
SPECIAL SECTION ON SECURITY AND RELIABILITY AWARE
SYSTEM DESIGN FOR MOBILE COMPUTING DEVICES

Received December 9, 2015, accepted January 27, 2016, date of publication February 3, 2016, date of current version March 30, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2524447

Introducing TAM: Time-Based Access Memory
NAGI N. MEKHIEL, (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada (nmekhiel@ee.ryerson.ca)

ABSTRACT The increase in processor speed achieved by continuous improvements in technology is causing
major obstacles to the parallel processors implemented inside the chip. The time spent in servicing all
the cache misses from all processors from a slow shared memory limits the performance gain of parallel
processors. We propose a new memory system that makes all of its content available to processors, so that
processors need not to access the shared memory in a serial fashion. Rather than having one processor access
a single location in the shared memory at a time, we force each location to be available to all processors at
a specific time. This new memory system is fast and simple, because it does not need decoders and can use
the DRAM or SRAM technology efficiently as the access of each location is known ahead of time. Results
show that this new memory improves a single processor performance by 350% and the performance of eight
parallel processors by 2400%. The new memory decouples the slow memory from the fast processor and
makes the parallel processors scalable to an infinite number of processors.

INDEX TERMS Memory organization, DRAM, scalability of multiprocessor, synchronization, data access
modes.

I. INTRODUCTION
Conventional memory uses an array of cells and could be
accessed by only applying one address through a decoder.
Only one memory location is selected through the decoder.
The performance of a processor depends on its memory
system [1], [2], [3]. New processors use a large multi-level
cache system to close the huge speed gap between processor
and main memory DRAM [17]. According to Amdahl’s law
the performance improvements of an advanced processor is
limited by the slow portion that cannot be improved which is
cache misses to DRAM.

There have been efforts to improve the performance of
the DRAM memory system. One of these efforts yielded
the Synchronous DRAM (SDRAM). SDRAM uses multiple
banks and a synchronous bus to provide a high bandwidth
for accesses which use the fast page mode. With multiple
SDRAM banks, more than one active row can supply
the processor with fast accesses from different parts of
memory [5]. The performance of SDRAM still cannot
satisfy the requirements of new processors because it has long
latency for the first access and its data transfer rate is limited
by the bus speed.

Direct Rambus DRAMs (DRDRAM) uses a fast bus that
transfers on both edges to achieve maximum bandwidth [6].
DRDRAM uses many banks as in relation to SDRAM of the
same size. In DRDRAM each sense-amp is shared between

adjacent banks that cannot simultaneously be in different
open pages thus increasing fast page miss rate compared to
one open row per bank in SDRAM. The timing of DRDRAM
is similar to the other DRAM organizations and suffers from
the long latency of first access.

Another effort yielded the Cached DRAM (CDRAM)
[7], [8]. This design incorporates an SRAM-based cache
inside the DRAM. Large blocks of data can thus be trans-
ferred from the cache to DRAM array or from the DRAM
to cache in a single clock cycle. However, this design
suffers from problems of low cache hit rate inside the
DRAM caused by the external intercepting caches. It also
adds complexity to the external system for controlling and
operating the internal cache requiring a cache tag, a com-
parator and a controller. In addition, there is a significant
cost in terms of die area penalty for integrating SRAM
cache with a DRAM in a semiconductor manufacturing
process.

A much faster and efficient memory would have its con-
tents available outside so that each cell could be accessed
at a specific time. This new memory is simpler because it
does not need any addresses or decoders and is fast because
each access is known ahead of time and can hide the access
time overhead. We call this new memory Time Based Access
Memory ‘‘TAM’’ because all memory locations are mapped
in time and not in space.

VOLUME 4, 2016
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1061



N. N. Mekhiel: Introducing TAM

II. BACKGROUND
Although the memory speed gap has not been solved,
processor designers are continuously improving the speed of
processors using fast technology and implementing advanced
architectures like simultaneous multithreading and multipro-
cessor on a single chip [12].

To improve the performance of applications by executing
multiple instructions in parallel, multiprocessor systems have
been used for many years when the memory speed gap
was not as critical [4], [13]. One popular architecture is
the multiprocessor with shared memory. The sharing of one
memory and the synchronization overhead for managing the
shared data limits the performance gain and scalability of the
system [1].

A single processor was developed to execute parallel
threads to make full use of the single processor
resources [12], [15], [16]. Intel Hyper-Threading makes a
single physical processor appears as two logical proces-
sors [12]. Threads could be scheduled to the logical pro-
cessors and run in parallel as in multiprocessor system to
improve system performance. The Intel Xeon with hyper-
threading running online transactions [12] shows that for two
parallel threads, the system gives performance improvements
of only about 24% compared to the performance of running
the two threads in a single processor.

Processor designers are now using multiprocessors in a
single chip [14], [19], [20]. The Intel multiprocessor with
two parallel processors has performance gain of only 55%
compared to a single processor. For four parallel processors,
Intel system improves performance by only 160% [12].

Conventional multiprocessor systems cannot be made
scalable to a large number of processors although future
applications demand the computing power of thousands of
processors [18]. Hence, we must focus in solving the root
cause of this problem which is the sharing of memory.

From the above, we find that neither multithreading nor
multiprocessor architectures are utilized to their full potential.
The slow shared memory and the synchronization overhead
limits the performance gain and scalability of these systems.

In multithreading and multiprocessor systems, the perfor-
mance gain is achieved by overlapping the execution time
of one processor with the execution time of another pro-
cessor. Decreasing the execution time alone is not effective
if the processor has to wait longer for accessing the slow
shared memory. For example, if the processor execution time
is 1 unit, and the waiting time is 2 units, then the two parallel
processors can only reduce time by 1/2 of the execution time.
This gives a gain of only 3/2.5 or 20%, although the execution
time improves by 100% (Amdahl’s law). The performance of
multiprocessor systems is limited not only by the slow shared
memory but also by the synchronization overhead.

