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Abstract—As one of the green energy resources, the technique
of energy harvesting harnesses energy from its surrounding en-
vironment. In this setting, a power grid is also utilized to serve
as a supplementary source to regulate the not-so-stable harvested
energy supply of the system. The power allocated to the user(s)
from the sum of the harvested energy and the power grid is subject
to peak power constraints. The background of these constraints
comes from field requirements, such as avoiding the saturation of
power allocated to the user(s), avoiding system level out-of-band
power leakage, and reducing interference with other transmitter(s)
due to the nonlinearity generated via the transmitting mechanisms
to the user(s). The proposed problem considers simultaneously 1)
the hybrid paradigm of both energy harvesting and grid power
supplies, and 2) the peak power constraints in such systems. For
our proposed problem, the most efficient known-to-date and pop-
ular convex optimization method of primal-dual interior method
(PD-IPM) only computes an ϵ solution, not an optimal solution,
even with more computations. The novelty of the proposed algo-
rithms is that they compute the exact solutions with the low degree
polynomial computational complexity. To the best of the authors’
knowledge, under the same assumptions, no prior publication, in-
cluding PD-IPM, can arrive at such results. Numerical examples
also illustrate efficiency of the proposed algorithms.

Index Terms—Energy harvesting, exact solution, optimal power
allocation, optimization theory and methods, smart power grid,
water-filling algorithm with mixed constraints.

I. INTRODUCTION

A. Background

W IRELESS devices are normally powered by batteries,
which need to be either replaced or recharged period-

ically. One possible technique to overcome this limitation is to
harvest energy from the surrounding environment, via energy
harvesting devices such as vibration absorption devices, solar
energy, wind energy, thermal energy, and other clean forms
of energy sources [1]. In developing green communication
systems, energy harvesting has become a preferred choice for
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supporting “the green communication”. Such a system is nor-
mally modelled as a sequence of epochs, at the ends of which,
the fading gain and the harvested energy arrival are observed or
predictable. This system setting leads to new design and insights
in a wireless link with a rechargeable transmitter and fading
channels [2]. On prediction, many techniques can be used, such
as the time series prediction. In this paper, the system parameters
are assumed to be predictable, like others, e.g. [3]–[5].

There has been much recent research effort on understand-
ing data transmission in this kind of systems, for example, the
investigation of power allocation policies [6]–[9], medium ac-
cess control protocols [10], adaptive opportunistic routing proto-
cols [11], [12], network throughput of a mobile ad hoc network
powered by energy harvesting [13], and energy management
in wireless sensor networks [8], [14], etc. In [15], optimal-
ity of a variant of the back pressure algorithm using energy
queues is discussed in the setting of wireless networks with
rechargeable batteries. In [16], transmitters with energy har-
vesting and batteries with finite energy are considered for min-
imizing the weighted sum of the outage probabilities under a
set of predetermined transmission rates over a finite horizon.
It applied such an approximation while assuming high signal-
to-noise ratios and obtained a near-optimal offline solution. As
the fundamental work for transmission with energy harvest-
ing in wireless communications, [3] investigated the throughput
maximization problem with full side information and proposed
some approaches that made use of the water-filling algorithm to
solve the Karush-Kuhn-Tucker (KKT) conditions [17] of the tar-
get optimization problem. Different from these previous works,
we recursively applied our proposed Geometric Water-Filling
(GWF) [18] to solve the throughput maximization problem and
transmission time minimization problem, as demonstrated in the
more recent paper [19].

Since the available harvested energy depends on many en-
vironmental conditions, it is not considered as a stable energy
source. Energy drawn from a smart power grid is needed and is
considered as a supplementary source to regulate the overall en-
ergy flow of the system. With this kind of hybrid energy source
systems, the proposed problem of optimal power allocation to
maximize system throughput turns out to be far more compli-
cated. Recently, [20] investigated the issues of power allocation
problems to minimize the grid power consumption mainly with
predictable energy and data arrival, and analyzed the structure
of the optimal power allocation policy in some special cases. In

2373-776X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



188 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 1, MARCH 2017

the most recent research [21], an efficient algorithm was pro-
posed to compute the solution to the optimal power allocation
problem, which is the MIMO case of the energy harvesting and
power grid hybrid systems.

B. Our Work

In this paper, the GWF and recursion machinery are further
exploited to obtain the (exact) optimal solution to the maximum
throughput problems for the hybrid energy harvesting and
power grid communication system with additional upper bound
power constraints, i.e., peak power constraints. The background
of these constraints comes from field requirements, such as,
avoiding the saturation of power allocated to the user(s) and
avoiding system level out-of-band power leakage, via the
transmitting mechanisms to the user(s). This set of the peak
power constraints leads to more challenges in (exactly) solving
the target problem. To the best of the authors’ knowledge, no
solution has been reported in the open literature.

Besides proposing a more difficult problem, this paper pro-
poses algorithms that solve this difficult problem with the fol-
lowing characteristics: 1) the proposed algorithms can compute
the exact optimal solution, with the polynomial computational
complexity, against the ϵ solution (will be elaborated in more de-
tails in Numerical Results section); 2) their optimality is strictly
proven; and 3) the proposed approach can be exploited to solve
the minimum time and the minimum sum power problems, and
the corresponding stochastic (i.e., online,) systems, as well. The
last issue is our on-going research topics. In this paper, we shall
focus on the first two points only.

The peak power constraints mentioned in this paper form
a “cubical” constraint in a higher dimensional Euclidean space
[22]. Pontryagin [22] pointed out that this cubical non-trivia con-
straint sets modern optimization apart from the classical ones.
The difference between modern optimization and the classical
ones lies in the fact: the solution of the former is often at the
boundary of a compact set; while that of the latter is an interior
point of an open set. As a direct consequence, the optimality
condition of the former is considered to be much more com-
plicated than that of latter. [22] utilizes the famous maximum
principle in an attempt to solve this class of modern problems
with the cubical constraint [22, p. 3]. To solve an optimization
problem, method A is regarded as being better than method B if
method A can compute the exact solution with less finite amount
of computation. Under this meaning, to the best of the authors’
knowledge, our proposed algorithms are considered to be the
best way so far to solve the target problem. At the same time,
we prove optimality of the obtained solution, and present com-
plexity analysis to show the differences from existing methods.
The proposed problem is shown to be much more difficult and
its solution is shown to be quite different. The proposed problem
can be further regressed into a problem where energy harvest-
ing is the sole energy source with the peak power constraints
of the harvested power or energy. For this individual case of
our general problem, our proposed algorithms could also han-
dle it successfully, unlike Primal-Dual Interior point Method
(PD-IPM), the most efficient and popular convex optimization
method known to date.

