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Abstract— Multiple-input multiple-output (MIMO) technology
equips the transmitters with the multiple antennas. It can com-
bine with energy harvesting (EH) to lift the spectrum efficiency
and make use of a greener energy resource. A power grid is
added to serve as a supplementary source to regulate the not-
so-stable harvested energy supply of the system. Besides the
MIMO technology being used, the power allocated to the user
provided by both EH and the power grid is subject to the
epoch power upper bound constraints. The background of these
constraints comes from field requirements, such as avoiding the
saturation of power allocated to the user(s), avoiding system-
level out-of-band power leakage, and reducing interference with
other transmitter(s) due to the non-linearity generated via the
transmitting mechanisms to the user(s). The epoch power upper
bound constraints make this problem more challenging, with
the controllable power grid energy budget and its allocation.
This paper applies our recently proposed geometric water-filling
with group upper bounded power constraints and recursion
machinery to form the proposed algorithm for solving the
proposed throughput maximization problem. Our algorithm is
precisely defined, and further provides the exact solution via the
lower degree polynomial complexity. This point is very suitable
for the massive MIMO system. To the best of our knowledge, no
prior algorithm has been reported in the open literature to solve
the targeted problem in this paper.

Index Terms— Radio resource management, power grid (PG),
multiple input multiple output (MIMO), energy harvesting (EH),
water-filling algorithm with mixed constraints, exact solution.

I. INTRODUCTION

W ITH the increasing demand to energy supplies, the
renewable energy sources have become an impor-

tant alternative for the conventional fuel energy to protect
environment. Energy harvesting (EH) techniques will have a
major role in wireless communications, to look for “greener
communications” [1].

There has been recent research effort on understanding data
transmission in this kind of wireless communication systems
with EH, for example, the investigation of power allocation
policies [2]- [7], medium access control protocols [8], adaptive
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opportunistic routing protocols [9], [10], network throughput
of a mobile ad hoc network powered by energy harvesting [11],
and energy management in wireless sensor networks [6], [12],
etc. In [13], optimality of a variant of the back pressure algo-
rithm using energy queues is discussed. In [14], transmitters
with energy harvesting and batteries of finite energy are con-
sidered and the problem of throughput maximization is solved
offline in a (non-fading) static channel. As a fundamental
work, which can provide an algorithm for transmission with
energy harvesting, [5] investigated the throughput maximiza-
tion problem with the given full side information and proposed
some approaches making use of the water-filling approach to
solve the Karush-Kuhn-Tucker (KKT) conditions [15] of the
target problem. Due to the usage of bisection for the proposed
water-filling algorithm, it cannot offer an exact solution within
a finite amount of computation. Here, if an optimization
algorithm can give the exact value of an optimal solution,
such a solution is called the exact solution, contrasted with an
approximate solution or point (refer to [16] and the references
therein). For the fading channel cases, [17] proposed the
“directional water-filling algorithm” scheme without a formal
statement and the optimality proof of the proposed algorithm.
All algorithms reported in these papers above are mainly
innovative applications of water-filling mechanism for green
communication, but they cannot compute the exact solutions,
unlike ours.

With water-filling, more power is allocated to the channels
with higher gains to maximize the sum of data rates of
all the sub-channels [18]. The conventional way to solve
the water-filling problem is to solve the KKT conditions,
and then find the water-level(s) and the solutions. In [19],
we proposed an approach from simple geometric meaning
of water-filling (GWF). GWF has been extended to solv-
ing the problems with more complicated constraints (refer
to [19]) which the conventional water-filling cannot solve.
By recursively applying GWF and non-decreasing water-level
condition, we proposed a recursive GWF (RGWF) in [20]
to solve power allocation problem with energy harvesting
transmission.

The wireless communication networks, equipped with the
Multiple Input Multiple Output (MIMO) technology, have
attracted extensive research attention to improve transmission
rate and spectrum efficiency [21], [22]. In this paper, GWF
and recursion machinery are newly applied to obtain the
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optimal power allocation solution to the throughput maxi-
mization problem of the Power Grid (PG), MIMO and EH
coexisting system with mixed constraints. To design a simple
method, which can however solve a very difficult problem, is
just what we are looking for. Since the harvested energy in
a current epoch cannot be used in its previous epochs, which
is called causality constraint, this causality forms a family of
sum power constraints for the harvested power. Also, PG has
a budget or limit to distribute its power. This budget results in
another sum power constraint for the power from PG. At the
same time, the sum of power from both EH and PG is subject
to the (sum) power upper bound constraint, for each of the
epochs. These constraints are called the epoch power upper
bound constraints in this paper. It forms another family of the
upper bound (or peak) power constraints, for all the epochs.
This family of the constraints comes from field requirements,
such as avoiding the saturation of power allocated to the
user(s), avoiding system level out-of-band power leakage,
and reducing interference with other transmitter(s) due to
the non-linearity generated via the transmitting mechanisms
to the user(s). In this paper, the mixed constraints means
the three families of the constraints together. Furthermore,
the MIMO maximum throughput problems including the pro-
posed problem are a class of complex-valued semi-definite
optimization problems with a group of non-strict inequality
constraints. Their objective or constraint functions are not all
differentiable. Thus, there do not exist the KKT conditions,
unlike those in the real spaces. Recent work in [23] raised
a group of conditions for a stationary point. However, such a
group of conditions cannot handle the class of complex-valued
semi-definite optimization problems with a group of non-strict
inequality constraints with inqualities (refer to [23, Ch. 6-7]).
That is to say, [23] handles that with equality constraints, at
most. In this regard, it is important to transform the complex
valued optimization problem into an equivalent real valued
problem. Its clear definition may refer to the one proposed
in [24], as one of our earlier contributions.

If some of the mixed constraints are relaxed or some para-
meters take special values, the investigated problems regress
into some special cases. For example, letting the epoch power
upper bound constraints be large enough or be relaxed, and the
number of the antennas be equal to one, the proposed general
case is regressed into the individual case only consisting of
SISO, EH and PG, as a coexisting system. The proposed
algorithm can exactly solve the general problem, including
various special cases. Some existing algorithms reported in
the literature can solve special cases but cannot guarantee to
be able to solve the target problem in this paper, e.g. [25].
In addition, [25] also offers an instance for necessity of
studying the coexisting system and the off-line computation.

For the target problem, a recursive algorithm is proposed to
compute the exact solution efficiently in this paper. This algo-
rithm is referred to as PAMEC for the Power Allocation for the
maximum throughput of the PG, MIMO and EH Coexisting
system with mixed constraints. Furthermore, for comparing
with existing algorithms, we choose an efficient optimiza-
tion algorithm with great promise: the primal-dual interior
point method (PD-IPM) [26], as a comparison benchmark.