To reduce the synchronization overhead, Transactional
memory has been proposed to reduce the overhead of
synchronization as it uses large sequential code to run
as one serial atomic transaction [10], [11]. Lock based
critical sections used for synchronization in conventional

multiprocessors have significant performance overhead and
Transactional Memory lock removal can eliminate the
overhead by using lock-free sections [10], [11]. The cost
of overhead from supporting Transactional memory is only
about 10%, compared to about 40% for locks. The reduction
in overhead for eliminating locks suggests that supporting
parallel code has a cost that could limit performance gain
of parallel processing. The improvement from using transac-
tional memory is also limited and cannot make multiproces-
sor systems scalable to a larger number of processors because
it does not completely eliminate synchronization and still
suffers from the sharing of slow memory.

From all of the above discussion, it is very clear that neither
the industrys new products using chip multiprocessor (CMP)
and simultaneous multithreading (SMT) nor the academic
research can offer the computing power needed for future
applications. Therefore, we need a non-evolutionary solution
to deal with the fundamental problems of memory and syn-
chronization. The best solution will be a single solution for
both problems.

We have invented a TIME BASED ACCESS MEMORY
that maps its content to time for a scalable parallel system [9].

III. MOTIVATIONS
We propose a new memory system that can satisfy an infinite
number of parallel processors. This new memory eliminates
the problems of sharing a slow memory and the overhead of
synchronization.

The motivations for the new memory include the
following:-
• The time spent to access the main memory limits the
performance of processors according to Amdahls law.
Typically 80% of the processor time is spent waiting
for the slow memory. Faster memory is essential to
processor performance.

• Conventional memory maps each data element to one
specific location in the memory array and can only
be accessed by applying a single address through its
decoder. This memory is slow because it cannot be
accessed for more than one location through the single
decoder that has a decoder delay.

• The performance of a multiprocessor ‘‘multi-core’’ sys-
tem, is limited and cannot be made scalable for a large
number of processors because of sharing a slowmemory
as well as the synchronization overhead.

• The increase in processor speed achieved by the continu-
ous improvements in technology causes major obstacles
to the parallel processors implemented inside the chip.
The overhead (using locks) for running multiple threads
on a shared external memory might far exceeds the time
saved by overlapping the execution time among parallel
processors. Current architectures cannot make a parallel
processor scalable.

• Conventional multiprocessor systems have multiple
cache misses to one memory location. This further
increases the demands for accessing the slow memory.

1062 VOLUME 4, 2016



N. N. Mekhiel: Introducing TAM

• Conventional cache transfers multiple words on a block
for each miss. This increases the transfer time to access
memory.

• Number of cache misses increases linearly with number
of processors. This limits the scalability of the parallel
processor because it increases memory waiting time.

• Number of cache misses increases with the size of an
application, causing proportional increase to time spent
in memory.

• Time spent to service all the cache misses in the life of
an application could exceed the time spent to deliver the
contents of the whole memory to the processor.

IV. TAM CONCEPT
A shared resource will become available if it is offered to
all processors. Processors then need not to arbitrate and wait
to get the data from the shared resource. Rather than having
one processor to access one location in memory at a time,
we allow all locations to be available to all processors all the
time. The processor waits for the memory to provide its data
or instructions at a specific time. If we make each processor
accesses the data at a specific and known time, then there
is no need for synchronization among multiple processors
because the access to a specific location is known for all
processors.

We propose making the contents of memory available to all
processors using a shared bus. Every location in the memory
is guaranteed to be delivered to the bus and all processors have
all the requested data available after waiting for a time that
does not exceed the time of transferring the whole memory
out in the bus.

The new memory makes its content continuously revolve
around the bus, so that any processor can access the data at a
specific time.

TAM consists of the following features:-
• It supplies all contents of memory to all processors
regardless if the processor needs it or not.

• TAM is very fast because it is accessed sequentially in
time and does not have to use a random access mode as
in conventional memory.

• The access of each DRAM location is known ahead
of time, so there is no waiting time for precharge, or
decoding, therefore access time is hidden.

• TAM uses DRAM or SRAM technology with a very
simple organization.

Figure 1 shows a block diagram for the TAM concept.
The contents of memory continuously revolve in a fast
speed and can be accessed by any processor. The memory
address is time and it becomes TIME ADDRESSABLE
Memory.

Figure 2 shows the access time of TAM. The first access to
location 0 waits for row activation by a Start signal, then in
each cycle the content of one location is accessed and data
is read or written to this location. In a serial fashion, the
next location becomes available and is accessed in the next
clock cycle until the last location in memory. After the last

FIGURE 1. TAM concept.

FIGURE 2. TAM access timing.

location becomes available to be accessed, the first location
is accessed next and this continues in a cyclic form.

V. TAM ORGANIZATION AND OPERATIONS
TAM could be implemented in DRAM technology or any
other technology. It also has potential to be implemented
using a different organization than the known array structure
to optimize the cost of implementation. We assume using
the known DRAM technology to implement TAM and the
contents of DRAM is accessed sequentially in a serial fashion
without the need for an address or decoders. Because the time
to access each location is known ahead of time, the activation
time overhead is hidden and overlapped among the different
DRAM banks.

The access time for each location will be only the time
of accessing the sense amplifier and is limited only by the
external bus speed.

There is no address lines, and the TAM DRAM will use
the address lines to transfer more data which will double
TAM DRAM bandwidth.

Figure 3, shows the organization of TAM. It consists of the
following components:
• DRAM Array: Organized as an array of N rows by
M columns. Each cell is located at the intersection of
a specific row and a specific column. The storage cell
consists of one capacitor and one transistor as in any
DRAM structure.

VOLUME 4, 2016 1063



N. N. Mekhiel: Introducing TAM

FIGURE 3. TAM organization.

FIGURE 4. Row shift register.

FIGURE 5. Column shift register.

• Row Shift Register: Has N outputs, each is responsible
to activate the corresponding row similar to the row
decoder outputs in DRAM. The Row shift register con-
sists of N D-type Flip Flop and its design is given below
in Figure 4.

• Column Shift Register: Has M outputs, each corre-
sponds to a column selection output that allows the flow
of data similar to the column decoder outputs in DRAM.
It also uses a D-type Flip Flop and its design is given
below in Figure 5.

• Sense Amplifiers: Used to access the data from the input
output DO/DI signal as in DRAM. The direction of data
flow is controlled by a /WE signal as in any DRAM.

