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Abstract—To enhance the reliability of the power grid, further
processing of the power demand to achieve load balancing is
regarded as a critical step in the context of smart grids with
Internet of Things technology. In this paper, dynamic offline and
online scheduling algorithms are proposed to minimize the power
fluctuations by applying a geometric water-filling approach. For
the offline approach, full information in the power demand is
available, possibly by predicting from the power utilities. We
present an exact approach in order to allocate the elastic loads
based on the inelastic load’s information considering the group-
and node-power upper constraints. For the online approach, the
reference level is computed dynamically using historical demand
data to minimize the fluctuation in the grid, and the elastic loads
can only be scheduled in the future time slots. Two dynamic
algorithms are investigated to achieve load balancing in the power
grid without influencing user experience by real-time reference
level adjustment. Facilitated by the proposed methodologies, the
power utilities can significantly reduce the cost of improving the
power capacity, and the consumers are able to enjoy more stable
electrical power.

Index Terms—Internet of Things (IoT), load management,
load modeling, optimization, resource management, smart grids,
upper bound.

I. INTRODUCTION

THE SMART grid has been considered as one of the most
important applications of Internet of Things (IoT) tech-

nologies in recently years [1]. It requires the integration of load
control, information communication, and cloud data comput-
ing via coordinating among smart meters, smart infrastructures
and smart facilities, in which IoT technologies provide a
framework for communications. Via IoT technologies, the
smart grid enables improving energy efficiency by energy
monitoring, energy modeling, practical changes evaluation,
and strategy adjustments [2].

It is well-known that power demand is time-varying in a
day. In a typical summer weekday in Ontario, the power con-
sumption difference between peak hours and nonpeak hours
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can be as much as 65% [3]. Therefore, two problems would
happen: when the utility can not provide enough power to
supply the peak demand, some loads have to be shut down
and it will cause power shortage. On the other hand, to keep
the stability of the power grid system, the power plant has
to pay more generators and reach the considerable capacity
to supply the power in peak hours. The problem brings the
mass cost to the power utility and reduces the efficiency of the
power grid.

Demand side management (DSM) is a mechanism to
increase the power stability and efficiency by scheduling elas-
tic loads on demand side considering the user’s utility and
electricity cost. Users’ power consumption is able to be shaped
to produce a desired pattern by DSM [4]. Less power fluc-
tuation in the power system indicates improved efficiency
and safety operation of the power grid. Therefore, flattening
the power consumption to achieve load balancing via DSM
attracted lots of research attention in recent years. To achieve
this objective, in [5]–[9], charging of plug-in hybrid elec-
trical vehicles (PHEVs) was scheduled to satisfy DSM by
minimizing the energy cost depending on a floating electric-
ity price; [10]–[15] achieved DSM to maximize user’s payoff
by the mechanism of real-time pricing approach; [16]–[18]
implemented the real-time demand side control of heating,
ventilation, and air conditioning (HVAC) by energy prediction,
while the users’ comfort level was not influenced. Recent
contribution [1] proposed centralized and decentralized real-
time energy distribution strategies to maximize users’ utility,
minimize cost, and smooth the grid load by applying IoT
technologies.

Water-filling (WF) algorithm is a well-known important
tool for optimal radio resource management in communi-
cation systems to maximize channel capacity when power
is constrained [19]. In recent years, WF approach has been
used to achieve load balancing in the context of the smart
grid [3], [18], [20]–[22]. Early work [3] applied WF con-
cept to schedule elastic loads with the assumption that all
load information in a day was predicted. The overall power
consumption is flattened through appropriate scheduling with
a probability distribution model. In [20], load management
problem was modeled as a typically simplest form of the WF
problem, i.e., the load to be non-negative and subject to sum
load restriction. It is important to note that although these
early investigations were preliminary, they paved the ways
for later research works. For more later works, in [21], on
top of the typical load balancing WF problem, delay cost
was added as another consideration factor. In [18] and [22],
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TABLE I
LIST OF VARIABLES AND ABBREVIATIONS

WF algorithm was used to schedule the demand of HVACs
and PHEVs, respectively. In the above works, WF con-
cept provides an efficient approach to balance the overall
load in order to minimize power fluctuation. In our recent
work [23], we modeled the problem in a more general form
and exploited our proposed geometric WF [19] approach to
provide a closed-form, exact valued and strictly proven opti-
mal solution with a low degree polynomial computational
complexity.