In the remaining of this paper, system model and problem
statement are presented in Section II. Energy harvesting power
allocation HPA1 for maximum throughput with the peak
power constraints, is investigated in Section III. Its extensions:
Hybrid power allocation Algorithm 1 and Algorithm 2 (HPA2
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and HPA2-R), are investigated in Section IV. Numerical
examples and computational complexity analysis are presented
in Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

In this section, the model of energy harvesting and power grid
coexisting system with the power upper bound constraints in a
fading channel is first presented, followed by the optimization
problem to maximize the throughput in such a system. For con-

Fig. 1. System model, K = 8 epochs in (0, T ]

venience and without loss of generality, the process is assumed
to be a discrete time process.

As shown in Fig. 1, the system model depicts the time period
from (0, T ] including K epochs. Let Li and ai denote the time
duration and the fading channel gain of the ith epoch, where i =
1, . . . ,K. Without loss of generality, assume Li > 0, ai > 0,∀i.
At the beginning of the ith epoch, the harvested energy that is
available is denoted by Ein(i), and it is depicted as Ein(i) ≥ 0.
Besides the harvested energy Ein(i), the transmission is also
connected with the smart power grid. Let E(G,total) denote the
energy budget of the total energy, supported by the power grid.

We assume that P i ≥ 0, for the peak power constraint on the
powers from the energy harvesting and the power grid for the
ith epoch, ∀i.

For the dual-energy-source system, we restrict our attention
to power management strategies with constant transmit power
in each epoch, and find the optimal one among these strategies.
Therefore, let us denote the transmit power at epoch i by si

(i = 1, . . . ,K), which consists of the power from harvested
energy, sH,i , and the power from the smart power grid, sG,i .
The objective is to maximize the total throughput of the user
by the deadline T , i.e., within the K epochs. We have causal
constraints that the currently harvested energy cannot be used
in the previous epochs but only in the following epochs. For
simplification, an infinite energy storage capacity is assumed.
Hence, the optimization problem to maximize the throughput in
this hybrid system can be written as:

max
{sH , i ,sG , i }K

i = 1

K∑

i=1

Li

2
log (1 + ai(sH,i + sG,i))

Subject to: 0 ≤ sH,i , ∀i;

0 ≤ sG,i , ∀i;

sH,i + sG,i ≤ P i, ∀i;
l∑

i=1

LisH,i ≤
l∑

i=1

Ein(i),

for l = 1, . . . ,K;
K∑

i=1

LisG,i ≤ E(G,total) . (1)

As a side note, the logarithm function used by the objective
function above takes the number of 2 as its base. Also, ai in the
objective function is the reciprocal of the noise variance times
the square of channel gain, ∀i.

In this optimal power allocation problem, the first two
constraints account for the nonnegative powers from harvested
energy and grid respectively; the fourth constraint accounts
for the causal requirement; and the fifth constraint reflects



190 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 1, MARCH 2017

the maximum energy available from the smart power grid.
Different from [21], the insertion of the third constraint reflects
the peak power constraints.

The observed properties of the optimal harvested power allo-
cation can be interpreted by water-filling vividly: Ein(i) units
of water is filled into a rectangle container with bottom width
Li
2 ,∀i. Note that the last weighted power sum constraint from

energy harvesting (the fourth constraint in Problem (1)) can-
not be guaranteed to be equality, unlike the case when there is
no peak power constraint. Furthermore, for unifying parame-
ter notation, through a change of variables, we can obtain an
equivalent target problem as follows:

max
{sH , i ,sG , i }K

i = 1

K∑

i=1

wi log (1 + ai(sH,i + sG,i))

subject to: 0 ≤ sH,i , ∀i;

0 ≤ sG,i , ∀i;

si = sH,i + sG,i ≤ P i, ∀i;
l∑

i=1

sH,i ≤
l∑

i=1

Ein(i),∀l;

K∑

i=1

sG,i ≤ E(G,total) , (2)

where Li
2 −→ wi,

ai
Li
−→ ai , LisH,i −→ sH,i , LisG,i −→

sG,i and LiP i −→ P i , for any i. Note that the symbol “−→” is
the assignment operator from the left side to the right side; and
the symbol “←−” is that from right side to left side. Without con-
sideration of trivial cases, P i > 0, Ein (i) > 0 and E(G,total) > 0
can be assumed.

Due to the existence of the peak power constraints (as in
the third constraint in Problem (1) or (2)), the water level non-
decreasing condition (monotonicity) discussed in [19] doesn’t
hold anymore.

III. ALGORITHM HPA1 COMPUTING THE CASE WITHOUT

POWER GRID

This section presents the proposed Power allocation algo-
rithm: HPA1, to compute the optimal solution to maximize
throughput under energy harvesting with the peak power con-
straints but without power grid. HPA1 cannot directly compute
an optimal solution to the target problem (2) yet. However, HPA1
will serve as a precursor for Algorithm HPA2 that handles the
target problem (2).

A. Preparations for HPA1

This subsection introduces tools needed for HPA1.
1) GWFPP (without switching): Since HPA1 uses the

algorithm: Geometric Water Filling with Peak Power constraints
(GWFPP) with Switching, GWFPP without switching proposed
in [18] is first revisited below for gradual transition to GWFPP
with Switching.

Fig. 2. Illustration for si /wi , and 1/(ai · wi ).

GWFPP aims at computing the solution to the following
problem.

max
{sk }K

k = 1

K∑

k=1

wk log(1 + aksk )

subject to: 0 ≤ sk ≤ Pk , ∀k;
K∑

k=1

sk ≤ P, (3)

where P is the total power for allocation. For introducing
GWFPP without Switching, the results for GWF (Geometric
Water-filling) [18] are summarized below. GWF aims to solve
the same problem as (3) with relaxation of the individual peak
power constraint, i.e., Pk is large enough. The water level step
index k∗, denoting the index of the highest step below water
level, is obtained by [18]

k∗ = max {k |P2(k) > 0, 1 ≤ k ≤ K and k ∈ E } (4)

where E is an index set that is a subset of {1, . . . , K}, and P2(k)
is a middle variable, denoting the water volume above the kth
step, and is given as

P2(k) =

⎡

⎣P −
∑

i∈{1≤i≤k−1,i∈E }

(
1

akwk
− 1

aiwi

)
wi

⎤

⎦
+

,

for 1 ≤ k ≤ K and k ∈ E. (5)

Then the power allocated for the k∗ step is

sk ∗ =
wk ∗∑

i∈{1≤i≤k ∗,i∈E } wi
P2(k∗). (6)

The completed solution is then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

si =
[

sk ∗

wk ∗
+

(
1

ak ∗wk ∗
− 1

aiwi

)]
wi,

1 ≤ i ≤ k∗ and i ∈ E;
si = 0, k∗ < i ≤ K and i ∈ E.