• Time Control: Uses the state machine, given below,
in Figure 6, to provide the following signals:
– Start-act-ROW: This initialize first D-Flip-Flop to

be active for the Row Shift Register.
– Row CLK: Clock for the Row Shift Register. The

period of this clock defines the time for the row to
stay active. Each Row clock period, the Row Shift
Register activates the next row by shifting the active
output of a Flip-Flop to the next.

– Start-shift-COL: This initializes the first
D-Flip-Flop to be active for the Column Shift
Register.

FIGURE 6. State diagram for TAM control.

– COL CLK: Clock for the Column Shift Register.
The period of this clock defines the length of time
for the column to stay active. Each clock period,
the Column Shift Register activates the next column
by shifting the active output of a Flip-Flop to
the next.

– /WE: Write enable signal, when it is active, the
latches of sense amplifiers are updated with the
value of data input in DI. On memory read, this
signal becomes not active and the data from
the sense amplifier are transferred to the output
signal, DO.

A. ROW SHIFT REGISTER
Figure 4 shows the block diagram of the Row Shift Regis-
ter. This shift register shifts right and rotates the content of
the register. Every clock cycle, only one Flip-Flop output
becomes active that corresponds to the activation of the next
row inmemory. It consists of N of D Flip-Flops, all connected
to one clock, ROW CLK. On start or when Power-ON is
active, all Flip Flops are cleared to 0, except the first Flip
Flop to the left.

The first Flip-Flop is connected to the Start-act-ROW
signal which becomes active on the start of the activation of
the first row in memory of the memory array, and it becomes
active again after the rest of the memory is accessed (cyclic
operation). Formemory expansion, the Start-act-ROW is con-
nected to the LAST ROW signal generated from a previous
memory chip Row Shift Register. TAMmemory expansion is
given below in Figure 7.

B. COLUMN SHIFT REGISTER
Figure 5 shows the block diagram of the Column Shift Regis-
ter. The shift register shifts right and rotates the content of the
register. It consists of MD Flip-Flops for M columns DRAM,
all connected to one clock, COL CLK. On start or Power ON,
all Flip-Flops are cleared to 0 with the POWER ON signal

1064 VOLUME 4, 2016



N. N. Mekhiel: Introducing TAM

FIGURE 7. TAM memory expansion for basic system with fixed access
patterns.

connected to clear each Flip-Flop. After waiting for the start
activation of a row, every clock cycle, one Flip-Flop output
becomes active to access the next column in the accessed row
in memory. The first D Flip-Flop to the left, is connected to
the Start-shift-COL signal which becomes active on the start
of the activation of the first column, after waiting for the row
to column time delay, and it becomes active again after the last
column is accessed as it is connected to CLM signal generated
from the Flip-Flop of last column.

C. TAM CONTROL AND OPERATIONS
Figure 6, shows the state diagram of TAM Time Control. The
state machine is responsible for the following:-
• Power On: On state S0, the circuit waits for the Power
On signal to start from the power off condition.

• Initialization: When the Power On signal becomes
active, the circuit starts with the initialization process as
in any DRAM, then it waits for the Start-act-ROW signal
to become active on state S1.

• Row Activation: When the Start-act-Row signal
becomes active, the circuit makes the ROWCLKvoltage
level high, for one clock cycle on state SR0, then it
goes to next state SR, and makes the ROW CLK level
low. This generates a full ROW CLK cycle, while the
input of the first Flip-Flop of Row Shift Register has
its D input = 1 as it is connected to the Start-act-Row
signal. At state SR0, the output Q of this Flip-Flopwhich
is connected to Row 0, goes active and starts Row0
activation.

• The state machine waits in state SR, until the end of
accessing all the columns in this row. Signal CLM,
becomes active from the output of the last Flip-Flop
of Column Shift Register. When signal CLM becomes
active, the state machine goes to state SR0 to start the
next row activation.

• When the CLM signal is received and the state machine
goes back to SR0, it makes the ROW CLK signal high,
and this causes the Row Shift Register to shift right the 1
from the current Flip-Flop to the next one, causing next
row output R1 to become active. The state machine goes
through the same states as above for the rest of the rows.

• Generating COL CLK: The state machine is used as a
frequency divider of the main clock signal to generate

COL CLK, which its cycle time depends on the speed of
DRAM. The speed is determined by the time needed to
transfer data in or out of the sense amplifiers. On state
SCLK0, the state machine makes COL CLK high, then
it goes to a next state, in the middle of states, the state
machine makes COL CLK low then it goes to the next
states to complete a full cycle. At the last state, SCLKN,
the state machine goes back to SCLK0 to start the next
clock cycle. This is a typical frequency division method
using state machine.

• Accessing Columns: When the Start-act-Row signal
becomes active, the circuit goes to state SR0, and makes
the row active and simultaneously, it goes to state SCD to
start the column access. The column access process goes
through the number of states to allow for TRCD before
activating the first column in the active row. After wait-
ing for TRCD, the state machine goes to state SC0 and
it generates a Start-shift-COL signal that is connected
to the input of the first Flip-Flop of the Column Shift
Register. This is while the COL CLK is being generated,
and on its rising edge, the first Flip-Flop of column shift
register will have its output Q=1, which is connected to
column CL0 signal to access the first column in the row.

• The shift register keeps shifting the 1 on each cycle
of COL CLK thus activating the next column until it
reaches the Flip-Flop connected to the last column.
Signal CLM, becomes active from the output of the last
Flip-Flop of the Column Shift Register. When signal
CLM becomes active, the state machine goes to state
SR0 to begin the next row activation.

• READ/WRITE:
After activating the specific row and accessing a specific
column as specified above, the /WE signal controls the
direction of data flow from the sense amplifier to or from
DO/DI. In a READ operation, /WE is kept ‘high’ during
column access time, and the data flows from the sense
amplifier to the DO.
In a WRITE operation, the /WE signal is asserted ‘low’
during the column access time, and data from DI is
written to the sense amplifier latch.
The timing of the READ/WRITE operation depends on
the DRAM speed and is similar to known DRAM read
or write operations.