The main contribution of this paper is to dynamically
implement the optimal elastic load scheduling to achieve load
balancing in IoT environment. Based on WF algorithm, we
propose dynamic approaches to schedule the elastic load both
offline and online to flatten the overall power consumption
considering the peak power constraints. First, we inherit the
basic concept and the problem formulation for computing
the general exact solution for load balancing applying WF
approach from our previous work [23], where the offline
approach with full given load information was investigated. A
smart grid operator can generate a constant reference level and
the solution from the one-time computation. In this paper, we
implement the new online load balancing approaches on top of
the offline approach using the load prediction model from [3],
considering the group and node power upper constraints for
elastic loads. Comparing with our previous work [23], the main
differences are summarized below.

1) Beyond the offline solution that we already proposed
in [23], we modified the problem formulation and
methodology to adopt the dynamic change in the
real-time power grid system. The online approach is
implemented to balance the loads in real-time with-
out future load request information. It provides a robust

algorithm independent of the power profile prediction.
Therefore, the online algorithm can allocate the power
loads without knowledge of the future information or in
the scenario of inaccurate prediction, which the offline
solution cannot achieve.

2) The demand of inelastic and elastic loads changes ran-
domly in the real time, and the elastic loads can not
be scheduled in the elapsed time slots. We strategi-
cally adjust the overall load reference level in real-time
to be compatible with real power demand variation,
which is computed from the demand history mon-
itored by the smart meters. With our strategy, the
load can be balanced in real time without losing user
satisfaction.

3) The load allocation is no longer in one direction from the
smart grid operator to the end users. In each allocation
cycle, the utility allocates the power to the microgrids
and users. Meanwhile, the utility adjusts the reference
level for next cycle from the real demand pattern, which
requires coordinating among the smart infrastructures,
smart meters, and smart facilities in IoT environment.
The power allocation operation turns to be more stable
due to the roundway communication and feedback in the
network.

4) We also extend a computation efficient online algo-
rithm with lower computational complexity in real-time
scheduling, which is expected to reduce the com-
munication and computation burden in IoT networks
within the admissible variance of overall power
fluctuation.

In the remainder of this paper, the system model of
the load balancing problem via WF approach is presented
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Fig. 1. System model: 3-D power allocation problem.

in Section II. Basic elastic load allocation approach is
introduced in Section III. In Section IV, we propose
the algorithms to allocate the elastic loads for offline
and online elastic load allocation problems, respectively.
Simulation results and performance evaluation are presented in
Section V. The conclusion and future works are summarized in
Section VI.

II. SYSTEM MODEL

A. Problem Statement

Similar as [3] and [18], depending on the flexibility of
the power requests in the system, we assume that there are
two categories of the loads: 1) elastic loads and 2) inelas-
tic loads. Inelastic loads have strict time constraints so that
the demand is not schedulable. The demand of the elastic
loads can be scheduled, such as charging for PHEVs. In our
offline approach, power requirements of the inelastic loads are
predicted as parameters. To reduce the fluctuation of the over-
all power load in the system, the elastic load demand is shifted
from the peak hours to the nonpeak hours in order to flatten
the power profile. Table I is a list of the variables and abbre-
viations used in our analysis. In our work [23], the system is
modeled as a 3-D problem regarding time, users, and load as
shown in Fig. 1.

The index k denotes the time slot from 1 to K. There are J
users in the system, indexed by j. All the users are grouped
into I groups, where i is group index, and χi being a set of
users in group i, where i ∈ [1, I]. The inelastic and elastic loads
are denoted by matrix A and matrix R, respectively. Ak,j and
Rk,j represent the power consumption of inelastic and elastic
loads of the jth user in the kth time slot, respectively. Ak,j can
be predicted from the smart grid operator, which is shown as
the wide dashed lines in Fig. 1. The shadow areas, Bk are
the projection of the inelastic load for all the users at the kth
time slot. L is an optimization variable as the reference level
of the overall power consumption, where the WF concept is
applied.