PD-IPM, as the well known algorithm of IPM, has the
advantage of the polynomial computational complexity over
other existing convex optimization methods, even though it
only guarantees an ϵ solution, not optimal (refer to [26] and
the references therein), and only is able to be used in a real
space. Thus, for our proposed problem, PD-IPM has to use
our constructed real equivalent model to compare. As a side
note, under merit of the exact solution and the polynomial
complexity, there is no existing algorithm as comparison ref-
erence, to the best of the authors’ knowledge. Compared with
our previous works, such as [27]- [31], they only either handle
some special cases or use much complicated procedures for the
EH and power grid cases with the epoch power upper bound
constraints. However, they cannot compute the exact solution
to the proposed more general problem, unlike this paper. This
is due to the different machinery being used in this paper that
the allocation process comes from the final epoch successively
back to the first epoch over the interested time window.
It makes the procedures much simpler, although the target
problem to solve is more general. Furthermore, the conference
papers are also short of the details due to space limitation.
In summary, the proposed new water-filling owns two distinct
advantages: simple and elegant, and efficient. The “simple
and elegant” feature refers to the fact that the algorithm is
clearly and easily implemented to solve a very complicated
problem; and the “efficient” feature means another fact that
the proposed algorithm computes the exact solution with a
polynomial computational complexity.

In the remaining of the paper, system description and
problem statement are presented in Section II. The proposed
power allocation algorithm for maximum throughput is inves-
tigated in Section III. Numerical examples and complexity
analysis are presented in Section IV. Section V concludes the
paper.

Key notations that are used in this paper are as follows:
|A| and Tr (A) give the determinant and the trace of a square
matrix A, respectively; E[X] is the expectation of the random
variable X ; and the capital symbol I for a matrix denotes the
identity matrix with the corresponding size. A square matrix
B ≽ 0 means that B is a positive semi-definite matrix. Further,
for arbitrary two positive semi-definite matrices B and C, the
expression B ≽ C means the difference of B − C is a positive
semi-definite matrix. In addition, for any complex matrix, its
superscripts † and T denote the conjugate transpose and the
transpose of the matrix, respectively.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

In this section, energy harvesting in a fading channel is
presented, followed by the optimization problem to maximize
the throughput, for the PG, MIMO and EH coexisting system
with the mixed constraints, and then by its real equivalence
form. For convenience and without loss of generality, the
process is assumed to be a discrete time process.

A. System Description

As shown in Fig. 1, the system model depicts the time
period from (0, T ] including K epochs. At the beginning of
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Fig. 1. System description, K = 8 epochs in (0, T ].

each epoch, we can observe the fading gain change or the
harvested energy arrival, or both. Let Lk and ak denote the
time duration and the fading channel gain of the kth epoch,
where k = 1, . . . , K . Without loss of generality, assume
Lk > 0, ak > 0,∀k. At the beginning of the kth epoch, the
harvested energy is denoted by Ein(k), and the event of energy
harvesting is depicted as Ein(k) > 0. We assume that Pk ≥ 0,
as the epoch power upper bound constraint on the sum power
from PG and EH for the kth epoch, ∀k. For all the K epochs,
the budget E(G,total) of power, from PG, expresses that the sum
of all the power provided by PG cannot be beyond E(G,total).
As a side note, due to the causality, E(G,total) can be combined
with Ein(1) at the beginning of the first epoch in Fig. 1, equiv-
alently, but it has a different source from {Ein(k)}. Since our
purpose is not only to optimize performance of the throughput
but also to guarantee the optimal power allocation solution to
meet the three families of the mixed constraints. This paper
investigates the cases of both the multiple antennas, and the PG
and EH coexisting with the mixed constraints, as a whole to
differentiate with previous works. Thus, although the proposed
problem is an optimization problem, its optimization variables
are complex matrix-valued. There exists the differentiability
issue of the objective function. As a result, direct or superficial
usage of the KKT conditions [26] cannot guarantee a correct
result. It is simple but important to transform the proposed
problem into an equivalent optimization problem with real
optimization variables.

B. Problem Statement

For the proposed energy source management system,
assume that the optimal power management strategy is such
that the transmit power is constant in each epoch. This is
because the discussed process is assumed to be discrete in
the index variable of the epochs. Therefore, let us denote the
transmit power at the kth epoch be Tr(SH,k) (k = 1, . . . , K ),
where SH,k = E[sH,ks†

H,k] and sH,k ∈ CNt ×1,∀k, is the part,
utilizing the power from energy harvesting, of the transmitted
complex vector-valued signals by the user equipped with Nt
transmit antennas. Similarly, SG,k = E[sG,ks†

G,k] and sG,k ∈
CNt ×1,∀k, is the part, utilizing the power from PG, of the
transmitted complex vector-valued signals by the user. The
receiver side of the transceiver is equipped with Nr antennas.
The channel matrix at epoch k is denoted Hk ∈ CNt ×NR ,∀k,
i.e., yk = H†

k(sH,k + sG,k)+z, where z is an additive Gaussian
noise. For this MIMO system, details of the assumptions

above can further refer to those in [32]. The objective is to
maximize the total throughput by the deadline T , i.e., within
the K epochs. We have mentioned the causality that current
harvested energy cannot be used by the previous epochs but it
can be used by the following epochs. We further assume that
Emax, the battery capacity constraint is relaxed, i.e., assuming
Emax ≫ 0. Hence, the optimization problem in this PG,
MIMO and EH coexisting system with the mixed constraints
can be written as:

max
{Sk }K

k=1

K∑

k=1

Lk

2
log |I + H†

k(SH,k + SG,k)Hk |

Subject to: SH,k ≽ 0, SG,k ≽ 0, ∀k;
Tr(SH,k + SG,k) ≤ Pk, ∀k;

l∑

k=1

LkTr(SH,k) ≤
l∑

k=1

Ein(k),

for l = 1, . . . , K ;
K∑

k=1

LkTr(SG,k) ≤ E(G,total), (1)

where the first two sets of the constraints account for the
guaranteed nonnegative allocated power, and the epoch power
upper bound constraints. The third set of the constraints
accounts for the causality. The fourth set of the constraints
accounts for the budget of sum power from PG. In addition,
it is seen that the epoch power upper bound constraints on the
sum of both the harvested power and the power from PG for
every epoch, determines the second set of the constraints. This
point and the optimal allocation of the two classes of power
result in the proposed problem having a difficult form so that
no prior algorithm in the open literature can solve the proposed
problem under the merit of exactness and efficiency. The
stated discrete process leads to the discrete time optimization
problem of (1). It is well known that, for any index k of the
epochs, the optimization variables {SH,k, SG,k} of (1) are not
assumed into a point in a function space, but they are a point
in CNt ×Nt. This point just explains that “the transmit power
is constant in each epoch”.

The investigation in this paper also lays down a foundation
to solve the more challenged cases of finite Emax and then
carry out a real-time (“on-line”) computation.

C. Real Equivalence Form of the Target Problem

Due to the objective function of (1) in several complex
optimization variables, existing optimization methods cannot
directly apply to (1). A real equivalence form of (1) will
be proposed. For discussing equivalence between these two
forms, the formal definition of two optimization problems
being equivalent [24] is revisited.

Definition 1 (Equivalence Between Two Optimization
Problems): Two optimization problems are said to be equiva-
lent iff there exists a bijection between their optimal solution
sets.