• Refresh:
Refresh is easily provided by the cyclic nature of access-
ing all the rows in a sequence. The time control circuit
monitors the rate at which all rows are activated and
starts a refresh cycle if the time interval of the last row
activation exceeds the maximum required refresh time.
At the end of the row activation and when the LAST
ROW signal becomes active, the state machine goes to
state SRF0. It then increments the refresh counter and
it proceeds to state SRF1. In state SRF1, the content of
that counter is compared to the maximum refresh time
and if the counter time is less than the refresh time, the
state machine goes to state RF0 and repeats the above.

VOLUME 4, 2016 1065



N. N. Mekhiel: Introducing TAM

In state RF1, if the counter indicates that the refresh
count is equal to or exceeds the maximum refresh time,
the state machine goes to state SR0 and starts activating
all the rows. Other conventional refresh operations could
be used in TAM.

VI. DESIGN OF DIFFERENT MEMORY
SYSTEMS BASED ON TAM
A. TAM MEMORY WITH FIXED ACCESS PATTERN
Figure 7 shows the basic memory system that uses multiple
TAM chips to expand the memory. The basic system consists
of multiple TAM memory chips connected in a serial fashion
such that the first location starts from the first location of the
first chip and the last location is from the last location of
the last chip. After accessing the last location of the last chip,
the access of the first location of the first chip occurs as shown
in the block diagram.

All memory chips are connected to the same CLOCK
signal for synchronous design. All DO/DI signals are con-
nected to the same bus signals as in any conventional memory
expansion. The /WE signal is connected to /WE in all the
chips.

The expansion of the memory system is very simple
because it needs only one signal to be connected from one
TAM to the next TAMmemory chip. The LAST ROW signal
from one chip is connected to the Start-act-ROW input of the
next chip. Conventional memory expansion needs to decode
some address lines to access the extra memory. This decoder
adds to the system complexity and delay.

The operation of memory starts with the first chip in the
system. The Start-act-ROW input of the first chip is activated
either by POWER-ON or by the LASTROW signal of the last
chip as shown in figure 7. The POWER-ON signal is needed
for starting memory access for the first time after Power Off.
The POWER-ON signal is generated from a special circuit
that gives a pulse when the supply voltage changes from 0 to 1
on POWER-ON. The LAST ROW signal of the last chip
activates the first row of the first chip through the feedback
signal that is connected to the OR gate. The data is read or
written to each cell based on the value of the /WE signal.

If the DRAM single chip is organized as N Row by
M Column, and the memory system consists of K chips, then
the total number of memory storage = NxMxK locations.
It will take NxMxK cycles to access the full memory, and
accessing the memory repeats every NxMxK cycles in a
cyclic serial fashion. The cycle time for TAM is much faster
than accessing conventional memory as it does not have a
decoder and it hides the Row and Column activations time
by overlapping it with data access time.

B. TAM MEMORY WITH ADAPTABLE ACCESS PATTERNS
In the basic TAM memory system with fixed access patterns,
the access of memory starts from the first location of the first
chip and ends at the last location of last chip. The number of
locations to access in a memory cycle is always fixed. The
time to complete a memory cycle includes waiting for all

memory locations to be accessed as mentioned above. The
processor must wait until the location it needs to arrive.

Figure 8 shows TAM memory system that is adaptable to
the demands of a processor and can change its access patterns.
The adaptable system uses a control circuit to determine
which chips to access. The control circuit uses a start address
to select the first chip and a second address to select the last
chip. The address lines is log base 2 of the number of chips.

FIGURE 8. TAM memory system with adaptable access patterns.

To explain the operation, let us assume that the number of
chips is 16 where each DRAM chip has 64 million locations,
and the processor needs to access a memory section that
starts from location 193 million to location 520 million. The
starting address will be chip number 4 (193 divided by 64).
The last chip address will be chip number 9 (520 divided
by 64). Only chips 4, 5, 6, 7, 8 and 9 are accessed. The
CONTROL circuit will make Start4 output signal active
through decoding the start chip address from the proces-
sor. This is a pulse and only becomes active at the start
of the memory access operation. It becomes active again
when the LAST ROW signal of the last chip to be accessed
(chip 9) becomes active. The following conditions make
Start4 active:-
• The Decode of Start Address 4. This is only active for
a time that is enough to start memory access similar to
POWER-ON time.

• The Decode of End Address 9 AND LAST-ROW-of-
chip 9 becomes active to allow the cyclic action of
memory access.

• TheCONTROL circuit decodes the END-chip address 9,
and activates all the End signals of the chips from chip 4
to chip 9. Furthermore, End4, End5, End6, End7, End8
and End9 becomes active.
The conditions to make any End signal active is:-

– The chip number is equal or greater than the Start
Address 4 AND LESS THAN OR EQUAL TO the
End Address 9. The design of such a circuit is sim-
ple and could use a combination of a comparator,
decoder and encoder.

1066 VOLUME 4, 2016



N. N. Mekhiel: Introducing TAM

C. TAM MEMORY WITH ‘OUT-OF-ORDER’
ACCESS PATTERNS
The adaptable TAM system, explained above, has the
following limitations:-
• Accessing of different locations must be in order,
starting from first location of first accessed chip to the
last location of the last accessed chip.

• The first accessed chip and length of memory locations
to be accessed are fixed during the memory access cycle.
Thismeans that during accessing thememory, we cannot
change the order of accesses. In the above TAM system
the accesses are to chip4, followed by chip5, .. the last is
chip 9. We cannot have accesses to chip 4, followed by
chip 7, followed by chip 5.

To deal with ‘Out-of-Order’ access patterns and to solve
the memory fragmentation, the following TAM memory sys-
tem organization is used. Figure 9 shows a block diagram
of TAM ‘Out-of-Order’ ACCESS organization. We assume
that each chip consists of multiple banks, and each bank
contains several memory rows. For example, a DRAM that
has 1024 ROWS could be divided to 32 banks where each
bank contains 32 rows. The number of locations in each bank
depends on the number of columns in each row.

FIGURE 9. TAM memory system with ‘out-of-order’ access patterns.

Each memory bank works as a basic TAM memory and
provides accesses to locations in a serial fashion. The access
of the last row in the bank generates a LAST-ROW signal
indicating the last row access in the bank. The Start-A-Row
signals the start of the serial access, and will activate the first
row in the bank as explained above.