The objective of load balancing is to determine an optimal
reference value L, then schedule the elastic load power R to
minimize the difference between L and the overall load from

Fig. 2. Schematic of the network of the distribution grid.

time slots 1 to K. It can be written as

min{R,L}
K∑

k=1
⎡

⎣
I∑

i=1

∑

j∈χi

(
Ak,j + Rk,j

)
− L

⎤

⎦
2

subject to 0 ≤ Rk,j ≤ Pk,j, j = 1, . . . , J,∀k
∑

j∈χi

Rk,j ≤ PGk,i,∀i, k

J∑

j=1

Rk,j ≤ PUk,∀k

K∑

k=1

J∑

j=1

Rk,j = PT

L ≥ 0 (1)

where Pk,j is the upper bound of the elastic load of user j
in time k. PGk,i and PUk are the upper bounds of the elastic
loads for the ith group at the kth time slot and for all users
at the kth time slot, respectively. These constraints offer an
approach to control the system directly in power grid when
some particular issues occur, such as fault detection. To ensure
the system feasibility, all the peak power values are not less
than 0. PT is the total load budget for the whole system’s
elastic loads over all time slots.

B. Network Structure

We consider the power distribution model in an IoT
framework, where the smart grid operator conducts load
balancing for the overall system. Fig. 2 shows the power
distribution and communication network model. There were
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(a)

(b)

Fig. 3. Moving window model. (a) Window with size N before shifting.
(b) New window with size N after shifting.

three levels in the network: 1) energy distributor; 2) micro-
grids (groups); and 3) users. In each of the levels, there was a
server to receiving the load requests from the lower level and
protect the transformers with upper power constraints. At time
k, first, the smart grid operator generates a reference level of
the overall power distribution to balance the loads in real-time,
which is computed by predicting the power requests from the
smart meters. It also controls the overall power flow in real
time to be not greater than PUk in order to protect the trans-
former of the whole system. Furthermore, the front-ends of I
microgrids collaborate and balance the power in group level
depending on their group power constraint PG. As the same as
at the group level, the user level distributes the group power
constrained by individual power constraint P. Then the smart
meter of each user schedules the infrastructures and receives
the load requests by Internet connection. The real loads are
regarded as IoT nodes.

C. Moving Window

In this paper, we discuss both offline and online solutions
for the load balancing problem. For offline operation, it is
assumed that all the load demand is known. The reference
level L is a constant, and it is computed once. For online
operation, the available load information is the load demand
from the past time slots. The reference level L is a vector
which is different by time slots. We shall use a moving win-
dow to solve reference level Lk for next time slot scheduling.
Fig. 3(a) shows the model of moving window approach with
window size N. When the algorithm runs to time k, we apply
a reference level Lk determined by the parameters from the
time slots k − (N − 1) to k in order to schedule the loads
for the (k + 1)th time slot. With a smaller window size,
the reference level is shaped more likely to the unscheduled
power profile. In contrast, with a larger window size, the vari-
ation of the reference level is slow. Furthermore, we propose
a computation reduced online approach. We predict inelas-
tic load information for the mth time slot in the future, as
shown in Fig. 3(b). Then we shift the starting point of the

(a) (b)

Fig. 4. Illustration of BLA problem. (a) BLA problem with infinite PUk .
(b) BLA problem with finite PUk .

window by m slots, so that the window size is kept at N but
we analyze the data which includes both the past and future
information.

III. BASIC LOAD ALLOCATION MODEL

To simplify the problem (1), this 3-D problem is trans-
formed to a 2-D problem by projecting the overall load for
all the users. Let Sk and Bk represent the elastic and inelastic
load vectors from all the users in the kth time slot, respec-
tively. They can be obtained by the summations of the matrix
A and R over their columns

I∑

i=1

∑

j∈χi

Rk,j = Sk;
I∑

i=1

∑

j∈χi

Ak,j = Bk. (2)

Then the objective function in (1) can be simplified by the
basic load allocation (BLA) model

min{Sk,L}
K∑

k=1

(Sk + Bk − L)2

subject to 0 ≤ Sk ≤ PUk,∀k
K∑

k=1

Sk = PT

L ≥ 0 (3)

where the vector B is computed from the inelastic load matrix
A in (2). A and PT are given by predicting from the utility. The
details of the solution are presented in [23] using geometric
WF, as illustrated in Fig. 4.