(7)

For conveniently understanding, the key terms si/wi and
1/(ai · wi) are illustrated by Fig. 2.

Equipped with GWF algorithm, GWFPP without Switching
is formally listed below.
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Fig. 3. Illustration for GWFPP with switching.

Algorithm GWFPP:
Input: vector {di = 1

ai wi
}, {wi}, {P i} for i = 1, 2, . . . ,K,

the set E = {1, 2, . . . ,K}, and P .
1) Utilize (4)-(7) to compute {si}.
2) The set Λ is defined by the set {i|si > P i, i ∈ E}. If Λ is

the empty set, output {si}K
i=1 ; else, si = P i , as i ∈ Λ.

3) Update E with E \ Λ and P with P −
∑

t∈Λ P t . Then
return to 1) of the GWFPP.

Remark 1: Algorithm GWFPP is a dynamic power distribu-
tion process. The state of this process is the difference between
the individual peak power sequence and the current power distri-
bution sequence obtained by (4)-(7). The control of this process
is to use the last statement of 2) in GWFPP and the first state-
ment of 3) in GWFPP. A new state is updated in the next time
stage. An optimal dynamic power distribution process through
GWFPP with the state feedback is thus formed. Since the finite
set E is getting smaller and smaller until the set is empty, Al-
gorithm GWFPP carries out K loops to compute the optimal
solution at most.

2) GWFPP with Switching:
Definition 1: (GWFPP with Switching): Let L and K be

two positive integers with L ≤ K, to denote the index of the
starting channel and the ending channel, respectively. For (3)
and GWFPP, we define a switch variable, δ. If the peak power
constraint for the last channel, i.e., the Kth channel, is relaxed,
the used GWFPP is said to have the switch variable δ = 0;
otherwise, δ = 1.

Note that, only letting PK ≫ 0 in (3), i.e., large enough,
GWFPP corresponds to the switch δ = 0; while each of {Pk}
keeping the same as that in (3), without being relaxed, GWFPP
corresponds to the switch δ = 1. In detail, according to Def-
inition 1 of GWFPP with Switching and its explanation above,
GWFPP with Switching, as an algorithm, computes the two
classes of exact solutions to the optimization problem (3) and its
another form, respectively. Further, (3) is the optimization prob-
lem that is solved by GWFPP with the switch variable δ = 1;
while PK is large enough, i.e., the constraint 0 ≤ sK ≤ PK in
(3) is relaxed into 0 ≤ sK , this new problem, as another form
of (3), is solved by GWFPP with the switch variable δ = 0.
Therefore, the switch variable has been used for the two differ-
ent problems with similar structures. The motivation to propose
GWFPP with Switching is that such an algorithm will be used
for HPA1, HPA2 and HPA2-R in the following, for convenience
and clarity. GWFPP with Switching is illustrated in Fig. 3 by
using a simple example for its clearly being understood. Here

K = 3, a1 = a3 = 1, a2 = 1
2 , P 1 = P 3 = 1, P 2 = 2, P = 3,

and {wi = 1}3
i=1 . Fig. 3(a) corresponds to δ = 0 with the cor-

responding throughput of log 6.25; while Fig. 3(b) corresponds
to δ = 1 with the corresponding throughput of log 6.

GWFPP with Switching can be viewed as a mapping from the
parameters to the solution {si}K

i=L and to the highest water level
step index: k∗ ∈ E, where E is the finally obtained non-empty
index set in GWFPP with Switching, which can be expressed as
(from [18]),

{{si}K
i=L , k∗} = GWFPP

(
L,K, {wi, ai}K

i=L , P, {P i}K
i=L , δ

)
,

(8)
where the parameters, {wi, ai, P i} and P , have the same mean-
ing as they had in Eqn. (3). Further, if E is an empty set, GWFPP
with Switching only outputs the part of {si}K

i=L . To emphasize
the first part of computing {si}K

i=L by GWFPP with Switching,
we also write

{si}K
i=L = GWFPP

(
L,K, {wi, ai}K

i=L , P, {P i}, δ
)
. (9)

Furthermore, without confusion, GWFPP(L,K, {wi, ai}K
i=1 , P,

{P i}, δ) can be simply written as

GWFPP
(
L,K,P, {P i}, δ

)
, (10)

due to the subordinate status of the water level step index: k∗.
As a motivation to raise GWFPP with Switching, the correct

order of the switching function being utilized determines that
we can obtain the optimal solution to the target problem (2)
by the proposed algorithm. Here, the order of the switching
function means the way in which the switch variable δ = 0 or
1 of GWFPP is arranged in chronological sequence. This detail
will be shown by Proposition 1 and Proposition 2 in next Section.

B. Energy Harvesting Without Power Grid, Algorithm HPA1

In this subsection, we will propose a novel algorithm to first
solve a simpler form of problem (2), as follows:

max
{si }K

i = 1

K∑

i=1

wi log (1 + aisi)

subject to: 0 ≤ si ≤ P i, ∀i;
l∑

i=1

si ≤
l∑

i=1

Ein(i),∀l. (11)

Note that Problem (11) does not include power supply from the
power grid. This proposed new algorithm is referred to as the
energy Hybrid Power Allocation algorithm HPA1, which will
serve as a function block to solve our target problem (2). Since
HPA1 depends on the final index of the epochs: K, sometimes
to emphasize this dependence, we also use HPA1(K) to denote
HPA1. The proposed HPA1(K) is stated as follows:

Algorithm: HPA1 (for EH with Peak Power Constraints):
1. Initialize: Let L = n = 1, and it is given that

{K,Ein (1), P 1 , w1 , a1}, where L is the (index) number of the
final epoch for the sub-process that starts from epoch 1; and n is a
variable to represent the number of an epoch in the sub-process.
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Output HPA1(1):

s∗1 = GWFPP(1, 1, w1 , a1 , P ), i.e. , s∗1 = Ein(L),

s∗1 = HPA1(1) = min{P 1 , s
∗
1}, (12)

where s∗1 = HPA1(1) means that s∗1 is the value of HPA1(1).
2. Implement Recursion: (from HPA1(L-1) to HPA1(L))
0) Let L = 2.
1) The item is to do preparation.

Input: {Ein (L), P L , wL , aL}.
Then assign: Ein ←− Ein(L) +

∑L−1
k=n (Ein(k)− s∗k )+ ,

{s′k}L−1
k=1 = HPA1(L− 1).

(13)
2) If Ein ≥ PL ,

output: HPA1(L) = {s′1 , . . . , s′L−1 , s
∗
L},

where s∗L = PL under the given HPA1(L− 1). (14)

If L = K, HPA1(K) is completed; else L←− L + 1 and
go to (13).

3) If Ein < PL , each of the sub sub-processes from epoch
n to epoch L is investigated by the following, where n
decreases successively from L to 1. Thus, let n = L, now.