A real optimization problem is easily obtained,
which is mentioned below and equivalent to the target
problem: (1). This equivalent real form of the target
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problem is:

max
{sH,i ,sG,i }Nt ×K

i=1

Nt ×K∑

i=1

w[ i−1
Nt

]+1 log(1 + ai si )

subject to: si = sH,i + sG,i , ∀i ;
0 ≤ sH,i , 0 ≤ sG,i , ∀i ;

l×Nt∑

i=(l−1)×Nt +1

si ≤ Pl ,

for l = 1, . . . , K ;
l×Nt∑

i=1

sH,i ≤
l∑

k=1

Ein(k),∀l;

K×Nt∑

i=1

sG,i ≤ E(G,total), (2)

where ai
L[ i−1

Nt
]+1

→ ai , L[ i−1
Nt

]+1s(H, or G,)i → s(H, or G,)i ,

Ll
2 → wl , Ll Pl → Pl , for any i, l, and [ ] denotes the

integral part of a real number. For simplicity, we write
{w[ i−1

Nt
]+1} as {wi }. Note that the symbol “→” is the

assignment operator. Without consideration of trivial cases,
Pk > 0 and Ein(i) > 0 can be assumed. Equivalence between
(1) and (2) can be stated by the following lemma, the proof
of which contains the bijection mentioned in the definition. In
essence, except the change of variables: si = sH,i + sG,i , ∀i ,
(2) has the same four sets of constraints as (1). As a side
note, the channel gains {ai}kNt

i=(k−1)Nt +1 correspond to the
multiple antennas equipped by the transmitter, where the
variable k corresponds to the index of the kth epoch ∀k, i.e.,
setting up the MIMO channels at epoch k. Also, in many
applications, such gains are already sorted. This is because
they come from the eigenvalues of a matrix and many of
the algorithms to compute the eigenvalues and eigenvectors
already produce the eigenvalues sorted [16], for any k.

Lemma 1: The optimization problems (1) and (2) are
equivalent.

Proof: Resorting to the well known Hadamard’s inequal-
ity on positive definite matrices, the equivalence may be
proven. Given a family of the positive semi-definite matrices:
{HkH†

k}K
k=1, there exists a family of the unitary matrices:

{Uk}K
k=1 such that U†

kHkH†
kUk is a diagonal matrix, denoted

by Dk , through the eigendecomposition, for k = 1, . . . , K .
Further, the major diagonal entries of this diagonal matrix
are the eigenvalues of HkH†

k . That is to say, the diagonal
matrix and HkH†

k are unitarily similar. For convenience but
without operations of the indexes, as an alternative nota-
tion, (sk(1), · · · , sk(Nt )) denotes (s(k−1)Nt +1, · · · , skNt ),∀k,
in (2). Thus, we have a bijection from the set of feasi-
ble solutions to (2) to that to (1): (sk(1), · · · , sk(Nt )) *→
Ukdiag(sk(1), · · · , sk(Nt ))U

†
k,∀k. The following will prove

that the bijection is the aforementioned one in the definition
of equivalence between two optimization problems. Using a
similar method to that in [24], the equivalence is obtained. !

If the solution to the real optimization problem (2) can
be computed rapidly and exactly, and a bijection has been
constructed, (1) can be solved rapidly and exactly as well. As a

side note, the optimization variables of (2) can be grouped,
with letting χk = {(k − 1)Nt + 1, . . . , k Nt },∀k, for the index
set of (s(k−1)Nt +1, · · · , skNt ). Thus, {χk}K

k=1 is a partition of
the index set of {ai }K Nt

i=1 in (2), denoting the indexes related
to the kth epoch.

To find the solution to problem (2), we often solve a
nonlinear system, including both nonlinear equations and
inequalities, in the dual variables. This is because the con-
ventional water-filling approach starts to obtain the Karush-
Kuhn-Tucker (KKT) conditions of problem (2) as a set of
optimality conditions, and then to solve this set of conditions
to determine the optimal variables {sH,i , sG,i } and their dual
variables. For this set of KKT conditions, due to its complexity
from the PG, MIMO, and EH coexisting system with the
mixed constraints, there is no existing method available in
the open literature to obtain an exact solution through a finite
amount of computation. However, in this paper, we investigate
the problem and propose an exact solution through a finite
amount of computation.

Remark 1: The above content has accounted for the equiva-
lence between (1) and (2). As a supplement, how to obtain (2)
based on (1) is explained as follows. To obtain (2), it only
needs to obtained {wi } and {ai} in (2) with respect to all
the other parameters in (2) being able to come from (1).
In the adjective clause in the sentence including (2), it utilizes
the four assignment statements. Thus, to obtain {wi } and
{ai} in (2), it only requires to obtain {ai } on the left hand
side of the first assignment statement. Given {HkH†

k}K
k=1, the

second sentence in the proof of Lemma 1 has provided the
computation method for a family of the unitary matrices:
{Uk}K

k=1. Therefore, the {ai } on the left hand side of the
first assignment statement, mentioned above, can be obtained
by (a(k−1)Nt +1, . . . , akNt )

T = diag(U†
kHkH†

kUk), for k =
1, . . . , K . As a side note, U†

kHkH†
kUk is a diagonal matrix

and (a(k−1)Nt +1, . . . , akNt )
T takes the major diagonal of the

diagonal matrix as its entries.
In the next section, the proposed algorithm is introduced to

effectively solve problem (2). As a by-product, it also solves
the KKT conditions based on our geometric approach, by
constructing a set of the optimal dual variables.

III. PROPOSED POWER ALLOCATION

ALGORITHM (PAMEC) TO SOLVE (2)

In this section, we first introduce a functional block of
PAMEC, as preparation. Then, PAMEC and its optimality are
investigated.

A. Preparation of PAMEC

Since PAMEC uses the algorithm: Geometric Water Filling
with Group Upper bound Power constraints (GWFGUP), as a
fundamental block, GWFGUP will be introduced in this sub-
section. In fact, [19] has presented the algorithm of Geometric
Water-Filling Group Bounded Power constraints (GWFGBP)
for a class of the optimal radio resource management problems
with the group bounded power constraints. Like the assump-
tion in [19], for convenience of statement, GWFGUP in this
paper means two things: a class of the optimal radio resource
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management problems with the group upper bound power
constraints; and the algorithm to compute the exact solution
to such a class of the problems. If the group lower bounded
power constraints of GWFGBP are relaxed, then GWFGUP,
as an individual case, is formed. Since PAMEC in this paper
mainly uses GWFGUP for its fundamental block, GWFGUP,
as the problem and the algorithm, is concisely introduced
below respectively. Before this introduction, some notations
need to be presented here: given P ≥ 0, as the total power
of the users or volume of the water. The allocated power, the
propagation path gain, and the weight for the i th user are given
as si , ai and wi (≥ 0) respectively, i = 1, ..., K Nt , which has
the index partition {χk}K

k=1; and Pk, 1 ≤ k ≤ K , is the upper
bound for the sum of the total power by the kth group.