In Fig. 4(a), we assume that PUk is infinite and sort the
load vector B as a monotonically increasing sequence. The
original sequence can be recovered easily after the solution of
the problem is obtained. P2(k) is defined as the allocated total
power (elastic load or water volume) above the kth stair. k∗

is defined as the maximum index of the stair keeping P2(k)
non-negative, i.e., the highest step under water. The optimal
solution can be obtained through the steps

P2(k) =
{

PT −
[

k−1∑

l=1

(Bk − Bl)

]}+

, k = 1, . . . , K (4)

where Bl denotes the total elastic load power at time slot l.
Index l indicates any time slots less than k. {·}+ denotes zero
if the value inside the bracket is negative. Then

k∗ = max{k|P2(k) > 0, 1 ≤ k ≤ K}. (5)
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Algorithm 1 BLA WF Problem Algorithm
Input: B, PU, PT , E ={1, . . . , K}
Output: S, L

1: while E ̸= ∅ do
2: Solve equations (4) - (8) to obtain {S}k∈E and L via

{B}k∈E and PT .
3: " ← {k | Sk > PUk, k ∈ E}.
4: if " ̸= ∅ then
5: if k ∈ " then
6: Sk = PUk.
7: end if
8: E ← E \ ", PT = PT -

∑
k∈" PUk .

9: else
10: Set {Sk} when k ∈ E.
11: E = ∅.
12: end if
13: end while

From Fig. 4(a), the allocated elastic load in the k∗ time slot is

Sk∗ = 1
k∗

P2
(
k∗

)
. (6)

Then the solution of the elastic load power in the kth slot is

Sk =
{

Sk∗ + (Bk∗ − Bk), 1 ≤ k ≤ k∗

0, k∗ ≤ k ≤ K
(7)

and the reference level is

L = 1
k∗

k∗∑

k=1

(Bk + Sk) = 1
k∗

⎛

⎝
k∗∑

k=1

Bk + PT

⎞

⎠. (8)

In this paper, we assume that there are sufficient amount of
elastic load requests, and therefore, there are always some elas-
tic loads available for scheduling, i.e., k∗ = K. Furthermore,
Fig. 4(b) indicates the system with the upper load constraints,
when PUk is a finite number, as shown in the height of
the shadow areas. Sk cannot be greater than the correspond-
ing PUk. To solve this problem, BLA was proposed in [23],
described by the following Algorithm 1.

Therefore, the 2-D allocation problem can be written as a
mapping function of the inelastic load power vector, the upper
power constraint vector, and the total elastic power budget

(S, L) = BLA(B, PU, PT). (9)

The optimality of BLA mapping is proven in [23].

IV. DYNAMIC LOAD BALANCING

WITH WF APPROACH

In this section, we first evaluate the solution of the 3-D
offline load allocation problem in (1) and implement it to allo-
cate elastic load, which is solved in [23]. Then, a dynamic
online approach is presented in the second section when the
future demand information is not known. At the third section,
we propose a computation efficient online approach to reduce
the computation.

Algorithm 2 Offline ELPA
Input: A, PU, PG, P, PT , j ∈ {1,. . . ,J}, i ∈ {1,. . . ,I}, k ∈

{1,. . . ,K}
Output: R, reference level L

1: B = ∑I
i=1

∑
j∈χi

Ak,j. The vector B works as parameter
vector and it is not changed in this algorithm.

2: (S, L)=BLA(B, PU, PT ). Steps of BLA are in
Algorithm 1.

3: {Ri}I
i=1= BLA({∑j∈χi

Ak,j]}I
i=1

, {PGk,i}I
i=1, SK).

4: {Rk,j}j∈χi= BLA({Ak,j}j∈χi , {Pk,j}j∈χi , Ri ).
5: Move to next time period, k(2)={1,. . . , K(2)}, and back to

step 1.

A. Offline Approach

Similar to the outline in [3], we summarize the steps of our
offline algorithm as follows.

1) Demand Forecasting: The smart grid operator forecasts
all of the demand from previous energy behavior via
smart meters to predict the elastic load budget PT and
the matrix of inelastic load A for users from 1 to J in
time vector K.

2) Reference Level Computation: After the load informa-
tion is available, the reference level L for the first time
slot to the Kth time slot can be solved by using the WF
algorithm in (8).

3) Elastic Load Allocation for the System: Once the ref-
erence level is computed, the elastic load power con-
sumption, R, for the whole system can be solved by
elastic load allocation algorithm. In this step, L may be
adjusted, depending on the influence of the constraint
PU.

4) Elastic Load Filling: The elastic loads are settled by
the elastic power R which is allocated in the last step.
In this paper, we assume that all loads operate continu-
ously until the tasks being completed, the same treatment
as in [3].

