between both 

images. SSD algorithm outputs the comparison value to be 

exactly zero for two identical images.  

 

NCC algorithm is about normalizing each pixel of both images 

by subtracting it from the mean and dividing it by the standard 

deviation of the image, before the comparison. The comparison 

using NCC algorithm results in a single value between 1 and    

-1, where 1 refers to a perfect match between both images and   

-1 indicates completely anti-correlated comparison.  

 

All these methods are computational intensive due to repetitive 

operations on tremendous amount of data and require parallel 

processing for better performance. SAD is the least 

computational intensive algorithm but the communication 

overhead of parallel processing is very large which results in 

poor performance. NCC is a highly computational intensive 

algorithm since it requires the calculation of mean and standard 

deviation of both images before the comparison. However, the 

SSD algorithm is not as computational intensive as NCC and 

provides really low communication overhead as compared to 

SAD when processed in the parallel network. Thus, this paper 

uses SSD algorithm for the parallel implementation of the 

image matching for the best performance. 

II. PARALLEL DISTRIBUTION MODELS 

There are two types of multiprocessor models, Shared Memory 

Multiprocessor (SMM) and Distributed Memory 

Multiprocessor (DMM). In SMM models, the computation is 

divided among different threads of a single CPU using 

OPENMP. Similarly, in DMM models, the computation is 

divided in the network of several computers using MPI. This 

research paper mainly focuses on the DMM model since it 

provides better performance compared to SMM models due to 

high quality of work-load distribution [4][5]. However, even 

for the DMM models, it is really important that the problem is 

decomposed and executed independently among all the 

computers in the network. There are four key steps of parallel 

programming which can be used to design good parallel code. 

  



A. Decomposition 

Decomposition is about breaking the problem into small 

independent tasks. The goal is to find as many independent 

tasks so that each processor is busy all the time [6][7].   

 

B. Assignment 

Assignment is about converting decomposed tasks into 

processes. The objective is to balance work load among all the 

processors in the network [6].  

 

C. Orchestration: 

Orchestration is about labeling or naming data. The purpose of 

orchestration is to reduce synchronization and communication 

overhead from the processes before they can be assigned to 

processors for the computation [6]. 

 

D. Mapping: 

Mapping is the last step in parallel programming. In this, each 

individual process is assigned to each available processor in 

the network [6]. Each individual processor computes their 

assigned data and upon completion, sends the final result to 

the host processor. 

 

Thus, through these four steps of parallel programming, the 

image matching computation can be decomposed into small 

independent tasks. These four steps also reduce 

synchronization overhead and cost of communication which 

ultimately results in the best performance of parallel 

computation.  

III. SSD ALGORITHM 

The SSD algorithm is based on the comparison of two images, 
the image template (T), and a known image which we try to 
find inside the strange image (S). The image T is the size of 
NxN and it is presented by the function T(m, n); where (m, n) 
are the coordinates of  each pixel.  On the other hand, S is the 
size of MxM, a bigger image than T. The image S is presented 
by the function S(m, n)ij; where the representation is only a 
sub-image of S, and same size as T. The coordinates of the top-
left corner are presented by i and j; the starting point where T is 
being search on S [1]. The SSD algorithm is defined by eq (1) 
below. 

(1)                             

 

As D gets closer to zero the similarity gets higher.  

In this research, we decided to use the SSD algorithm since it is 
simple and computational intensive. These two factors 
motivate the idea of using parallel programming models to 
accelerate the process. In addition, each computed D is the 
completely independent to the others, which is another key 
factor for building a parallel model. 

IV. SINGLE PROCESSOR 

The analytical results of the single processor model 

performance of the SSD problem is defined by (2). Where TSP 

is the time a single processor takes to compute all the D values 

in an S image. TPC is the time that any specific processor takes 

to compute one cycle of pixel sum of squared differences. It 

linearly depends on TPC and exponentially on S and T sizes. In 

this specific model, S and T have their own height (H) and 

width (W).   