The DECODER and COUNTER generate the Start signals
for any bank based on a select bank address and the mode
signal. If the requested address is in TAM Unit 17, and the
mode is set for ‘Out-of-Order’ operation, the unit decodes the
address and makes the Enable signal En17 active. En17 is
connected to an AND gate that waits until the LAST ROW
signal of the current accessed chip becomes active, indicating
the end of bank access.

The value of the bank select address determines which
bank to be accessed next in any order, thus allowing for
‘Out-of-Order’ access patterns.

To support ‘In-Order’ access patterns, this unit has a
counter that counts from 0 to the number of banks. The
counter output is connected to the decoder. If the mode is
set for IN ORDER ACCESS, then the decoder decodes the
output of the counter.

Memory expansion with ‘Out-of-Order’ access patterns is
simple and uses a memory controller that selects the start of
the next chip based on a chip select address similar to bank
select address. The controller waits for the LASTROWsignal
from the current accessed chip and decodes the chip select
address, then it generates the start activation of the row for
the selected chip. The start signals of the rest of the chips are
forced to be not active and these chips cannot start any access.

D. TAM MEMORY WITH MULTIPLEXER/DE-MULTIPLEXER
In the Out of Order TAM, one bank at a time is accessed while
the rest of the banks are waiting. This design is simple and
could save power, however it cannot support parallel accesses
from memory. Another organization that uses multiplexers
can allow data in each bank to spin around in cyclic form and
creates a parallel data accesses between each bank (explained
below).

Figure 10 shows the TAM organization using a multiplexer
and demultiplexer. The select bank address selects the spe-
cific bank to be accessed among the multiple banks. It allows
output data DO of the specific bank to pass through the
multiplexer to the memory bus. It also allows the input data,
DI from the memory bus to be passed through the demulti-
plexer to be written to the selected bank.

FIGURE 10. TAM Mmeory with multiplexer/de-multiplexer.

This organization supports Out-of-Order access patterns as
the select address determines the accessed bank in any order.
It also supports ‘In-Order’ Access patterns by using a counter
and a mode signal to access banks ‘In-Order’ through the
multiplexer/demultiplexer.

E. PARALLEL TAM MEMORY
It is possible to design a parallel TAM memory system to
access data from more than one bank at the same time. The
advantage of this design is that it allows accessing data from
different banks simultaneously. In a system with more than
one processor, a number of processors could share one portion

VOLUME 4, 2016 1067



N. N. Mekhiel: Introducing TAM

of memory while others access different portions of memory
independent of each other and each system could have a
different cycle time. TAM cycle time is the time it takes to
access the memory section in serial until it repeats.

Figure 11 shows a block diagram for parallel TAMmemory
using multiplexers/de-multiplexers. The core memory con-
sists of multiple banks, two multiplexers and two demulti-
plexers. Each multiplexer selects one bank from the memory
to deliver its data to a bus. MUX1 has its output connected
to DO1/DI1. MUX2 has its output connected to DO2/DI2.
The SELECT BANK1 signal selects one bank for MUX1
and SELECT BANK2 selects one bank for MUX2. The
DO1/DI1 is also connected to DEMUX1 to supply DI1 to
the selected bank based on SELECT BANK1 for write opera-
tions. DO2/DI2 is connected to input of DEMUX2 to supply
DI2 to the second selected bank based on SELECT BANK2
signals.

FIGURE 11. Parallel TAM Mmeory.

F. MULTI-LEVEL TAM MEMORY WITH ORBITAL DATA
To deal with multiple processors with different access times,
TAMwith orbital data is proposed. Each orbit spins data with
a different cycle time that depends on the number of accesses
in that orbit.The processor could dynamically access data
on different orbits according to their required access time to
memory.

Multi-Level TAM allows data to be accessed from different
sections of memory at different cycle time. Amemory section
has a number of memory locations accessed in a serial or
sequential order (mapped in a linear time order). Cycle time
is the time it takes to access a section of sequential accessed
locations until it is accessed again in a cyclic fashion.

Figure 12 shows the concept of Multi-Level TAM. The
whole memory spins on ORBIT0, which has the longest cycle
time. Eachmemory location is accessed and is available to the
outside bus for one bus cycle. Other sections of memory are

FIGURE 12. Concept of multi-level TAM.

rotating their contents at the same time in a cyclic fashion
each with different cycle time. ORBIT1 has a portion of
memory spinning at a faster cycle time because it contains
smaller number of memory locations. ORBIT2 has the small-
est number of memory locations and spins at the fastest cycle
time. When the contents of memory ORBIT0 needs to be in
ORBIT1 (because ORBIT1 is part of whole memory), both
are aligned and become one section that belongs to ORBIT0.
There is no extra memory storage for ORBIT1 or ORBIT2,
they take portions of whole memory and spins them at a
higher speed. This is because the whole memory is divided
into an integer number of sections for ORBIT1 and ORBIT2.

Figure 13 shows the mapping of the different memory
locations in time for the different levels in TAM. At level0, all
locations in memory spin in a cyclic form, with cycle time =
number.of.memory.locationsxclock.cycle.time

FIGURE 13. Time mapping of memory in multi-level TAM.

Location X1 repeats after NxK assuming that there are
K sections of memory that have N locations each. Memory
contents from X1 to XN spins at N clock cycles in level1
orbit. After KxN cycles, X1 for level0 and X1 of level1 are
available at the same time (because it is one location).

Memory section X1 to XN is also divided to integer num-
ber of M locations (X1 to XM) in level2. At level2, X1 to XM
spins at M cycle time as shown in Figure 13. At time= KxN,
X1 of all levels is available at the same time.

G. MULTI-LEVEL TAM MEMORY WITH ORBITAL DATA
Figure 14 shows the implementation of a multi-level TAM.
Memory is divided to banks or sections and each section
could be designed as a basic TAM organization given above.
Each section rotates its content around a special bus shown
for BNK0, BNKM, BNKN. The bus for each bank has all
locations of its section continuously spinning at a cycle time
of equal number of locations in the bankmultiplied by the bus
clock time. MUX1 provides the next level for TAM level1 as
shown in Figure 12. It combines number of banks and makes

1068 VOLUME 4, 2016



N. N. Mekhiel: Introducing TAM

FIGURE 14. Multi-level TAM with orbital data implementation.

their contents available one after another in sequence. The bus
output ofMUX1 is also connected as the input for De-MUX1.
If MUX1 is selecting BNK3, then data out from BNK3 is
delivered to MUX1 bus, and rerouted through De-MUX1
to be available for BNK3, while BNK1 bus data output is
connected to BNK1 to deliver data input at the same time as
level2 shown in Figure 12. The bank bus is not used when
the bank is accessed through MUX1 (MUX1 bus control the
bank data).