GWFGUP problem, as the throughput maximization
problem, is:

max
{si }K Nt

i=1

K Nt∑

i=1

wi log(1 + ai si )

subject to: 0 ≤ si , ∀i ;
K Nt∑

i=1

si ≤ P;
∑

i∈χk

si ≤ Pk, k = 1, . . . , K . (3)

As a side note, it is assumed that the sequence {aiwi }K Nt
i=1 is

monotonically deceasing (since the indexes can be arbitrarily
renumbered to satisfy this condition, noting all the members
of χk also taking the corresponding change).

Then, for introducing GWFGUP, as an algorithm, the results
for GWF (Geometric Water-filling) [19] are summarized
below. GWF aims to solve the same problem as (3) with
relaxation of the group upper bound power constraint, i.e.,
Pk,∀k, is large enough. The water level step index i∗ is
obtained by [19]

i∗ = max
{

i
∣∣∣P2(i) > 0, 1 ≤ i ≤ K Nt and i ∈ E

}
, (4)

where E is an index set that is a subset of {1, . . . , K Nt } with
the note that the set of {1, . . . , K Nt } is also a subset of itself,
and P2(i) is a middle variable and given as

P2(i) =
⎡

⎣P −
∑

j∈{1≤ j≤i−1, j∈E}

(
1

aiwi
− 1

a jw j

)
w j

⎤

⎦
+

,

for 1 ≤ i ≤ K Nt and i ∈ E . (5)

Then the power allocated for the i∗ step is

si∗ = wi∗∑
j∈{1≤ j≤i∗, j∈E} w j

P2(i∗). (6)

The completed solution is then
⎧
⎪⎪⎨

⎪⎪⎩

si =
[

si∗

wi∗
+

(
1

ai∗wi∗
− 1

aiwi

)]
wi ,

1 ≤ i ≤ i∗ and i ∈ E;
si = 0, i∗ < i ≤ K Nt and i ∈ E .

(7)

(4)-(7) is illustrated by Fig. 2, as an intuitive explanation, to
help better understanding GWF and GWFGUP. Figs. 2(a)-(d)

Fig. 2. Illustration of Concepts in (4)-(7) by GWF. (a) Illustration of water
level step i∗ = 3, allocated power for the third step si∗ , and step/stair depth
di = 1

ai wi
. (b) Illustration of P2(i) (shadowed area, representing the total

water/power above step i) when i = 2. (c) Illustration of P2(i) when i = 3.
(d) Illustration of the weights as the widths.

give an illustration of (4)-(7). Suppose there are 4 steps/stairs
inside a water tank. For the conventional approach, the dashed
horizontal line, which is the water level µ, needs to be
determined first and then the power allocated (water volume)
above the step is solved. Let us use wi to denote the width of
the i th step. For the i th step, the allocated power si represents
the area from the step to the surface of the water (if this
step is under water). The term di = 1

aiwi
represents the

height from the step to the bottom of the tank. Instead of
trying to determine the water level µ, which is a non-negative
real number, we aim to determine water level step, which is
an integer number from 1 to K Nt , denoted by i∗, as the
highest step under water. Based on the result of i∗, we can
write out the solutions for power allocation instantly.
Fig. 2(a) illustrates the concept of i∗. Since the third level is
the highest level under water, we have i∗ = 3. The shadowed
area denotes the allocated power for the third step by si∗ .
In the following, P2(i), the water volume above step i , can be
obtained considering the step depth difference and the width of
the stairs. As an example in Fig. 2(c), the water volume above
step 1 and below step 3 with the width w1 can be found as:
the step depth difference, (d3 − d1) multiplying the width of
the step, w1. Therefore, the corresponding P2(i = 3) can be
expressed as

P2(i = 3) = P − (d3 − d1) · w1 − (d3 − d2) · w2

illustrated by the shadowed area in Fig. 2(c). The weights as
the widths are emphasized in Fig. 2(d).

In summary, for (4)-(7) being used by GWF, the first
step is to calculate P2(i), then find the water level step, i∗,
from (4), which is the maximal index making P2(i) positive.
The corresponding power level for this step, si∗ , can be
obtained by applying (6). Then for those steps with index
higher than i∗, the powers are assigned with zeros. For those
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Algorithm 1 Pseudocode for GWFGUP

1: Input: {di = 1
aiwi

, wi }K Nt
i=1 , {Pk}K

k=1, the set E =
{1, 2, . . . , K Nt }, and P;

2: Utilize (4)-(7) to compute {si };
3: The set # is defined by the set {k| ∑ j∈χk

s j > Pk, k ∈
{1, 2, . . . , K }};

4: if # is the empty set then
5: Output {si }K Nt

i=1 ;
6: end if
7: if # is not the empty set then
8: Let

∑
i∈χk

si = Pk , as k ∈ #;
9: Utilize similar Eqns. (4)-(7) as these similar expressions.

Note that these similar expressions differ only by replac-
ing the set of E in (4)-(7) with the set of χk , for k ∈ #.

10: end if
11: Update E with E \ (∪k∈#χk), and P with P − ∑

k∈# Pk ;
12: Then return to 2) of GWFGUP.

steps below i∗, the powers are assigned as in (7). The first
term (si∗/wi∗ ) inside the square bracket denotes the depth of
the i∗th step to the surface of the water. The second term
inside the square bracket denotes the step depth difference of
the i∗th step and the i th step. Therefore, the sum inside the
square bracket means the depth of the i th step to the surface
of the water. When this quantity is multiplied with the width
of this step, the area of the water above this step (allocated
power) can be then readily obtained.

Equipped with GWF algorithm, GWFGUP is formally listed
in Algorithm 1.

As a side note, the optimality proof of Algorithm GWFGUP
can refer to that of GWFGBP in [19].

Remark 2: Algorithm GWFGUP is a dynamic power dis-
tribution process. The state of this process is the difference,
denoted by the set #, between the group upper bound power
sequence and the current power distribution sequence obtained
by (4)-(7). The control of this process is to mainly use the
two following if-then statements in GWFGUP. A new state
is updated in the next time stage. An optimal dynamic power
distribution process through GWFGUP with the state feedback
is thus formed. Since the finite set is getting smaller and
smaller until the set E is empty, Algorithm GWFGUP carries
out the K loops that updates the set E , at most. Then it obtains
the optimal solution.

For a slight change of the discussion above, let L be a
positive integer and L ≤ K , where L denotes the index
of the starting group of the channels for an entire process.
Then this process is more general. Pointing to the target
problem (2), it has been seen that |χi | = Nt . Therefore,
Algorithm GWFGUP can be regarded as a mapping from the
point of parameters {L, K , {wi , ai }i∈∪L≤k≤K χk , P, {Pk}K

k=L } to
the solution {si }i∈∪L≤k≤K χk . That is to say, it can be written as
a formal expression, similar to that in [19]:

{si }i∈∪L≤k≤K χk

= GWFGUP
(

L, K , {wi , ai }i∈∪L≤k≤K χk , P, {Pk}K
k=L

)
. (8)

Algorithm 2 Pseudocode for PAMEC(K)
1: Input:

K , {Ein(k), Pk}K
k=1, E(G,total), {sH,i = 0, wi , ai }K Nt

i=1 ;
2: for L = K : −1 : 1 do
3: {△si }i∈∪L≤k≤K χk =

GWFGUP(L, K , Ein (L), {Pk}K
k=L);

4: for k = L : 1 : K do
5: ai = ai

1+ai△si
, for i ∈ χk ;

6: Pk = Pk − ∑
i∈χk

△si ;
7: {sH,i = sH,i + △si }i∈χk ;
8: end for
9: end for

10: {sG,i }K Nt
i=1 = GWFGUP(1, K , E(G,total), {Pk}K

k=1);
11: Output PAMEC(K): {sH,i , sG,i }K Nt

i=1 .