 

TSP= (SH  ̶ TH  ̶ 1)* (SW  ̶ TW  ̶ 1)*(TH *TW)*TPC              (2) 

 

Fig. 1 below shows the maximum of computation level is 

reached when T size is half of S size. 

V. MPI 

MPI is a parallel model based on messages passing among 
processes. The message passing approach is another factor that 
can also affect the performance of the parallel model beside the 
computation time [4]. According to this argument, we 
developed a model to determine the behavior of the parallel 
approach and from it, the ideal computation power is balanced 
with communication over-head (Com-oh) for the problem to 
really benefit from parallelism.   

A. Master-Slave Mode 

When Master-Slave mode is implemented, the master provides 
workload distribution and collects results. Each processor is 
assigned the computation of all the Ds defined by the same i 
for all values of j which means a complete column of S by T 
width.  

Fig. 1. Highest computation time when T size is half of S size 

This approach infers that each processor compares all its own 

Ds and finally only has to send one D, the minimum D, to the 

master; resulting in a very low Com-oh. Thus, this Com-oh 

linearly depends on the amount of processors of the model. 

Equation (3) presents the model according to these arguments, 

where TMP is the time a multiprocessor system takes to 

compute all the Ds values from one S. P is the number of 

processors used in the system and TcomOH is the time of Com-oh 

per processor [8]. TcomOH depends on the network topology, 

bandwidth, the time that each slave processor has to spend 

preparing the message and the time that the master processor 

has to spend receiving and interpreting messages from slaves.   

 

TMP= (TSP/P) + (TcomOH*P)                        (3) 



A three dimension plot is shown in Fig. 2 below to present the 

relationship between the number of processors, 

communication overhead and TMP.  

Fig. 2. Behaviour of Tmp vs P and TcomOH 

Fig. 2 above presents the dependency of TMP with the number 
of processors and the TcomOH. In the above figure, x-axis is 
presented by TComOH and y-axis represents the number of 
processors in the network and finally the z-axis represents the 
TMP. It is very clear in the figure that the time a multiprocessor 
takes to compute one full cycle over S drops dramatically with 
the increase in the number of processors used in the system. 
However, if the TcomOH is really large, it increases TMP in 
accordance to the number of processors.  

The performance gain is another significant objective on these 

systems. The goal is having the gain as close as possible to the 

number of processors, to benefit from the implemented parallel 

system. Equation (4) gives the gain function depending on the 

time of a single processor over multiprocessor [8].   

 

Gain=TSP/TMP            (4) 

 

A three dimension plot is shown in Fig. 3 below to present the 

relationship between the performance gain, number of 

processors and time for communication over-head. 

Fig. 3. Behaviour of Tmp vs P and TcomOH 

In Fig. 3 above, the x-axis presents the communication 
overhead, the y-axis shows the number of processors and the z-
axis presents the performance gain of the application. It is clear 
in Fig. 3 that the system performance gain is high when TcomOH 

is close to zero. Similarly as the TComOH increases, it 
dramatically reduces the gain of the system. Finally, when the 
TComOH is maximum, any additional number of processors has 
no impact on the performance gain of the system.  

VI. METHOD OF IMAGE MATCHING  

In order to compare two images through parallel computation, 

the main image S has been divided into multiple blocks of the 

same size as the template image T. After the decomposition, a 

copy of the template image T and the decomposed blocks are 

assigned to each processor. Each processor computes the SSD 

of both images and stores the minimum value of SSD; thus it 

has no communication overhead. Each processor can compute 

the assigned block without waiting to receive any data from 

other processors. Thus, it results in the best performance of 

parallel computing. After the execution of all decomposed 

blocks, each processor in the system sends its minimum value 

of SSD as well as the point of location to the host processor. 