After the inelastic and elastic load demand is predicted
for the whole system, matrix A and the elastic load bud-
get PT are known. In order to have a feasible solu-
tion for problem (1), we assume that

∑K
k=1

∑J
j=1 Pk,j ≥

PT ,
∑K

k=1 PUk ≥ PT , and
∑K

k=1
∑I

i=1 PGk,i ≥ PT .
If the assumption is not hold, then we choose PT =
min{∑K

k=1
∑J

j=1 Pk,j,
∑K

k=1 PUk,
∑K

k=1
∑I

i=1 PGk,i}, to make
sure that the power allocated does not violate the con-
straints. In the same idea,

∑
j∈χi

Pk,j ≥ PGk,i, otherwise,
PGk,i = ∑

j∈χi
Pk,j, and

∑I
i=1 PGk,i ≥ PUk, otherwise

PUk = ∑I
i=1 PGk,i. Also, in order to make the problem solu-

tion exist, PT should be greater than zero, so that the matrix
R is nonempty. Elastic power allocation can be obtained by
Algorithm 2 when above information is predicted.

In Algorithm 2, we call the BLA algorithm three times in
order to solve the elastic load matrix, R. Fig. 5 illustrates
Algorithm 2 graphically. First, the total elastic load vector S
and the reference level L can be determined by calling BLA
algorithm in line 2, where the constraint for the elastic load,
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(a) (b)

(c)

Fig. 5. Elastic load allocation among (a) time slots, (b) groups, and (c) users
in a group.

PU, is applied. Fig. 5(a) visualizes this procedure: the shad-
owed area is the elastic power budget PT , where

∑K
k=1 Sk =

PT . The surface denotes the reference level. Stairs represent
the inelastic load at the corresponding time slots. Sk can be
obtained by applying (4)–(7). In line 3, Sk is treated as the
new elastic power budget for group {1, . . . , I} at time k. So
we call BLA algorithm again, which distributes elastic load
power Sk to groups 1 to I. PG, upper group elastic power
bound, is the new constraint in this step. Fig. 5(b) indicates
this concept. In line 4, the individual elastic power matrix Rk,j
is allocated by calling BLA again considering the constraint
P, shown in Fig. 5(c). By this strategy, the elastic power is
maximally flattened from the first time slot to the Kth slot;
and the peak power constraints from the users, groups, and
time slots for elastic loads are satisfied.

B. Online Approach

The discussed offline approach requires all of the load infor-
mation being predicted by the smart grid operator. However,
normally, the present and future load information are unknown
when the smart grid operator supplies the power to the system.
Therefore, we are not able to use a statical variable L since the
demand is uncertain and time-varying. In this section, we con-
sider the reference level L to be a time-varying variable. Then
we adjust problem (1) to the following objective function:

min{R,L}
∑

k∈N
⎡

⎣
I∑

i=1

∑

j∈χi

(
Ak,j + Rk,j

)
− Lk

⎤

⎦
2

subject to 0 ≤ Rk,j ≤ Pk,j, j = 1, . . . , J,∀k
∑

j∈χi

Rk,j ≤ PGk,i,∀i, k

Algorithm 3 Reference Level Adjustment
Input: Inelastic and elastic load consumption An,j and Rn,j

where n ∈ [k-N+1, k], Lk, and Acck−1.
Output: Lk+1.

1: Acck = Acck−1 + PSk -
∑J

j=1 Rk,j.
2: #=[Lk − (

∑J
j=1 Rk,j + ∑J

j=1 Ak,j)]2.
3: if # ≥ ϵ or Acck ≥ ξ then
4: PT =

∑k
n=k−N+1

∑J
j=1 Rn,j + Acck.

5: B =
∑k

n=k−N+1
∑J

j=1 An,j.
6: Lk+1 = 1

N (PT + B).
7: else
8: Lk+1 = Lk.
9: end if

J∑

j=1

Rk,j ≤ PUk,∀k

0 ≤
K∑

k=1

J∑

j=1

Rk,j ≤
K∑

k=1

PSk

Lk ≥ 0 (10)

where PSk is the elastic load demand in the kth time slot. The
objective function aims to minimize the difference between
the overall power load and the reference level to achieve load
balancing. The load information inside the moving window
is used to predict the reference level for next time slot as
described in Algorithm 3.