MUX0 is used to access the whole memory as level 0,
shown in Figure 12, by selecting (in a sequential order), the
outputs from all MUX1 of memory. The bus of MUX0 is
also connected to the input of De-MUX0 and re-routed to the
accessed bank by a DE-MUX1. When one bank is accessed
by the bus of MUX0, this bank will only be controlled by this
bus, and the other buses from MUX1 or the internal bank bus
will be inactive.

VII. DESIGN OF DIFFERENT COMPUTER SYSTEMS
USING TAM MEMORY
A. SINGLE PROCESSOR USING TAM
Figure 15 shows a block diagram of a single processor using
TAM memory.

FIGURE 15. Single processor using TAM.

The processor uses a large buffer or cache to capture
needed accesses in one memory cycle. The time to access any
location in a miss will be at most the waiting time to transfer
the whole memory out in the first memory spin.

The processor has a time counter to access (in time) each
memory location. The processor then determines if it needs

to read or write data for the accessed location and enables
one of the two tri-state buffers. The processor can use the
advanced (Adaptable, ‘Out-of-Order’, Multiplexed) TAM to
request specific section of memory at a specific time.

The compiler could help inmapping locations close to each
other in time. The processor could implement a pipelining
architecture to overlap execution time with memory access
time. The processor is then capable of 100% prediction suc-
cess in scheduling memory transfers because it is mapped
in time.

B. TAM WITH MULTIPROCESSOR SYSTEM
Figure 16 shows a block diagram of a multiprocessor system
using TAM. Multiple processors are connected in parallel to
the TAM bus, and waits for the data without the need for
each processor to arbitrate for the bus. Each processor has
its own large cache to store needed data for the application.
For parallel applications, data sharing and synchronization
are simplified because of the natural serialization of data on
the bus as each location is accessed in predicted time.

FIGURE 16. Multiprocessor using TAM.

The performance of the multiprocessor system will scale
linearly with the number of processors. Hence, it can be fully
scalable to thousands of processors.

C. MULTIPROCESSOR SYSTEM WITH PARALLEL TAM
The waiting time for multiprocessors using a shared TAM is
reduced by using a Multi-level TAM structure in which data
spins in different orbits where each orbit has its own cycle
time, therefore each processor can select a section of data
to move and route through to the multiplexer/demultiplexer.
Figure 17 shows amultiprocessor system using parallel TAM.
Each processor is connected to a multiplexer/demultiplexer.
Each processor can request (using a select bank signal)
the specific bank in the memory array. Processors could
request the data to be available in the outputs of parallel
TAM at a faster spin cycle time as previously mentioned.

VOLUME 4, 2016 1069



N. N. Mekhiel: Introducing TAM

FIGURE 17. Multiprocessor using parallel TAM.

Each processor needs only to put select bank address to access
the data in the selected bank without any need for arbitration
or waiting. Bank conflicts is not a problem for read operations
as more than one processor can read the data of a single
bank. Writing to one bank at the same time will cause a
bank conflict, and could be detected and avoided by a simple
control circuit. This system is suitable for a small scale high
speed multiprocessor system.

D. SCALABLE MULTIPROCESSOR USING TAM
Figure 18 shows a scalable multiprocessor organization using
parallel TAM. Each group of multiprocessors are connected
to one multiplexer/demultiplexer to access sections of mem-
ory based on the selected bank address. Other groups of
multiprocessors are similarly connected to form a parallel
multiprocessor system. This organization is different from the
other known parallel systems because it provides a second
level of parallelism achieved by parallel TAM organization.

FIGURE 18. Scalable multiprocessors using parallel TAM.

Each multiprocessor group shares one portion of memory at a
specific time without the need to exclude the other groups of
multiprocessors. First level parallelism is obtained among the
multiprocessor group sharing one multiplexer/demultiplexer
as explained above in basic TAM. The second level of paral-
lelism is achieved among each multiprocessor group by using
the parallel TAM.

E. LARGE SCALE MULTIPROCESSOR
USING MULTI-LEVEL TAM
Figure 19 shows multiprocessor organization using Multi-
Level TAM. Each group of multiprocessors are connected to
one multiplexer/demultiplexer to access sections of memory
based on the selected memory section. Other groups of multi-
processors are similarly connected to other levels of the TAM
system. This provides a multi-level parallelism achieved by
themulti-level TAMorganization. Eachmultiprocessor group
shares one portion of memory at a specific time without
the need to exclude the other groups of multiprocessors.
First level parallelism is obtained among the multiprocessor
group sharing one multiplexer/demultiplexer MUX0,
DE-MUX0. Second multiprocessor group shares
MUX1/DE-MUX1 accessing a smaller portion of memory
that spins at a higher speed. Finally, the third level of pro-
cessors are connected directly to the TAM memory bank or
section.

FIGURE 19. Multiprocessor using multi-level TAM.

This organization has the advantages of easy synchro-
nization among different processors, flexibility in assigning
processors to the memory portions that they need, and less
bus loading for distributing processors among different bus
levels.

F. VECTOR OPERATIONS IN MULTIPROCESSORS
USING TAM
Figure 20 shows a block diagram of a SIMD (Single Instruc-
tion Multiple Data) using TAM memory to support vector
operations. The content of each memory location is placed
in the bus for a single cycle, then all processing elements
read these locations without arbitration or waiting. The vector
with N elements is stored in N sequential memory locations,
and could be read or written to by N processing elements

1070 VOLUME 4, 2016



N. N. Mekhiel: Introducing TAM

FIGURE 20. Vector operations using TAM.

in N cycles. The load and store of long vectors in a conven-
tional vector processor requires complicated and highly inter-
leaved bank memory with careful mapping of data in dierent
banks. Even if a vector processor uses a cache memory, it also
has limitations in supporting vector load and store because the
vector length causes high miss rate and costly transfer time.