3.1) First, for the sub sub-processes from epoch n to
epoch L, its initial values and assignment are made
as follows.

W = {wj}L
j=n ;A = {aj}L

j=n ;ST = Ein ; and

{{s∗k}L
k=n , k∗}= GWFPP(n,L,W,A, ST , {Pk},

δ = 0). (15)

3.2) Second, for the complementary process of the sub
sub-process denoted by {n, n + 1, . . . , L}, which
starts from epoch 1 upto epoch n− 1 as n > 1,
the maximum subscript, of the maximum water
level that is denoted by c′, is denoted by k∗e and
computed through the following procedures.

c′k (s′k ) =
1

akwk
+

s′k
wk

, 1 ≤ k ≤ n− 1; and

k∗e = max{arg(max{c′k |s′k > 0, 1

≤ k ≤ n− 1})}. (16)

Thus, k∗e is the maximum index. If k∗e does not
exist, e.g. n = 1, as a trivial case, then

k∗e = k∗. (17)

3.3) Third,

if Pn ≥ s∗n and 1
ak ∗wk ∗

+ s∗k ∗
wk ∗
≥ 1

ak ∗e
wk ∗e

+
sk ∗e

′

wk ∗e
then s∗n = s∗n ,

(18)
and HPA1(L) = {s′1 , · · · , s′n−1 , s

∗
n , · · · , s∗L}. If

L = K, HPA1(K) is completed; else L←− L + 1
and go to (13). If the condition in (18) does not

hold, the following two assignments are done:

{s′k}L
k=n = GWFPP(n,L, ST , {Pk}, δ=1); and

Ein = s′n−1 + ST . (19)

Then n←− (n− 1) and go to (15).
3.4) Fourth, an assignment and HPA1(L) are imple-

mented below.

{s∗k = s′k}L
k=n ; and

HPA1(L) = {s′1 , . . . , s′L}; (20)

L←− L + 1 and go to (13).
Therefore, Output HPA1(K): {s∗k}K

k=1 = HPA1(K).
At the same time, the pseudo code of HPA1 is attached at the

end of this paper.

C. Optimality of HPA1

This subsection discusses optimality of the proposed HPA1.
Remark 2: HPA1 aims to compute the exact solution to (11).

The case without the peak power constraint, has the water levels
that are monotonic in the subscript of the epochs; but (11) does
not have this monotonicity, due to existence of the peak power
constraint. It leads to the difficulty to compute the exact solution.
This point is reflected by the fact: there is no prior algorithm
reported in the open literature, including our previous publica-
tions, that can compute the exact solution to (11), to the best of
the authors’ knowledge. HPA1 using GWFPP with Switching
can overcome this difficulty and obtain the exact solution. As a
motivation, HPA1 lays the basis for computing the exact solution
to the target problem, with Lemmas 1–2 discussed below.

As a main idea, HPA1 uses GWFPP with Switching, recur-
sively. The designed two values for the switch variable in HPA1
aim at not permitting the currently harvested energy to be used
for the previous epochs, nor breaking the peak power constraints.

Remark 3: Besides the time series prediction and others, for
a stochastic system, if the system parameters are random vari-
ables or sequences, the predictive parameters may also be chosen
as their expected values. Using the proposed algorithm(s) can
obtain the exact solution under the assumed parameters. This
using does not lose or relax the essence of energy harvesting:
the causality constraint of energy harvesting earlier, and using
the harvested energy later. The causality constraint makes the
problem rather difficult for exact solution. Thus, due to such a
difficulty from energy harvesting, the causality constraint has
to be relaxed by publications often, e.g. [5], [23]. [23] used its
implied constraint (4) to take the place of (or telax) its original
constraints (2) and (3); and [5] relaxed its original problem (P1)
into (P2). Our approach can overcome this difficulty, indeed.

Remark 4: HPA1 is an optimal dynamic power distribution
process. The dynamics of this recursive process is shown by the
generalized state equation:

HPA1(L + 1) = G[HPA1(L), GWFPP(n,L + 1, δ)|I ],

for L = 1, . . . ,K − 1, (21)

where n is the index of the starting epoch of the currently
processing window, and G[·] is a function determined by the
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algorithm. Note that the concept of dynamic processes is not
identical to that of dynamic programming. The value of n stems
from HPA1(L) due to (14) and the second line of (20). In this
process, HPA1(L) can be regarded as the generalized system
state at the time stage (or epoch) L; GWFPP(n,L + 1, δ) can
be regarded as the generalized system control at the time stage
(or epoch) L; and then HPA1 (L + 1), as a state at the next
time stage, can be derived or determined from its previous state
and control. Due to optimality of GWFPP and mentioned for-
warding dynamic recursive process of HPA1, we may obtain the
following conclusion of HPA1 (K).

Proposition 1: HPA1 can compute the optimal exact solution
to problem (11) within finite loops.

Proof: See Appendix VI. !
As a summary of the algorithm: HPA1(K), we clarify the fol-

lowing two points: (1) HPA1 can compute the optimal solution
only from the causal information in finite steps. In essence, via
the definition, an analytic or closed solution can be obtained by
HPA1. It is not required to directly solve any non-linear system,
consisting of many equations and inequalities in multiple dual
variables; (2) Since it considers the peak power constraints,
HPA1 can compute the exact optimal solution under the energy
harvesting system with the peak power constraints.

D. Illustration of HPA1

In the following, we first analyze the power allocation of
problem (11), i.e., the algorithm: HPA1(K). For problem (11),
due to the existence of the peak power constraints, the water
level is no longer monotonically increasing in the indexes of the
epochs [19].

In HPA1, the first step is for initialization and parameter input,
where L denotes the index of current processing epoch. (12)
outputs the allocated power at epoch 1 by HPA1. Beginning from
the second step of implementing recursion to (20), HPA1(K)
sequentially processes from the second epoch to the Kth epoch.
The inner “For” loop ((15)-(19)) updates the power levels for the
current processing epoch (L) and its previous (L− n) epochs to
form a processing window (where n is the loop index shown in
(15) and will be elaborated below) with the number of epochs
which are included in the window: (L− n + 1). The GWFPP
algorithm is applied to this window to find a common water level
(shown at (15)). Then the “If” clause compares the water level
of this processing window with both the previous maximum
epoch’s water level and the current peak power upper bound (in
(18)). If the conditions are satisfied, then update power allocated
at epoch L, output the entire HPA1(L) and move to process the
next epoch (see (20)). If the conditions are not satisfied, the
window is expanded by 1 epoch in the left side (the loop going
back to (15) by decreasing n).