Note that, for conciseness and without confusion from
context, we may write the right hand side of the expression
as GWFGUP(L, K , P, {P k}) to emphasize time stages from
L to K .

Since GWFGUP vividly uses water-filling to handle the
throughput maximization problem with the power group upper
bounds, it can be called water-filling with the power group
upper bounds. Thus, PAMEC can be called water-filling for
the PG, MIMO and EH coexisting system with the mixed
constraints, mainly for “greener communications”, as an alter-
native. Since PAMEC depends on the final index of the
epochs: K , sometimes to emphasize this dependence, we also
use PAMEC(K) to denote PAMEC. The pseudocode of the
proposed PAMEC(K) is stated at the following subsection.
Then, optimality of the proposed algorithm is also discussed
at the following subsection.

B. Algorithmic Statement of PAMEC and Its Optimality

In this subsection, we discuss the power allocation for
problem (2). The steps of the proposed PAMEC is listed in
the pseudocode of Algorithm 2. Note that, for problem (2),
it is seen from its KKT conditions, that the water levels of
the epochs do not monotonically increase as the index of
the epochs increases due to the group upper bounded power
constraints. Along this way that through directly solving the
KKT conditions to compute the optimal solution, it is rather
difficult if it is not impossible. However, our solution is based
on geometry, not directly solving the KKT conditions.

The proposed PAMEC first distributes the harvested energy,
starting from the last epoch to apply GWFGUP, recursively to
the first epoch. The allocated power is equivalently treated as
increased step height inside the tank. After the allocation of
the harvest energy, the energy from the grid is allocated by
applying GWFGUP once. The procedure will be illustrated
step by step when Example 1 is presented in Numerical Results
Section.

Optimality of the proposed PAMEC(K) is stated by the
following Proposition 1. Prior to setting up the optimality
proof of the proposed PAMEC(K), or introducing Proposi-
tion 1, one lemma has been introduced above, and three
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lemmas need to be introduced next. As a side note, the
statement of the proposed algorithm PAMEC(K) is clear and
short, but the optimality proof of the proposed algorithm
PAMEC(K) is rather difficult. For convenience, the logical
line of the optimality proof is concisely stated here. Lemma 2
proposes optimality of PAMEC(K), for the individual case
with E(G,total) = 0 in the target problem (1) or (2). This
individual case corresponds to Lines 2-9 in the statement of
Algorithm PAMEC(K). Then an implied problem by the target
problem is introduced. Lemmas 3 and 4 reveal the relationship
between the solution to the individual case with E(G,total) = 0
and that to the implied problem. As a naturally developed
result of the four lemmas, Proposition 1 is obtained. Now,
this development is unfolded next.

Lemma 2: PAMEC(K) can compute the exact solution to
the individual case of problem (2), within finite loops, that
lets E(G,total) = 0.

Proof: See Appendix A. !
It is seen that the target problem (2) implies the following

optimization:

max
{si }K Nt

i=1

K Nt∑

i=1

wi log (1 + ai si )

subject to: 0 ≤ si , ∀i ;∑

i∈χk

si ≤ Pk, 1 ≤ k ≤ K ;

l∑

k=1

∑

i∈χk

si ≤ E(G,total) +
l∑

k=1

Ein(k),

l = 1, . . . , K . (9)

The introduction of this implied optimization problem is
motivated by two aspects: it can be utilized, for finally solving
the target problem (2), with letting si = sH,i + sG,i ,∀i ; and
its exact solution can be efficiently computed by the same
algorithm PAMEC(K) in Lemma 2, only via adding E(G,total)
into the harvested energy Ein(1) for epoch 1 of (9). It is
interesting that by solving the implied optimization problem,
we can compute an optimal solution to the original problem.
However, To establish this, other two lemmas are needed.
Lemma 3 is proposed to offer a relationship between the
solution to problem (2) and another solution to the implied
optimization problem. Successively, Lemma 4 claims a rela-
tionship between the difference of the two aforementioned
solutions and E(G,total). Finally, an optimal solution to the
target problem (2) will be proposed via Proposition 1.

Lemma 3: Let the solution to (9) be denoted by {s∗
i }K Nt

k=1 ,
and let the solution to (2) with E(G,total) = 0 be denoted by
{s∗

H,i }
K Nt
1=1 . Then s∗

i ≥ s∗
H,i ,∀i.

Proof: See Appendix B. !
As an emphasis, it has been seen that PAMEC(K) can

compute the exact solution to (9), as the implied problem of
target problem (2); while PAMEC(K) can also compute the
exact solution to problem (2) with E(G,total) = 0; and each
member or entry of the exact solution to (9) is greater than
the corresponding member of the exact solution to problem (2)
with E(G,total) = 0. This emphasis is based on Lemmas 1-3.

In fact, the aforementioned two exact solutions also satisfy the
following property. Before state this property, as a reminder,
problem (2) with E(G,total) = 0 and the implied (9) are
all convex optimization problems with their strictly concave
objective functions, respectively. Thus, optimal solutions to the
two problems satisfy uniqueness. This point implies that any
given solution to each of these two problems is just represented
by the constructed one by the lemmas.

Lemma 4: Let the solution, to the implied (9), be denoted by
{s∗

1}K Nt
k=1 , and the solution, to problem (2) with E(G,total) = 0,

be denoted by {s∗
H,i }

K Nt
i=1 . Then

∑K Nt
i=1 (s∗

i − s∗
H,i ) ≤ E(G,total).

Proof: See Appendix C. !
Remark 3: For clarity, motivations to propose the lemmas

and the following proposition are stated here. Lemma 2
accounts for computing the optimal solution {s∗

H,i }
K Nt
i=1 to

problem (2) with E(G,total) = 0, by lines 2-9 in the statement
of PAMEC(K). Lemma 3 explains line 10 in the statement
of PAMEC(K), together with {s∗

H,i }
K Nt
i=1 , can determine the

solution {s∗
i }K Nt

i=1 to the implied problem. Lemmas 3-4 propose
the fact that the difference between {s∗

i } and {s∗
H,i } satisfy the

power constraints of PG. Further, the following proposition
can offer the result that {s∗

H,i } and {s∗
i − s∗

H,i } are an optimal
solution to the target problem (2), where {s∗

i −s∗
H,i } is denoted

by {s∗
G,i }.

Proposition 1: PAMEC(K) can exactly compute the optimal
solution to problem (2) within finite loops. In addition,
PAMEC(K) most efficiently utilizes the harvested energy, as
the first priority of the (power) allocation.