The following are some vector operations supported by
TAM and shown in Figure 20:-
• LDV R1, 0(R7)
This is a load instruction for a vector with N elements to
N processors. Processor P1 transfers the first element of
the vector to its register R1 at a cycle number equal to the
content of R7. Processor P2 transfers the second element
of the same vector to its R1 register at a cycle equal to
R7 plus one. Processor PN transfers the last element of
the vector to its R1 register at a cycle equal to R7 plus N.
It takes N cycles to transfer the full vector to processors
registers.

• LDV R2, 0(R8)
This instruction transfers the second vector to N proces-
sors register R2 in N cycles as explained above.

• ADD R5, R1, R2
Every processor adds one element of the first vector
to one element of the second vector only in one cycle
in parallel. It is important to note that a conventional
vector processor with a pipelined function unit will take
N cycles to add the two vectors.

The following are the advantages of using TAM for vector
operations:-
• Conventional processors need to use large Vector
Registers to support vector operation.

• Data transfers from memory to processor or processor
to memory is very efficient. There is no need for bank
interleaving, and there is no bank conflicts as in a vector
processor.

• Conventional cache suffers from high cost of transfer
time and high miss rate for using long vectors in cache.

• Conventional multiprocessors requires synchronization
overhead to support vector operations.

VIII. PERFORMANCE EVALUATION
A. CONVENTIONAL SINGLE PROCESSOR MODEL
The execution time for a single processor is:-

Execution.time=processor.hit.time+miss.ratexmiss.
penalty

Total time to execute an application on a conventional
system = TpxNi +MxNix(Ta+Tf)
Where: Tp= processor cycle time and could be less than 1

for superscalar, Ni=number of instructions in an application,
M=Miss rate, Ni=number of instructions, Ta=main memory
access time, and Tf=time to transfer 1 block of cache using
memory bus.

B. CONVENTIONAL MULTIPROCESSOR MODEL
Total time to execute multiple applications on a multiproces-
sor system = TpxNi + NpxMxNix(Ta+Tf) where Np is the
number of processors.

The total number of misses to external shared main mem-
ory will be proportional to Np as they have to be serviced in
serial from one shared memory.

C. SINGLE PROCESSOR USING TAM MODEL
Total execution time = time to execute the application inside
the processor + time to transfer the full memory contents to
processor.

The total time to execute the application in TAM =
NixTp + Sm/BW where: Ni=number of instructions in a
program, Tp= processor cycle time, Sm=Size of all memory
locations in a system, and BW=Bus bandwidth for syn-
chronous transfer.

D. MULTIPROCESSOR USING TAM MODEL
For a TAM memory system, only one memory transfer is
needed for all applications. All processors have the content of
all memory in the same waiting time as for a single processor.

Time is independent of number of processors. Hence,
the total time to execute the application in
TAM = NixTp + Sm/BW.

E. PARAMETERS OF THE CONVENTIONAL SYSTEM
We assume the following for a typical processor running a
SPEC benchmark applications:-

Tp= (1/3.3GHz)/2= .15ns, processor frequency=3.3GHz,
average IPC = 2 from using superscalar.
Ni=depends on the workload, we assume Ni = 1 billion.
M depends on the application and the cache. It can vary

from 1% to 10% according to IBM Watson Research Center
study. We will assume M=1%.
we will assume Ta=40 ns for a typical DRAM.
we can calculate the cache block transfer time as:
Tf = (Cache.Block/bus.width)xbus.cycle.time =

(128B/8B)x2ns = 32ns.

VOLUME 4, 2016 1071



N. N. Mekhiel: Introducing TAM

The bandwidth for using TAM depends on the speed of
TAM and the increase in number of bus lines available from
eliminating the address lines.

We assume TAM BW = 10GB per second.
We assume that the memory size, Sm = 1GB.

F. PERFORMANCE OF CONVENTIONAL
SINGLE PROCESSOR
Total time to finish the application = 1billionx.15ns +
.01x1billionx(40 + 32)ns

= .3/2s+ .72 = .87 second

It is clear that the processor spends most of the time in
accessing slow main memory (about 5 times the execution
time inside the processor).

G. PERFORMANCE OF CONVENTIONAL
MULTIPROCESSOR SYSTEM
Time to execute eight applications in a multiprocessor system
using eight processors each running 1 billion instructions.

= .15+ 8x(.72) = 5.91 Second

H. PERFORMANCE OF SINGLE PROCESSOR USING TAM
Total time to execute the application in TAM (the new
memory) = NixTp + Sm/(BW)

Total time for single processor=.15+ 1GB/(10GB)= .25
second

Speed-up for using a TAM single processor =
.87/.25 = 350%.

It would be faster to run 8 applications in a single processor
TAM based system than in a conventional multiprocessor
system. Running 8 applications on a TAM based single pro-
cessor takes 8x.25 = 4 seconds compared to 5.91 second on
a conventional multiprocessor.

I. PERFORMANCE OF MULTIPROCESSOR
SYSTEM USING TAM
For the system using TAM, the 8 processors run 8 applications
using only one memory transfer. This is the content of the
whole shared memory.

Time for multiprocessor based TAM to run 8 applica-
tions = .15+.1 = .25 Second.

Speedup for using TAM for 8 processors =
5.91/.25 = 2400%.

IX. CONCLUSIONS
TAM is a much simpler and faster memory and could use
DRAM technology or SRAM technology in an efficient way.
It also reduces the complexity of memory by eliminating
decoders and address lines.

Results show that TAM based system can scale to a large
number of processors. The deterministic timing of accessing
each memory location eliminates the overhead associated
with synchronization for parallel processors.

A single processor using a TAM system is more efficient
than a conventional multiprocessor as it completely decou-
ples slow memory from a fast processor. TAM could be used
to support vector operations without suffering from bank
conflicts or cache high miss cost.

X. FUTURE WORK
We are planning to consider a hybrid system that consists of
mapping data in both space and time, then optimize it with
respect to the size of data that maps to space and the size of
data that maps to time.

We will study the possibility of using TAM in mobile
computing as data can be easily transferred from a remote
location in time rather than space. Orbital data patterns of
TAM makes it suitable for use in multiple mobile devices
by forming larger data orbits. TAM could also use available
mobile devices to form Big Data Centers at an affordable cost
and reduce power consumption.