The seed of the recursive algorithm, HPA1(1), is given in
(12). The logical block ((13)–(20)), including one inner loop
((15)–(19)), can be illustrated by Fig. 4 where it is assumed
that the current processing epoch L = 6 with Ein(6) = 0. The
power level transition is shown in the vertical bars in Fig. 4(a)
based on HPA1(5). That is to say, the optimal power allocation
for the first 5 epochs has been completed as shown by the upper

Fig. 4. Illustration for Algorithm HPA1(K) (Lines 10-22 for L = 6 and K >
6), harvested energy having been allocated up to epoch 5; (a) n = 6; (b) n = 5;
(c) n = 4.

layer of the shadowed areas in Fig. 4(a); while the lower darker
layer illustrates the effect of fading gains. Epoch 6 is now under
processing. From Fig. 4(a), it is assumed that epoch 3 (from
number 2 to number 3 in the horizontal axis) has the saturated
power that reaches P 3 , and P 6 = 1.2. Since there is no harvested
energy input in epoch 6, the power level for epoch 6 is zero
and the water level is just the fading level for this processing
window. That is to say, (16) calculates that k∗e = 5 and then (18)
compares the water level of current processing window with that
of k∗e th epoch. Since the comparison in (18) does not hold, the
algorithm goes back to (15) by decreasing n to 5 and then the
processing window is extended to include epochs 5 and 6 as
shown in Fig. 4(b). Fig. 4(b) also shows the power allocation
from GWFPP(5,6) in (15). Still, the comparison of water level
non-decreasing in (18) does not hold, and then the algorithm
returns to (15) again by decreasing n = 4. As shown in Fig. 4(c),
the processing window consists of epochs 4 to 6. Opposite to the
previous comparison, the water level comparison condition and
peak power constraint are satisfied. The power update is carried
out at epoch 6 as shown in Fig. 4(c). As a result, HPA1(L = 6)
is solved which is recursively obtained from HPA1(L = 5).
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Furthermore, a summation is used in (13). If the lower limit
of a summation is greater than the upper limit, the result of this
summation is defined as zero, as well known.

Through this mechanism of recursion, the solution,
{s∗i }K

i=1 = HPA1(K), is obtained (see the final line of
HPA1(K)).

Note that the proposed algorithm eliminates the procedure to
directly solve the non-linear system in multiple variables and
dual variables of the KKT conditions of (11), provides exact
solutions via finite computation steps, and offers helpful insights
to the problem and the solution.

IV. ALGORITHMS HPA2 AND HPA2-R SOLVING

THE TARGET PROBLEM

It is seen that the target problem (2) implies the following
optimization:

max
{si }K

i = 1

K∑

i=1

wi log (1 + aisi)

subject to: 0 ≤ si ≤ P i, ∀i;
i∑

k=1

sk ≤ E(G,total) +
i∑

k=1

Ein(k),∀i. (22)

The introduction of this implied optimization problem is mo-
tivated by two aspects: it can be utilized for solving the target
problem; and its exact solution can be efficiently computed by
the same algorithm HPA1 without designing others, via map-
ping E(G,total) + Ein(1) into the harvested energy for epoch 1
of (11). It is interesting that by solving the implied optimization
problem, we can compute an optimal solution to the original
problem. However, to establish this, two lemmas are needed.
Lemma 1 is proposed to offer a relationship between the solution
to problem (11) and another solution to the implied optimization
problem. Successively, lemma 2 claims a relationship between
the difference of the two mentioned solutions and E(G,total) . At
last, an optimal solution to the target problem (2) is proposed
via Proposition 2.

Lemma 1: let the solution to (22) be denoted by{s∗k}K
k=1 , and

the solution to (11) be denoted by {s∗k}K
k=1 . Then s∗k ≥ s∗k ,∀k.

Proof: Each of the two maximization problems of (11) and
(22) has a unique solution, due to these two convex optimization
problems with the strictly concave objective functions, respec-
tively. This uniqueness is utilized for the following proof.

First, let us introduce an increment optimization problem:

max
{△si }K

i = 1

K∑

i=1

wi log (1 + ais
∗
i + ai△si)

subject to: 0 ≤ △si ≤ P i − s∗i , ∀i;
K∑

i=1

△si ≤ E(G,total) . (23)

Then, for the optimal solution to (23), denoted by {△si}K
i=1 ,

there are dual variables {λ, {σi ,σi}K
i=1} such that the following

KKT conditions of (23) hold,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

ai wi
+ s∗i +△si

wi

= λ + σi − σi ,∀i;

△si ≥ 0,σi△si = 0,σi ≥ 0,∀i;

△si ≤ P i − s∗i ,σi(s∗i +△si − P i) = 0,σi ≥ 0,∀i;
∑K

i=1△si ≤ E(G,total) , λ
(∑K

i=1△si − E(G,total)

)
= 0,

λ ≥ 0.
(24)

If
∑K

i=1△si < E(G,total) , then λ = 0. It implies that σi > 0,∀i.
Thus, s∗i +△si = P i,∀i. It is obtained that such a set of {s∗i +
△si} is an optimal solution to (22). Due to the uniqueness
mentioned above, s∗i = P i ≥ s∗i ,∀i.

On the other hand, assume
∑K

i=1△si = E(G,total) . Let

Eg = {k|△sk > 0, 1 ≤ k ≤ K}, kg = max{k|k ∈ Eg}

and kg = min{k|k ∈ Eg},

Λ1 =

{
i1 |λ <

K∑

k=i1

λk , kg < i1 ≤ K

}
and

Λ0 =

{
i0 |λ >

K∑

k=i0

λk , 1 ≤ i0 < kg

}
, and

i1 = max{i1 |i1 ∈ Λ1} and i0 = min{i0 |i0 ∈ Λ0}. According
to six cases of {k}, the optimal dual variables are constructed
as follows:

1) If i1 < k ≤ K, where i1 < K, let λ̃k = λk , ν̃k = νk and
µ̃k = µk . Note that {λk , νk , µk} have the same meaning
as those in the proof of Proposition 1, i.e., they are the
optimal dual variables to (11).

2) If k = i1 , let λ̃k = λ−
∑K

i=k+1 λi , ν̃k = (
∑K

i=k λi −
λ) + νk and µ̃k = µk . Note that the special summation
of

∑K
i=K +1 λi is defined as zero.

3) If kg < k < i1 , let λ̃k = 0, ν̃k = νk + (
∑K

i=k λi − λ)
and µ̃k = µk .

4) If kg ≤ k ≤ kg , let λ̃k = 0, ν̃k = φk and µ̃k = φ
k
. Note

that it is seen that, if kg ≤ k ≤ kg , there does not exist the
case of sk > 0 and

∑K
i=k λi + νk < λ holding. Also, note

that {λ,σk ,σk} are the mentioned optimal dual variables
in the KKT conditions of (24).