Algorithm 4 updates the reference level dynamically.
Accumulator Acc is the elastic loads which were not sched-
uled; # represents the squared difference between the refer-
ence level and the actual total power load; N is window size
and n is time index in the window. Inside the window, PT is the
overall elastic load demand, and B is inelastic load demand.
Lines 3–9 learn the load behavior in the tuning window when
the reference level cannot provide enough accuracy for allo-
cation or the certain amount of elastic load demand cannot
be satisfied. The parameters, ϵ and ξ , are the tolerance val-
ues determined by the smart grid operator. The reference level
will be adjusted frequently with smaller ϵ and ξ , which will
lead to a more smooth result. In contrast, the computation of
the reference level will be less with larger tolerance, while the
performance will be influenced. The window size N is also a
factor to affect the performance. With a larger window size
N, the reference level L varies more slowly. Otherwise, if the
window size is small, L changes more quickly, and then the
elastic demand can be satisfied rapidly, but with more overshot
in the overall load.

Overall, OELPA algorithm is shown in Algorithm 4. OELPA
is developed by applying Algorithms 1 and 3 to solve the
online elastic load allocation problem in (10). The idea is the
same as offline elastic load power allocation (offline ELPA)
but the reference level is dynamically adjusted. The elastic
loads assigned in time k is based on the inelastic load in slot
k and Lk which is predicted in time slot (k−1). After the allo-
cation of the elastic load by the reference level in real time,
the reference level for the next time slot will be triggered by
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Algorithm 4 OELPA
Input: Inelastic load consumption Ak,j, PUk, PGk,i and Pk,j

at time k, where user j = 1, . . . , J, group i = 1,. . . , I, and
window size N.

Output: Elastic load allocation at time k, Rk,j.
1: Sk = Lk -

∑J
j=1 Ak,j, where Lk is obtained from the

previous loop.
2: if Sk ≥ PUK then
3: Sk = PUK .
4: end if
5: {Ri}I

i=1= BLA({∑j∈χi
Ak,j}I

i=1, {PGk,i}I
i=1, SK).

6: {Rk,j}j∈χi= BLA({Ak,j}j∈χi , {Pk.j}j∈χi , Ri ).
7: Run reference level adjustment algorithm.
8: Move to next time slot k+1. Back to step 1.

Algorithm 3, if the conditions are met. OELPA algorithm pro-
vides an online dynamic solution when the future inelastic
load information is unknown. Reference level in next epoch is
modified by inheriting from previous demand information in
each time slot, such that the updated reference level enables to
adopt the power fluctuation uncertainty in the future. Namely,
when future inelastic load power is unknown or predicted unre-
liably, OELPA does elastic load allocation in each time slots
by real-time scheduling. However, ELPA is not suitable in the
scenario, since the fixed reference level cannot respond to the
uncertain power fluctuations.

C. Computation Efficient Online Approach

In OELPA, we predict the reference level Lk by previous
load behavior. In Algorithm 3, if the condition is met, the
reference level for next time slot Lk+1 will be computed to
satisfy the demand in the power system. However, to get the
optimal solution, ϵ and ξ will be modified as small as possible
to reduce the power fluctuation without influencing the users’
comfort level. Also, the inelastic load information A in next
time slot is unknown. Therefore, L will be adjusted frequently
because of the fluctuation of Ak,j. In another word, the com-
putation of OELPA will be a burden. Considering to reduce
the computation effort and ensure the quality of service, we
propose a computation efficient online approach by predicting
future load information in Algorithm 5 (EOELPA).

In enhanced OELPA (EOELPA), first, we fit cubic spline
to the inelastic load in the tuning window, from Ak−N+1,j to
Ak,j, and predict the inelastic load information Âk+1,j to Âk+m,j
by extrapolation m points, with Â being the predicted value
for future time slots at time k. The parameter, m, is greater
than zero, and it is selected by the smart grid operator. With
a smaller m, the prediction accuracy will increase and compu-
tation will increase correspondingly. Otherwise, with a larger
m, the accuracy and computation will descend. Then we move
the time window forward by m slots. The indices, n1 and n2,
are time index for N1 = [k + m − N + 1 : k], which is the
historical part in the tuning window, and N2 = [k + 1, k + m],
which is future part in the tuning window, respectively. Then
we predict the reference level periodically by Algorithm 6
instead of adjusting the reference level in Algorithm 3.