Proof: First, assume {s∗
H,i , s∗

G,i }
K Nt
i=1 to be an optimal

solution to problem (2). The optimal value of problem (2) has
the same optimal value as that of problem (9). The reason is
concisely stated as follows. Let si = s∗

H,i + s∗
G,i ,∀i. Thus,

{si }K Nt
i=1 is a feasible solution to problem (9). With noting

the forms of optimal value functions for the two problems,
the optimal value of problem (2) is not greater than that of
problem (9). Conversely, if {s∗

i }
K Nt
i=1 is given as the optimal

solution to problem (2) with E(G,total) = 0, i.e., it satisfies the
optimization problem next:

max
{si }K Nt

i=1

K Nt∑

i=1

wi log (1 + ai si )

subject to: 0 ≤ si , ∀i ;∑

i∈χk

si ≤ Pk, 1 ≤ k ≤ K ;

l∑

k=1

∑

i∈χk

si ≤
l∑

k=1

Ein(k),

1 ≤ l ≤ K ,

let {s∗
i }K

i=1 be the optimal solution to the implied problem (9).
Hence, s∗

i − s∗
i ≥ 0,∀i, stemming from Lemma 3. It implies,

with Lemmas 3-4, that {sH,i , sG,i }K Nt
i=1 is a feasible solution of

problem (2), as sH,i is assigned by s∗
i and sG,i is assigned by

s∗
i − s∗

i . The objective function value of problem (2) is equal
to that of (9), with respect to the aforementioned {sH,i , sG,i }
and {s∗

i }. Then, the former value corresponding to a feasible
point is equal to the latter value corresponding to the optimal
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point. It leads to the maximum objective function value of
problem (2) is not less than that of (9), together with the
previously proven fact that the maximum objective function
value of problem (2) is not greater than that of (9). Therefore,
the maximum objective function value of problem (2) is equal
to that of (9).

Second, to compute an optimal solution to problem (2),
we need to compute the {s∗

i }K Nt
i=1 , as the optimal solution

to problem (9) and the {s∗
i }

K Nt
i=1 , as the optimal solution to

problem (2) with E(G,total) = 0. Further, sH,i is assigned
by s∗

i and sG,i is assigned by s∗
i − s∗

i ,∀i. Therefore, the
obtained {sH,i , sG,i } is an optimal solution to problem (2).
Thus, GWFGUP is utilized K + 1 times to obtain {sH,i , sG,i }
correspondingly. In addition, {s∗

i }
K Nt
i=1 , as the optimal solution

to problem (2) with E(G,total) = 0, implies that PAMEC(K)
can utilize the harvested energy, most efficiently, as the
first priority for the (power) allocation. Since the two sets
of optimal solutions can all be computed by PAMEC(K),
with a finite amount of computation, Proposition 1 is thus
proven. !

IV. NUMERICAL RESULTS

This section consists of two parts: numerical examples
and computational complexity analysis. The first part uses a
few examples to account for the procedure of PAMEC(K), to
compare with PD-IPM, and to illustrate the performance of
the PAMEC(K) with the number of the antennas increasing
upto a massive MIMO case. As a side note, PD-IPM cannot
be used for a large-scale optimization problem [26, p. 616].
The second part discusses computational complexity of the
proposed algorithm, and arrives at the conclusion of poly-
nomial complexity with low degree. Due to exploiting the
structure of the proposed problems, the proposed algorithms
show significant efficiency, indeed. For clearly understanding
the procedure of PAMEC, a simple example is first introduced.

Example 1: Assume that there are three epochs, each with
the same length (Lk = 2, k = 1, 2, 3) and the unit weight
(wk = 1, k = 1, 2, 3). Let Nt = 2. Suppose the fading profile
for the three epochs is

H1 = 1√
12

(
1 −1√
2

√
2

)
, H2 = 1√

12

( √
3 −

√
3

2 2

)
and

H3 = 1√
12

( √
5 −

√
5√

6
√

6

)
.

At the beginning of each epoch, the energy is harvested
(E(G,total) = 1; Ein(1) = 12, Ein(k) = 2, k = 2, 3). Also,
the group upper bound constraints of the powers are Pk =
2 + 6|(k − 2)| = {8, 2, 8}, k = 1, 2, 3.

From given H1, 1
a1

= 6 and 1
a2

= 3 are illustrated as the the
heights of the first two stairs in Fig. 3(a). Similarly, we can
have heights for the remaining four steps as 2, 1.5, 1.2, and
1 respectively. Carrying out GWFGUP(3,3), the power alloca-
tion to epoch 3 is illustrated in Fig. 3(b), and then the heights
to represent the power allocation by GWFGUP(3,3) plus the
heights of the original steps are formed into heights of the new
steps. Carrying out GWFGUP(2,3), the power allocation to

Fig. 3. Illustration for Algorithm PAMEC(K) (K = 3, Nt = 2).

epochs 2-3 is illustrated in Fig. 3(c), and then similarly updat-
ing heights of the newer steps. Carrying out GWFGUP(1,3),
the power allocation to epochs 1-3 is illustrated in Fig. 3(d),
and then similarly further updating heights of the newest steps.
Finally, Fig. 3(e) carries out GWFGUP(1,3) with “filling the
amount of water:” E(G,total) into epochs 1-3 as shown in the
grid area in Fig. 3(e). Then the optimal power allocation to
problem (2) is obtained.

Example 1 is calculated out by applying GWFGUP, satisfy-
ing the mixed constraints of (1), from epoch 3, to epochs 2-3
and up to epochs 1-3. At the final step, the completed optimal
solution is obtained. Fig. 3(d) shows that the water level
non-decreasing condition, as the optimal solution condition
for energy harvesting transmission with Emax ≫ 0 (refer
to [17], [20]), does not hold. For a summary of the algorithm
PAMEC(K): PAMEC(K) can compute the optimal solution
of the target problem in finite steps. It does not need to
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Fig. 4. Comparison of Achieved Throughput in Epochs.

Fig. 5. Comparison of Computational Complexity (Number of Operations).

solve any non-linear system, consisting of many equations and
inequalities in the multiple original variables and dual ones.

Example 2: The well known optimization algorithm over the
real space, the primal-dual interior point method (PD-IPM), is
chosen for comparison purpose due to its competitiveness in
computing the solutions to the convex optimization problems.
Note that PD-IPM cannot directly be used for (1) in several
complex optimization variables. Thus we may lent our pro-
posed real model of (2) to PD-IPM. Without loss of generality,
assume Nt = 2 too.

Fig. 4 and Fig. 5 are used to show the difference between
PD-IPM and PAMEC(K) for the maximum throughput prob-
lems as a function of the number of epochs. Channel gains are
generated randomly using random variables with each entry
drawn independently from the standard Gaussian distribution.
{E(G,total), {Ein(k)}} are the set of randomly chosen positive
numbers. The epoch power upper bound constraints in (1)
are taken as {3k}K

k=1. A group of different weights are also
generated randomly. The chosen parameters mentioned above
are assigned to both algorithms with the identical values for
fair comparison.

In these two figures, the circle markers and the cross
markers represent the results of the proposed PAMEC(K)
and PD-IPM respectively. Fig. 4 compares the achieved
throughput of two algorithms. For the proposed PAMEC(K),
since it uses recursion, no iteration is invoked. For PD-IPM,
the obtained throughput is the result after 120 iterations.