5) If i0 ≤ k < kg , it is seen that s∗k = 0. Thus, if i0 ≤ k <

kg , let λ̃k = 0, ν̃k = νk and µ̃k = (λ−
∑K

i=k λi) + µk .
6) If 1 ≤ k < i0 , let λ̃k = λk , ν̃k = νk + (

∑K
i=k+1 λi − λ)

and µ̃k = µk .
Note that the cases mentioned above have been enumerated.

Further, in more detail, it is easily seen that, if 1 ≤ k < kg − 1,
there does not exist the case of sk > 0 and

∑K
i=k λi + νk < λ

holding, and that every λ̃k , ν̃k and µ̃k are all non-negative.
For the optimization problem (22), {s∗k +△si}K

k=1 , as opti-
mization variables, and {λ̃k , ν̃k , µ̃k}K

i=1 , as the correspond-
ing dual variables, satisfy the KKT conditions of (22). The
{λ̃k , ν̃k , µ̃k} correspond to the kth sum power, peak power and
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non-negative power constraint of (22), respectively, for any k.
At the same time, the General Constraint Qualification (refer
to (3.71) of Theorem 3.8 in [24]) of the problem holds. To-
gether with the mentioned uniqueness of the optimal solution,
{s∗k = s∗k +△sk}K

k=1 is the optimal solution to (22).
Therefore, the conclusion of Lemma 1 has been proved to be

true, from the meaning of {△sk}K
k=1 . !

Similarly, we prove the following lemma.
Lemma 2: let the solution to (22) be denoted by{s∗k}K

k=1 , and
the solution to (11) be denoted by {s∗k}K

k=1 . Then
∑K

k=1(s
∗
k −

s∗k ) ≤ E(G,total) .
Proof: According to Lemma 1 and its proof, s∗k = s∗k

+△sk ,∀k, where {△sk}K
k=1 is the optimal solution to

(23). Thus,
∑K

k=1△sk ≤ E(G,total) . Then,
∑K

k=1(s
∗
k − s∗k ) ≤

E(G,total) , from {△sk = s∗k − s∗k}.
Therefore, the conclusion of Lemma 2 is true. !
Proposition 2: Utilizing HPA1 twice can form a newer algo-

rithm to compute the optimal exact solution to the target prob-
lem (2) with finite computation. In addition, the newer algorithm
most efficiently utilizes the harvested energy.

Proof: First, assume {s∗H,i , s
∗
G,i}K

i=1 to be an optimal solu-
tion to problem (2). Let si = s∗H,i + s∗G,i ,∀i. Thus, {si}K

i=1 is a
feasible solution to problem (22). The optimal value of problem
(2) is not greater than that of problem (22) because (22) is more
general than (2). Conversely, for {s∗i }K

i=1 , as the optimal solution
to problem (11), and {s∗i }K

i=1 , as the optimal solution to prob-
lem (22), we have s∗i − s∗i ≥ 0,∀i, stemming from Lemma 1.
It implies, with Lemmas 1–2, that {sH,i , sG,i}K

i=1 is a feasible
solution of problem (2), as sH,i is assigned by s∗i and sG,i is as-
signed by s∗i − s∗i . The objective function value of the problem
(2) is equal to that of (22), with respect to the aforementioned
{sH,i , sG,i} and {s∗i }. Then, the former value corresponding to
a feasible point is equal to the latter value corresponding to the
optimal point. It leads to the maximum objective function value
of the problem (2) is not less than that of (22), together with
the previously stated fact that the maximum objective function
value of the problem (2) is not greater than that of (22). There-
fore, the maximum objective function value of the problem (2)
is equal to that of (22).

Second, to compute an optimal solution to problem (2), we
need to compute the {s∗i }K

i=1 , as the optimal solution to prob-
lem (22) and the {s∗i }K

i=1 , as the optimal solution to problem
(11). Further, sH,i is assigned by s∗i and sG,i is assigned by
s∗i − s∗i ,∀i. Therefore, the obtained {sH,i , sG,i} is an optimal
solution to problem (2). The mentioned procedure to the ob-
tained {sH,i , sG,i} forms a newer algorithm, named by HPA2,
which utilize HPA1 twice to obtain {sH,i , sG,i} respectively. In
addition, {s∗i }K

i=1 , as the optimal solution to problem (11), im-
plies that HPA2 can utilize the harvested energy, most efficiently.
Since the two sets of optimal solutions can all be computed by
HPA2(K), with finite computation, Proposition 2 is thus proven
to be true. !

To conveniently refer to the computation of an optimal so-
lution to problem (2) mentioned in Proposition 2, the newer
algorithm HPA2 is presented at the end of this paper. Its equiv-
alent recursive version, labelled as Algorithm 2 or HPA2-R, is
also presented at the end. HPA2 is concise, but the recursive

HPA2-R can offer more details for rapid computation of the
maximum throughput in (2).

V. NUMERICAL EXAMPLES AND COMPLEXITY ANALYSIS

Two subsections, numerical examples and computational
complexity analysis, are presented. At the beginning, we use
the first example to account for the procedures of HPA2-R, and
then the second example to compare with the PD-IPM which
has been previously regarded as an efficient optimization al-
gorithm with great promise ([25] and references therein). The
second part of this section discusses computational complexity
of the proposed algorithm, and arrives at the conclusion of its
being polynomial complexity with low degree. Via exploiting
the structure of the proposed problem, the proposed algorithm
shows significant efficiency.

A. Numerical Examples

We assume that there are three epochs, each with the unit
weight (wi = 1, i = 1, 2, 3). Also, the following examples per-
form the logarithm operation with the default base 2. Besides
the previous assumptions that the height of the blue (dark) stair
bars at the bottom layer denotes the fading gains and the allo-
cated harvested power is illustrated by the height of the green
(light) bars at the middle layer if there are the three layers, the
grid power is illustrated by the height of the brown bars at the
top layer if there are the three layers.

Example 1: Suppose the fading profile for the three epochs is
a1 = 1, a2 = 2 and a3 = 3. At the beginning of each epoch, unit
energy is harvested (Ein(i) = 1, i = 1, 2, 3). Also, the upper
bound constraint of the hybrid power is P i = 1 + |3(i− 2)| =
[4, 1, 4], i = 1, 2, 3, and the entire power sum from the power
grid is E(G,total) = 5.

First, the heights of the bottom layer bars which denote the
fading gains are shown in Fig. 5(a). They are { 1

a1
= 1, 1

a2
=

1
2 , 1

a3
= 1

3 }. Second, epoch 1 is first scanned to output HPA2-
R(1)= {sH,1 = 1, sG,1 = 3} as shown in Fig. 5(b). Now we
move to epoch 2 and output HPA2-R(2)= {sH,1 = 1, sG,1 = 3;
sH,2 = 1, sG,2 = 0} as shown in Fig. 5(c). Finally, At epoch 3,
we have {sH,1 = 2

3 , sG,1 = 15
6 ; sH,2 = 1, sG,2 = 0; sH,3 =

4
3 , sG,3 = 15

6 } by algorithm HPA2-R. Thus, HPA2-R(3) outputs
the completed solution, as shown in Fig. 5(d).