Host processor, upon receiving the SSD results, compares it 

with its own SSD value. If the received SSD value is higher 

than the SSD value stored in the host processor, it is ignored. 

Similarly, if the received SSD value is smaller than the SSD 

value stored in the host processor, the host processor updates 

its SSD value to a new value. Finally, after finding the 

minimum SSD value between two images, the host processor 

sequentially converts the main image to RGB from grayscale 

and draws red lines of the same size as the template image on 

the point where the SSD is minimum. This process of image 

matching can be seen in the Fig. 4 below. 

 

 

Fig. 4. Sample of Template and Main image 

The Fig. 4 above shows the decomposition of the application 

with the main image size to be 10x10 and template image to 

be 3x3. The problem is executed in the system of 5 computers. 

In the decomposition process, there will be 64 independent 

blocks and processors p0, p1, p2 and p3 compare 13 blocks 

and p4 only compares 12 blocks. 

 

VII. PERFORMANCE GAIN 

Using the same image matching process as in section V, the 

performance of the parallel processor can be easily compared 

by running its computation sequentially in one computer and 

in MPI. The time in seconds was recorded and considered the 



computational time of the application. The application details 

used for the result comparison are processor: Intel® Core™ 

i7-3770 with CPU clock speed of 3.40GHz. Size of main 

image is 3000 x 2000 pixels, and size of the template image is 

500 x 500 pixels. 

 

Table 1 below, shows the performance of the application in 

one computer, and in the network of 2, 4, 8 and 12 computers. 

TABLE I.  PERFORMANCE OF SYSTEM OF 1, 2, 4, 8, AND 12 COMPUTERS 

Processors Time (Sec) Time (Min) Gain 

1 4724.79 78.74 1.00 

2 2363.62 39.39 1.99 

4 1183.32 19.72 3.99 

8 593.00 9.88 7.95 

12 396.59 6.61 11.92 

 

One processor running sequential algorithm took 4724.79 

seconds (78.74 minutes) to find template image inside the 

main image. However, running the same application on the 

network of 12 processors took only 396.59 seconds (6.610 

minutes) to compute the result.  

 

Further, the gain of the parallel program is dependent on the 

decomposition of the problem. Reducing the communication 

overhead, latency and delay in the decomposition will result in 

higher performance gain. Fig. 5 below represents the achieved 

gain of running the application in up to 12 processors.  

 

Fig. 5. Application Performance gain in the network 

In Fig. 5 above it is clear that there is an almost linear 

relationship between number of processors in MPI and 

application performance gain due to the low communication 

over-head. This linear relationship means that the 

implemented parallel program in this paper benefits the image 

matching performance. However, as the number of processors 

increases the gain slightly starts to reduce. This is due to the 

increase in communication overhead and the saturation of 

performance gain. Thus, it is really important to determine the 

number of processors required for the computation in order to 

achieve the best performance of parallel computation.   

VIII. CONCLUSION 

This paper represents an almost linear relationship between 

the number of processors in the network and the application 

computation of the image matching application using the SSD 

algorithm. This relationship is achieved through the reduction 

of communication overhead. However, it is really important to 

determine the required number of processors for the 

application to avoid the gain saturation problem. The best 

performance gain of parallel implementation of the application 

is only possible if the cost of communication is at its 

minimum. In this paper, a unique approach of the SSD 

algorithm of image comparison is suggested to compute the 

results parallel in the network of computers with the minimum 

cost of communication. In the SSD algorithm, the image 

matching computation is divided in such a way that each 

computer in the network can execute their assigned workload 

independently without waiting for another processor to 

complete its execution. 

IX. FUTURE WORK 

At this stage, we are able to successfully match only template 

images if they exist in the main image with similar resolution. 

The SSD algorithm might result in a different value for a 

different resolution. In order to improve our approach, we can 

add some other layers of algorithms to scale the templates 

before comparison. This will allow us to compare all possible 

resolutions of the main and template images.  
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