A TAMbased systemwill be suitable to predict the weather
in the entire Earth atmosphere using thousands of processors
handling big data that will map to multi-level TAM in dif-
ferent orbits. Smaller orbits represents the weather informa-
tion in smaller regions with a fast cycle time. Larger orbits
will spin the data of much larger regions and periodically
receive updates from lower level orbits. A global orbit that
represents the information of the entire Earth weather spins
data at a much slower rate, and gets updated from all regions
periodically. This makes the system accurate and scalable to
thousands of processors able to handle the weather data of
entire earth atmosphere.

REFERENCES
[1] D. Burger, J. R. Goodman, and A. Kägi, ‘‘Memory bandwidth limita-

tions of future microprocessors,’’ in Proc. 23rd Annu. Int. Symp. Comput.
Archit., New York, NY, USA, 1996, pp. 78–89.

[2] W. A. Wulf and S. A. McKee, ‘‘Hitting the memory wall: Implications
of the obvious,’’ ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[3] A. Saulsbury, F. Pong, and A. Nowatzyk, ‘‘Missing the memory wall:
The case for processor/memory integration,’’ in Proc. 23rd Annu. Int.
Conf. Comput. Archit. (ISCA), Philadelphia, PA, USA, May 1996,
pp. 90–101.

[4] J. I. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. San Francisco, CA, USA: Morgan Kaufmann, 1996.

[5] 4 Gb DDR3 SDRAM Data Sheet K4B4G1646E, Samsung Electron.,
Suwon, Korea, Dec. 2014.

[6] RB26, DDR4, Rambus Inc. Sunnyvale, CA, USA, Aug. 2015.
[7] Y. Konishi, T. Ogawa, and M. Kumanoya, ‘‘Testing 256k word × 16 bit

cache DRAM (CDRAM),’’ in Proc. Int. Conf. Test (ITC), 1994.
[8] Z. Zhang, Z. Zhu, and X. Zhang, ‘‘Cached DRAM for ILP processor

memory access latency reduction,’’ IEEE Micro, vol. 21, no. 4, pp. 22–32,
Jul./Aug. 2001.

[9] N. N. Mekhiel, ‘‘Data processing with time-based memory access,’’
U.S. Patent 8 914 612, Dec. 16, 2014.

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie, ‘‘Unbounded transactional memory,’’ in Proc. 11th Int. Symp. High-
Perform. Comput. Archit., Feb. 2005, pp. 316–327.

[11] R. Rajwar and J. Goodman, ‘‘Transactional execution: Toward reli-
able, high-performance multithreading,’’ IEEE Micro, vol. 23, no. 6,
pp. 117–125, Nov./Dec. 2003.

[12] D. T. Marr et al., ‘‘Hyper-threading technology architecture and microar-
chitecture,’’ Intel Technol. J., vol. 6, no. 1 p. 11, 2002.

1072 VOLUME 4, 2016



N. N. Mekhiel: Introducing TAM

[13] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz, ‘‘APRIL: A pro-
cessor architecture for multiprocessing,’’ in Proc. 17th Annu. Int. Symp.
Comput. Archit., May 1990, pp. 104–114.

[14] L. Hammond, B. A. Nayfeh, and K. Olukotun, ‘‘A single-chip multipro-
cessor,’’ Computer, vol. 30, no. 9, pp. 79–85, Sep. 1997.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy, ‘‘Simultaneous multithread-
ing: Maximizing on-chip parallelism,’’ in Proc. 22nd Annu. Int. Symp.
Comput. Archit., Jun. 1995, pp. 392–403.

[16] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. R. L. Lo Stamm,
and D. M. Tullsen, ‘‘Simultaneous multithreading: A platform for
next-generation processors,’’ IEEE Micro, vol. 17, no. 5, pp. 12–19,
Sep./Oct. 1997.

[17] G. Hinton et al., ‘‘The microarchitecture of the Pentium 4 processor,’’ Intel
Technol. J. Q1, vol. 5, pp. 1–13, Feb. 2001.

[18] N. N. Mekhiel, ‘‘Understanding the behavior of simultaneous mul-
tithreaded and multiprocessor architectures,’’ in Proc. ISCA 21st
Int. Conf. Comput. Appl. (CATA), Seattle, WA, USA, Mar. 2006,
pp. 1–7.

[19] J. D. Gilbert, S. H. Hunt, D. Gunadi, andG. Srinivas, ‘‘The Tulsa processor:
A dual core large shared-cache Intel Xeon processor 7000 sequence for
the MP server market segment,’’ in Proc. HOT Chips 18, Aug. 2006,
p. 24.

[20] A. McDonald et al., ‘‘Characterization of TCC on chip-multiprocessors,’’
in Proc. 14th Int. Conf. Parallel Archit. Compil. Techn., Sep. 2005,
pp. 63–74.

NAGI N. MEKHIEL (SM’88) received the
B.Sc. degree in electrical engineering (communi-
cation) from Assiut University, Egypt, in 1973,
the M.A.Sc. degree in electrical engineering from
the University of Toronto, in 1981, and the Ph.D.
degree in computer engineering from McMas-
ter University, Hamilton, ON, Canada, in 1995.
He was with the Hospital for Sick Children,
Biomedical Research Institute, Toronto, as a
Biomedical Engineer from 1981 to 1987. In 1987,

he joined Definicon Systems Corporation Newbury Park, CA, USA, as a
Senior Hardware Engineer in 1990. From 1996 to 1998, he was with Yarc
SystemCorporationNewbury Park, CA, as a SeniorMember of the Technical
Staff. In 1997, he was with the Department of Electrical and Computer
Engineering, University of California at Santa Barbara, Santa Barbara, CA,
as a Lecturer. He is currently a Professor with the Department of Electri-
cal and Computer Engineering, Ryerson University, Toronto. His research
interests are computer architecture, parallel processing, high performance
memory systems, advanced processors, VLSI, and performance evaluation
of computer systems. He holds many U.S. and World patents in memory and
multiprocessors. He is conducting research to solve the fundamental prob-
lems facing computer industry, including scalability of parallel processors,
and processor/memory speed gap.

VOLUME 4, 2016 1073