Algorithm 5 Computation Reduced Online Elastic Load
Allocation Algorithm (EOELPA)
Input: Inelastic load consumption A in past window [k−N +

1, k], PU, PG and P at future m slots, for all users j =
1,. . . , J, groups i = 1,. . . , I.

Output: Elastic load allocation R for future m time slots.
1: Fit inelastic load consumption An,j to cubic spline, where

n ∈ [k − N + 1, k].
2: Predict inelastic load consumption Ân2,j by previous

spline, where n2 ∈ [k + 1, k + m].
3: Window moves from [k − N + 1: k] to [k + m − N + 1:

k +m], where N1 is the past part in the window, N2 is the
future part in the window. N1 = [k + m−N + 1: k], N2 =
[k + 1: k + m].

4: Compute LN2 at time k by Algorithm 6.
5: SN2 = LN2 -

∑J
j=1 ÂN2,j.

6: if SN2 ≥ PUN2 then
7: SN2 = PUN2 .
8: end if
9: {Ri}I

i=1 = BLA({∑j∈χi
Ân2,j}I

i=1, {PGn2,i}I
i=1, SN2 ).

10: {Rn2,j}j∈χi= BLA({̂An2,j}j∈χi , {Pn2.j}j∈χi , Ri ).
11: Back to step 1 after m time slots are elapsed.

Algorithm 6 Reference Level Prediction Algorithm
Input: Inelastic and elastic load consumption An1,j and Rn2,j

where n1 ∈ N1, predicted inelastic load consumption Ân2,j
where n2 ∈ N2, the elastic load demand PS in past m slot
and Acck−m.

Output: LN2 .
1: Acck = Acck−m +

∑k
n=k−m+1 PSn -

∑k
n=k−m+1

∑J
j=1 Rn,j.

2: PT =
∑

n1∈N1

∑J
j=1 Rn1,j + Acck.

3: LN2 = 1
N (PT +

∑
n1∈N1

∑J
j=1 An1,j +

∑
n2∈N2

∑J
j=1 Ân2,j).

In Algorithm 6, the reference level L in future period
N2 is predicted by WF approach. The idea is the same as
Algorithm 3 but we predict a reference level for future m
time slots, while the reference level is only predicted for next
one slot in Algorithm 3. After the inelastic loads and ref-
erence level are determined, SN2 can be obtained, which is
the overall elastic power for the system in future m time
slots. Then we can schedule the elastic load for future m
slots by calling twice BLA algorithm, the same as OELPA
does. The algorithm is revisited when m time slots are elapsed,
then k(2) = k(1) + m.

Compared with the online algorithm OELPA, the compu-
tation of the reference level can be reduced by (1/m) in
EOELPA because the reference level for m slots is predicted
in one run. Furthermore, since the elastic loads are scheduled
only depending on the predict information, the elastic load
allocation does not have to always stay online in each time
slot. The algorithm allocates the elastic load for m slots at
one time, so the real-time information needs to be commu-
nicated once in every m periods, instead of keeping online
computation in every time slot. Considering the computing
efficiency, EOELPA solves the problem when communication
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Fig. 6. Power consumption of inelastic, elastic, and total loads scheduled
by offline ELPA for three days.

resources are limited for the large-scale load balancing, though
the overall fluctuation is higher than the result from OELPA
because of the uncertainties of the prediction.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
offline and online ELPA (OELPA) algorithms. The simula-
tion model for a house is based on the parameters listed
in [3, Sec. VII, Tables 1 and 2]. We consider a power system
with I = 4 groups or microgrids, and in each group there are
100 users. We divide the scheduling interval as 30 min. Once
an elastic load is scheduled, it will continue operation until
the load finishes its work. Namely, all loads are used continu-
ously without disruption. We predict one-day power demand,
and all the demand of the elastic loads is satisfied in a day.
First, we simulate the offline ELPA algorithm and compare
its performance with unscheduled power consumption pro-
file and the algorithm proposed in [3], referred as “SDWF.”
Then we evaluate the performance when the constraints of
PU and PG are applied. We also analyze the performance
of OELPA approach and computation EOELPA algorithm.
Finally, we compare the results of those two algorithms with
the unscheduled case.