Fig. 6. Power Allocation of PAMEC as K=10 and the Nt s.

Significant improvement in throughput can be achieved espe-
cially when K is greater than 20 epoches. Fig. 5 compares
the number of operations to achieve the throughput presented
in Fig. 4. With the increasing of the number of epoches, the
computation amount of the proposed PAMEC increases almost
linearly with a slow slope. However, the computation amount
of PD-IPM increases exponentially. In the most discrepancy
point, when K = 50, the number of operation of the PAMEC
is about 0.42 million fundamental logical and arithmetic
operations, while PD-IPM uses about 6.9 million fundamental
logical and arithmetic operations. These results show that the
proposed PAMEC exhibits significant performance enhance-
ment and efficiency in computation.

Example 3: Since (1) and (2) are equivalent, we may use
our proposed real model of (2). This example uses large Nt s.
Without loss of generality, assume Nt = {150, 160, . . . ,
190, 200} and K = 10. Often, this number K of epochs is
not large, for an acceptable prediction/estimation channel state
information. There are K Nt optimization variables or channels
for (2). Since PD-IPM cannot guarantee to handle a large-scale
optimization [26, p. 616], this example does not use PD-IPM.

Here, Fig. 6 is used to show PAMEC(K) for the maximum
throughput problems vs. number of antennas. Channel gains
are generated randomly using random variables with each
entry drawn independently with the mean of 0.3 and the square
variance of 0.1. {E(G,total), {Ein(k)}} are the set of randomly
chosen positive numbers with the mean of 29 dBW. The epoch
power upper bound constraints in (2) are taken as those with
that of 30 dBW. The equal weights are also taken for clear
observation. It can be observed that the throughput improves
almost linearly as the increasing of the number of antennas in
a large scale massive antenna array.

A. Computational Complexity Analysis

To compute the optimal solution, PAMEC(K) only utilizes
GWFGUP K + 1 times, so it needs

∑K+1
k=1 O(N2

t k2) =
O(N2

t K 3), the degree 5 polynomial complexity, fundamental
operations (refer to [19]). In fact, it is seen that the com-
putational complexity of PAMEC(K) is:

∑K
k=1

∑k
m=1(8Nt +

3)m + K (K + 1)Nt = 1
6 (8Nt + 3)K (K + 1)(K + 2)+ K (K +

1)Nt , as the number of the operations, at the worst case.
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It is more accurate than the big O notation of O(N2
t K 3).

However, PD-IPM needs a polynomial computational com-
plexity: O(N3.5

t K 3.5) log(1/ϵ), i.e., the degree 7 polynomial
complexity, to compute an ϵ solution, but the ϵ solution is
not an optimal solution (refer to [26], [33]). It cannot offer
a computational complexity with a concrete number of the
operations [34], unlike ours. Our method eliminates any linear
search but output the exact optimal solution with a finite
amount of computation. As a side note, the complexity of
O(N2

t K 3), as K is fixed, is only a quadratic polynomial in Nt .
This point is suitable for exactly solving a massive MIMO
throughput maximization problem. Often, K cannot take a
large value due to the limitation of precision of prediction
for the system parameters.

Generally speaking, PAMEC(K) needs a total of O(N2
t K 3)

basic operations to compute the exact (optimal) solution, while
PD-IPM needs a total of O(N3.5

t K 3.5) log(1/ϵ) basic opera-
tions to compute an ϵ solution. The algorithm PAMEC(K)
has the same level of computational complexity for the target
problem, using whether its real form or complex form.

V. CONCLUSION

For the throughput maximization problem of the PG, MIMO
and EH coexisting system with the mixed constraints, we
proposed a novel efficient water-filling algorithm (PAMEC)
to compute the exact solution. PAMEC(K) stems from
GWFGUP, which is used as a functional block of PAMEC.
The computation of the proposed algorithm only needs finite
steps with a low degree polynomial computational complexity.
Numerical examples are provided for illustrating the steps for
the exact solution by the proposed algorithm. They indeed
show that, for the target problem, our algorithm uses less
amount of computation and achieves the optimal system
throughput, especially for large scale systems, e.g. the massive
MIMO system, while the existing optimization methods cannot
guarantee to compute the exact solution, even including the
most efficient primal-dual interior point method.

APPENDIX A
PROOF OF LEMMA 2

To clearly understand, before the formal proof, two facts
need reminding. The first fact is that the new problem that
changes the objective function of (2) into

∑Nt ×K
i=1 wi log( 1

ai
+

si ) with respect to keeping the original constraints of (2), is
equivalent to (2). This equivalence is easily obtained, from
the proposed Definition 2.3. It implies that the equivalent
optimization problems have the same set of optimal solutions.
Based on this meaning of the same set of optimal solutions,
equivalent optimization problems should be identical. Since
Line 5 in the statement of PAMEC(K) continuously updates
the channel gains, the second fact is that the reciprocal of
the current i th channel gain is equal to that of the original i th
channel gain, ∀i , plus the sum of the i th entries of the solutions
that have continuously been obtained by GWFGUP at Line 3
in the statement of PAMEC(K). To distinguish between both
of the channel gains, let us denote the current and the original
channel gains by {ai } and {a(0)

i } respectively. In addition,

any epoch in the process and its following epochs can form
a new process. Thus, for this new process, it is seen that
the target problems (1) and (2) only need a few of changes
on the subscripts. For example, (1) changes the lower bound
of the summation of its objective function from 1 to the index
of the chosen initial epoch, and so on. This new process is
used for the following mathematical induction.

Mathematical induction is carried out with respect to the
index L. It corresponds to Lines 2-9 in the statement of
PAMEC(K). As L = K , i.e. the process only containing
epoch K , the conclusion holds naturally. This is because only
Lines 3, 4 and 7 of PAMEC(K) are used. As 1 < L ≤ K ,
i.e. the process only containing epochs from L upto K ,
assume that {s∗

H,i }i∈∪L≤k≤K χk is the solution to (2) with the
initial epoch L. Through the two facts, it is seen that any
member or entry s∗

H,i of the solution, mentioned above, plus
the reciprocal of a(0)

i , is the the reciprocal of the current
channel gain ai ,∀i ∈ χk, L −1 ≤ k ≤ K , when L at Line 2 of
PAMEC(K) is just regressed into L −1. Here, the optimization
problem in the increment variables {△sH,i }, corresponding to
GWFGUP(L − 1, K , Ein(L − 1), {Pk}K

k=L−1), is:

max
{△sH,i }i∈∪K

k=L−1χk

K∑

k=L−1

wk

∑

i∈χk

log (
1

a(0)
i

+ s∗
H,i + △sH,i )

subject to: 0 ≤ △sH,i , ∀i ∈ ∪K
k=L−1χk;∑

i∈χk

△sH,i ≤ Pk −
∑

i∈χk

s∗
i ,

L − 1 ≤ k ≤ K ;
K∑

k=L−1

∑

i∈χk

△sH,i

≤ Ein(L − 1). (10)