Example 2: PD-IPM is chosen for the purpose of comparison
due to its competitiveness in computing the solutions to the
convex optimization problems.

Fig. 6 is used to show the difference between PD-IPM
and HPA2-R for the maximum throughput problems, through
sweeping of the K = 5, 10, 15, . . . , 50. Channel gains are
generated randomly using random variables with the standard
Gaussian distribution. For convenience, {Ein (k) = 6,∀k}. The
sum power constraint of the power grid E(G,total) = K, and
the peak power constraints {Pk = k,∀k}. A group of different
weights are also generated randomly. The chosen parameters
mentioned above are assigned to both of the algorithms with
the identical values for comparability. In this figure, the circle
markers and the cross markers represent the results of HPA2-R
and PD-IPM respectively. The obtained throughput is shown in
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Fig. 5. Procedures to solve Example 1: (a) { 1
a 1

= 1, 1
a 2

= 1
2 , 1

a 3
= 1

3 }; (b)
HPA2-R(1)= {sH ,1 = 1, sG ,1 = 3}; (c) HPA2-R(2)= {sH ,1 = 1, sG ,1 =
3; sH ,2 = 1, sG ,2 = 0}; (d) HPA2-R(3)= {sH ,1 = 2

3 , sG ,1 = 15
6 ; sH ,2 =

1, sG ,2 = 0; sH ,3 = 4
3 , sG ,3 = 15

6 }.

Fig. 6. Weighted sum-rates (Unit: bits) of HPA2-R and PD-IPM, as a function
of the number of epochs.

Fig. 6, where the obtained throughput by PD-IPM is the result
through the same number of operations as that by HPA2-R
for fairness. Further, since PD-IPM only can compute an ϵ
solution, not an optimal solution, even using more operations
(refer to [25]), the just mentioned same number is naturally
chosen as the number of the operations through which, HPA2-R
can obtain the exact solution. Note the mentioned operations in
this paper mean basic arithmetic or logical operations. For the
performance of PD-IPM looking better, PD-IPM is allowed to
use a slightly more amount of computation with choosing an
appropriate initial point. Our proposed algorithms do not need
setting any initial points, as a burden. The proposed HPA2-R

uses recursion. Significant throughput enhancement can be
observed by using the proposed algorithm. It also shows that
as the number of the epochs increases, the throughput or the
weighted sum-rate increases. In addition, PD-IPM has more
and more variables as the number of epochs becomes larger and
larger, even through it has utilized more iterations. This point
comes from a well known fact that PD-IPM is not guaranteed
to be convergent without additional assumption(s).

B. Computational Complexity Analysis

To compute the optimal solution, it is seen that the pro-
posed algorithms can lead to utilizing GWFPP K + 1 times,
i.e., O(K2) +

∑K
k=1 O(k2) = O(K3) fundamental operations

(refer to [18]). According to the corresponding complexity anal-
ysis result in [18], a polynomial can be constructed, which
plays a role of an upper bound for computational time or com-
plexity. This concrete upper bound numerical value can, for
given K, provide the more accurate information, the number
for operations, than the big O theory and it can be taken here
as K(K + 2)(3K + 13), since [4K2 + 7K +

∑K
k=1(4k2 +

7k)]× 2 + 2K ≤ K(K + 2)(3K + 13) from the statements of
the proposed algorithms. However, PD-IPM needs a polyno-
mial computational complexity level: O(K3.5) log(1/ϵ) (refer
to [25], [26]), to compute an ϵ solution, where the ϵ solution is
not an optimal but approximate solution. Furthermore, this big
O complexity level, used by PD-IPM, cannot offer a concrete
upper bound for its computation time, even for a given ϵ of an
ϵ solution. Hence, utilizing PD-IPM here cannot guarantee to
output the ϵ solution with a concrete number of operations. On
top of that, it is important to note that PD-IPM cannot guarantee
to be convergent for the general convex optimization problems,
including this proposed problem. These two well known points,
i.e., the number of operations and the issue of convergence for
PD-IPM, lead to clear distinction of the proposed method over
PD-IPM method. It is not necessary to measure the convergence
rate of the proposed algorithms since these algorithms can com-
pute the exact solution with a finite amount of computation
rapidly.

In plain language, HPA2-R or HPA2 result in K(K +
2)(3K + 13) basic operations, at most, to compute an exact
(optimal) solution, while PD-IPM has a computational com-
plexity level of O(K3.5) log(1/ϵ) for computing an ϵ solution.
It is seen that an algorithm with the low degree polynomial that
can provide a concrete upper bound number of operations, with
the exact solution, performs better than others. Our proposed
algorithm is superior in this sense.

As a side note, according to optimization theory and methods,
and computational complexity theory, it is seen that an optimiza-
tion algorithm is excellent if it computes the exact solution with
a polynomial computational complexity. Such a computation is
the advantage on exactness and efficiency. To the best of the au-
thors’ knowledge, for the proposed problem, existing standard
convex optimization algorithms, including the efficient PD-IPM
which shows great promise [25], do not guarantee to own such
an advantage. Maybe it is because these algorithms often uti-
lize the derivatives or the gradients iteratively to approximate
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the solution, unlike ours. As a result, not only does the pro-
posed algorithm have a polynomial computational complexity,
but also this polynomial has the rather low degree: 3, for the
exact solution.

VI. CONCLUSION

In this general model of the optimal power allocation for the
advanced wireless communications in which the energy har-
vesting and the smart power grid coexist with the peak power
constraints, we proposed recursive algorithms to solve the ra-
dio resource allocation problems with these complicated con-
straints. Due to the additional peak power constraints, a greater
challenge to compute the exact solution to the proposed hybrid
problem is presented, against the cases without the peak power
constraints. This point is also reflected in Lemma 1.

As a starting point, we reviewed the proposed Geometric Wa-
ter Filling with individual Peak Power constraints (GWFPP)
to solve the optimal power allocation problem with sum power
constraints. Successively, GWFPP with Switching was proposed
as a functional block. Then, for solving the proposed problem
only with the energy harvesting, HPA1, utilizing GWFPP with
Switching, was investigated. Finally, HPA1 was extended to
solve the target problem for the hybrid energy harvesting and
power grid coexisting system. The extended algorithm is re-
ferred to as HPA2 or HPA2-R, while HPA2-R emphasizes recur-
siveness of the algorithm. Numerical results and computational
complexity analysis are presented to illustrate the efficiency of
the proposed algorithm HPA2 and HPA2-R.

APPENDIX

Proof of Proposition 1: Mathematical induction is carried
out with respect to the index K, appearing in both problem
(11) and the algorithm: HPA1. As K = 1, it is easy to see the
conclusion of Proposition 1 holds. As L < K and L is a natural
number, assume that HPA1 (L) can compute the optimal exact
solution to problem (11) where the final epoch index is L, within
finite loops. The following is to prove that the conclusion of
Proposition 1 holds, where the final epoch index is K.

On one hand, if Ein ≥ PK , then let s∗K = PK , from (14)
in HPA1. According to the assumption of the induction, for
L = K − 1, there are {s∗i }K−1

i=1 = HPA1(K − 1) and dual vari-
ables: {λ(1)

i , ν(1)
i , µ(1)

i }K−1
i=1 such that the KKT conditions of the

problem which is solved by HPA1(K − 1) hold, as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

ai wi
+ s∗i

w i

=
∑K−1

k=1
λ

(1)
k + ν(1)

i −µ(1)
i , as 1 ≤ i ≤ K − 1;

µ(1)
i s∗i = 0, s∗i ≥ 0, µ(1)

i ≥ 0, ∀i;

ν(1)
i (s∗i − P i) = 0, s∗i ≤ P i, ν

(1)
i ≥ 0, ∀i;

λ
(1)
i

(∑i
k=1 s∗k −

∑i
k=1 Ein(k)

)
= 0,

∑i
k=1 s∗k ≤

∑i
k=1 Ein(k), λ

(1)
i ≥ 0, ∀i.

Let λ
(1)
K = 0, µ(1)

K = 0, and

ν(1)
K =

1
1

aK wK
+ s∗K

wK

Then for {s∗i }K
i=1 = HPA1(K) in which, {s∗i }K−1

i=1 = HPA
1(K − 1), there are the dual variables: {λ(1)

i , ν(1)
i , µ(1)

i }K
i=1

mentioned above such that the KKT conditions of (11) hold.
The constraint qualification of (11) holds, too. Thus, {s∗i }K

i=1 is
the optimal solution to (11). On the other hand, if Ein < PK , ac-
cording to (16), (17) and (18) in HPA1, it is seen that there is the
natural number n, which satisfies the condition of 1 ≤ n ≤ K,
such that (18) in HPA1 holds. Note that the HPA1 determines
the harvested energy at current epoch not to be used for its pre-
vious epochs. Hence, the following derivative is implied. First,
for the aforementioned n, and {s∗i }K

i=n , as a part of the output
of HPA1(K) which is shown at the final line of HPA1, there are
the dual variables {λ(1)

i , ν(1)
i , µ(1)

i }K
i=n such that they satisfy the

following KKT conditions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

ai wi
+ s∗i

w i

=
∑K

k=i
λ

(1)
k + ν(1)

i − µ(1)
i , as n ≤ i ≤ K;

µ(1)
i s∗i = 0, s∗i ≥ 0, µ(1)

i ≥ 0, ∀i;

ν(1)
i (s∗i − P i) = 0, s∗i ≤ P i, ν

(1)
i ≥ 0, ∀i;

λ
(1)
i

[∑i
k=n s∗k −

(∑i
k=1 Ein(k)−

∑n−1
k=1 s∗k

)]
= 0,

∑i
k=n s∗k ≤

∑i
k=1 Ein(k)−

∑n−1
k=1 s∗k ,

λ
(1)
K ≥ 0, λ(1)

i = 0, as i ̸= K.

As a supplement, to meet and understand the requirement of
deeper strictness, construction of the important dual variables,
{λ(1)

K , ν(1)
K , µ(1)

K }, in the above KKT conditions is concisely
stated as follows. Let

λ
(1)
K =

1
1

ak ∗wk ∗
+ s∗

k ∗
wk ∗

.

If s∗K at the second line of (20) takes the value PK , let

ν(1)
K =

1
1

aK wK
+ s∗K

wK

− λ
(1)
K ≥ 0,

and µ(1)
K = 0. Else, if s∗K takes the value s∗K at the final line and

s∗K = 0, let

µ(1)
K = λ

(1)
K −

1
1

aK wK
+ s∗K

wK

≥ 0,

and ν(1)
K = 0. Further, if s∗K takes the value s∗K at the final line

and PK > s∗K > 0, let

µ(1)
K = ν(1)

K = 0.

Similarly, so can all the rest of dual variables be constructed.
Second, for the part, {s∗i }n−1

i=1 , of the output of HPA1(K) which
is shown at the final line of HPA1, without loss of general-
ity, assume n ≥ 2. According to the inductive hypothesis, for
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{s∗i }n−1
i=1 , there are the dual variables {λ(2)

i , ν(2)
i , µ(2)

i }n−1
i=1 such

that they satisfy the following KKT conditions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

ai wi
+ s∗i

w i

=
∑K

k=i
λ

(2)
k + ν(2)

i −µ(2)
i , as 1 ≤ i ≤ n−1;

µ(2)
i s∗i = 0, s∗i ≥ 0, µ(2)

i ≥ 0, ∀i;

ν(2)
i (s∗i − P i) = 0, s∗i ≤ P i, ν

(2)
i ≥ 0, ∀i;

λ
(2)
i

(∑i
k=1 s∗k −

∑i
k=1 Ein(k)

)
= 0,

∑i
k=1 s∗k ≤

∑i
k=1 Ein(k), λ

(2)
i ≥ 0, ∀i.

According to the transition of HPA1(K) between the two parts,
it is seen that λ

(2)
n−1 ≥

∑K
k=n λ

(1)
k . Thus, for the output of

HPA1(K): {s∗i }K
i=1 , the dual variables {λi , νi , µi}K

i=1 are con-
structed as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk = λ
(1)
k , as n ≤ k ≤ K,

λn−1 = λ
(2)
n−1 −

K∑
k=n

λ
(1)
k ≥ 0,

λk = λ
(2)
k , as 1 ≤ k ≤ n− 1;

µk = µ(1)
k as n ≤ k ≤ K,

µk = µ(2)
k as 1 ≤ k ≤ n− 1;

νk = ν(1)
k as n ≤ k ≤ K,

νk = ν(2)
k as 1 ≤ k ≤ n− 1.

Thus, the constructed dual variables of {λi , µi, νi}K
i=1 and the

output of {s∗i }K
i=1 satisfy the KKT conditions of problem (11).

At the same time, the constraint qualification of problem (11)
also holds. Therefore, from the mathematical induction, {s∗i }K

i=1
outputted by HPA1(K) is the exact optimal solution to problem
(11) with finite computation, for any natural number K.

Therefore, Proposition 1 is proved.
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