For the optimal solution {△sH,i }i∈∪L−1≤k≤K χk to (10), there are
dual variables {{µk,i |i ∈ χk, L − 1 ≤ k ≤ K }, {σk}K

k=L−1,λ},
where three sets of the dual variables correspond to the three
sets of constraints of (10) respectively, such that the following
KKT conditions of (10) hold,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

a(0)
i wi

+
s∗H,i +△sH,i

wi

= λ + σk − µk,i ,

∀i ∈ χk, L − 1 ≤ k ≤ K ;
△sH,i ≥ 0, µk,i△sH,i = 0, µk,i ≥ 0,

∀i ∈ χk, L − 1 ≤ k ≤ K ;
∑

i∈χk
△sH,i ≤ Pk − ∑

i∈χk
s∗

H,i ,

σk[
∑

i∈χk
(s∗

H,i + △sH,i ) − Pk] = 0,

σk ≥ 0,∀k;
∑K

k=L−1
∑

i∈χk
△sH,i ≤ Ein(L − 1),

λ[∑K
k=L−1

∑
i∈χk

△sH,i − Ein(L − 1)] = 0,

λ ≥ 0.

(11)

If
∑K

k=L−1
∑

i∈χk
△sH,i < Ein(L − 1), then λ = 0. It implies

that σk > 0,∀k. Thus,
∑

i∈χk
(s∗

H,i + △sH,i ) = Pk,∀k. It is
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seen that such a set of {s∗
H,i +△sH,i } is an optimal solution to

(2), noting that the initial epoch is the aforementioned L − 1.
On the other hand, assume

∑K
k=L−1

∑
i∈χk

△sH,i =
Ein(L − 1). Let Eg = {k| ∑i∈χk

△sH,i > 0, L − 1 ≤
k ≤ K }, kg = max{k|k ∈ Eg} and kg = min{k|k ∈ Eg},
#1 = {k1|λ <

∑K
k=k1

λk, kg < k1 ≤ K } and #0 = {k0|λ >∑K
k=k0

λk , L − 1 ≤ k0 < kg}, and k1 = max{k1|k1 ∈ #1}
and k0 = min{k0|k0 ∈ #0}. If k1 < k ≤ K , where
k1 < K , let λ̃k = λk, ν̃k = νk and µ̃i = µi ,∀i ∈ χk .
Note that {{µi }i∈∪K

k=L χk
, {λk, νk}K

k=L} are the optimal dual
variables of (2) with E(G,total) = 0, the initial epoch L and
the optimal solution {s∗

H,i }i∈∪L≤k≤K χk . Further, these three sets
of {µi }, {νk} and {λk} correspond to the preceding three sets
of constraints for (2) with E(G,total) = 0, respectively. If
k = k1, let λ̃k = λ − ∑K

m=k+1 λm , ν̃k = (
∑K

m=k λm − λ) + νk
and µ̃i = µi ,∀i ∈ χk . Note that the special summation
of

∑K
m=K+1 λm is defined as zero. If kg < k < k1, let

λ̃k = 0, ν̃k = νk + (
∑K

m=k λm − λ) and µ̃i = µi ,∀i ∈ χk .
If kg ≤ k ≤ kg , let λ̃k = 0, ν̃k = σk and µ̃i = µk,i ,∀i ∈ χk .
Note that it is seen that, if kg ≤ k ≤ kg , there does not exist the
case of

∑
i∈χk

△sH,i > 0 and
∑K

m=max {k,L} λm < λ holding.
Also, note that {λ, σ k, σ k} are the aforementioned optimal
dual variables in the KKT conditions of (11). If k0 ≤ k < kg
and k ≥ L − 1, it is seen that

∑
i∈χk

s∗
H,k = 0. Thus, if

k0 ≤ k < kg and k > L − 1, let λ̃k = 0, ν̃k = νk and
µ̃i = (λ − ∑K

m=k λm) + µi ,∀i ∈ χk . If k0 ≤ k < kg and
k = L − 1, let λ̃k = 0, ν̃k = σk and µ̃i = λ+ µk,i ,∀i ∈ χk . If
L −1 ≤ k < k0, let λ̃k = 0, ν̃k = σk and µ̃k,i = µk,i ,∀i ∈ χk .
Note that the aforementioned cases have been enumerated. For
the optimization problem (2) with E(G,total) = 0 and the initial
epoch L − 1, {s∗

H,i + △sH,i }i∈∪K
k=L−1χk

, as optimization vari-

ables, and {λ̃k, ν̃k , {µ̃i }i∈χk }K
k=L−1, as the corresponding dual

variables, satisfy the KKT conditions of (2) with E(G,total) = 0
and the initial epoch L−1. The {λ̃k, ν̃k , µ̃i∈χk },∀k, correspond
to the kth causal sum power, group upper bound power
and non-negative power constraints of (2) with E(G,total) =
0 and the initial epoch L − 1, respectively. At the same
time, the General Constraint Qualification (refer to (3.71) of
[35, Th. 3.8] of problem (2) holds. Together with the
uniqueness of the optimal solution, which stems from the
optimization problem (2), with E(G,total) = 0, being con-
vex with a strictly concave objective function, {s∗

H,i =
s∗

H,i + △sH,i }i∈∪K
k=L−1χk

is the optimal solution to (2), with
E(G,total) = 0 and the initial epoch L − 1.

Therefore, according to the mathematical induction, the
conclusion of Lemma 2 is indeed true.

APPENDIX B
PROOF OF LEMMA 3

Similar to the proof of Lemma 2, the proof of Lemma 3
can also be obtained. This proof only changes the solution
{s∗

H,i }i∈∪L≤k≤K χk in the assumption of the mathematical induc-
tion, by Lemma 2, into the solution to (2) with E(G,total) = 0
that is {s∗

H,i }i∈∪1≤k≤K χk ; then △sH,i (≥ 0) into △si ,∀i ; and
obtaining {s∗

i = s∗
H,i + △si }K Nt

i=1 . The detail of this proof

can copy the large part of Lemma 2 with the aforementioned
changes, starting from the assumption of the mathematical
induction by Lemma 2. If the changes are noted, we can easily
write down this proof. Thus, the outline of this proof has been
stated.

Therefore, the conclusion of Lemma 3 is indeed true.

APPENDIX C
PROOF OF LEMMA 4

According to Lemmas 2-3 and their proofs, s∗
i = s∗

H,i +
△sG,k,∀i, where {△sG,i }K Nt

i=1 is the optimal solution to the
following optimization problem:

max
{△si }i∈∪K

k=1χk

K∑

k=1

wk

∑

i∈χk

log (
1

a(0)
i

+ s∗
H,i + △si )

subject to:0 ≤ △si , ∀i ;∑

i∈χk

△si ≤ Pk −
∑

i∈χk

s∗
H,i ,

1 ≤ k ≤ K ;
K Nt∑

i=1

△si ≤ E(G,total). (12)

Thus,
∑K Nt

i=1 △sG,i ≤ E(G,total). Then,
∑K Nt

i=1 (s∗
i − s∗

H,i ) ≤
E(G,total), from {△sG,i = s∗

i − s∗
H,i }.

Therefore, the conclusion of Lemma 4 is true.
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