A. Offline ELPA Performance Evaluation

As shown in Algorithm 2, we flatten the power consumption
around a reference level L, which is determined by the inelas-
tic load demand and elastic load budget PT . Inelastic load
demand, which cannot be shifted, serves as a parameter.
Fig. 6 shows the performance of scheduling the elastic power
demand in three days by a single round using the proposed
Algorithm 2, where the dashed curve and the dotted curve
represent the allocated elastic load and fixed inelastic load,
respectively. The overall load, denoted by the solid curve, is
flattened through scheduling the elastic load to fill the val-
leys of the inelastic load. In the simulated range, the mean
of the overall load power is 3952, with a standard devia-
tion of 14.9, and peak to average ratio to be 1.004, which
is very close to the unity (ideal case). We compare our results

TABLE II
SIMULATION RESULTS FOR OFFLINE ELPA,

SDWF, AND UNSCHEDULED CASE

Fig. 7. Free-run (unscheduled) total power consumption and the power
consumption achieved by offline ELPA and SDWF for three consecutive days.

with those of SDWF [3] and the unscheduled case with the
same set of parameters. The result is shown in Table II and
Fig. 7. Fig. 7 depicts the overall load for these three schemes:
1) proposed ELPA (solid curve); 2) SDWF (dashed curve);
and 3) unscheduled operation (dotted curve). Improvement
can be observed clearly by applying scheduling algorithms.
As shown in Table II, both the overall load fluctuation and
the peak-to-mean ratio of ELPA are significantly reduced over
SDWF; while SDWF has also achieved great improvement
over the unscheduled operation. It is ensured that our approach
provides a more stable and an accurate solution for the elas-
tic power allocation problem when all load information is
available.

Furthermore, we apply the constraints of upper elastic power
bound in time slot PU and upper elastic power bound in
a group PG into the system. In Fig. 8, we set the PU in
all time slots as 2000 kWh, where elastic power in all time
slots cannot exceed that limit. We see the maximum of elas-
tic load power is in 2000 kWh, and the reference level is
also adjusted to a higher level to make sure all the user
demand is satisfied in a day. In addition, we implement the
upper elastic power bound in a group into the simulation.
Fig. 9 shows the influence of group elastic power constraint
PG in the algorithm. Fig. 9(a) shows elastic load distribu-
tion for four groups in 5 h period when PG is infinity. We
see the elastic power is distributed by WF in group domain
among four groups. The corresponding overall power profile
is in Fig. 9(b). Fig. 9(c) and (d) shows the power alloca-
tion when PG in group 4 is set as 600 kWh in a day. We
see the elastic load power for group 4 is upper bounded at
600 kWh. The elastic power is adjusted correspondingly in
other groups to reach the overall reference level value in group
domain.
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Fig. 8. Power consumption of inelastic, elastic, and total loads, where PU
is 2000 kWh.

(b)(a)

(d)(c)

Fig. 9. (a) Elastic load power consumption in group view, where PG is
infinity in 5 h, 30 min in a time slot. (b) Power consumption of inelastic,
elastic, and total loads, where PG is infinity in a day. Legend is the same as
Fig. 6. (c) Elastic load power consumption in group view, where group 4 PG
is bounded in 600 kWh in 5 h, 30 min in a time slot. (d) Power consumption
of inelastic, elastic, and total loads, where group 4 PG is bounded in 600 kWh
in a day. Legend is the same as Fig. 6.

B. Online Approach Performance Evaluation

We first compare the overall power consumption scheduled
by the proposed OELPA with unscheduled power profile.
For the OELPA algorithm, we set the window size N to be
24 h. ϵ is set as 30 kWh and ξ is set as 100 kWh. When
the power system runs to the kth time slot, the informa-
tion beyond the kth time slot is unknown in power demand.
Utilities offer the power in reference level, which is adjusted
dynamically by Algorithm 3. Fig. 10 illustrates the power
profile by OELPA (solid curves) and unscheduled operation
(dotted curves) for five consecutive days. In Fig. 10(a), we
see the reference level (dashed–dotted curve) keeps in less
fluctuation (standard deviation = 57.09) when the total load
budget is identical in these five days. The real power load is
close to the reference level. Compared with the unscheduled
result, OELPA achieved peak-cut and valley-filling (standard
deviation from 1603 to 154).

(a)

(b)

(c)

Fig. 10. Overall power consumption scheduled by OELPA and unscheduled
power consumption for five days. (a) With same load budget. (b) Load budget
increasing. (c) Load budget descending.

Then we apply the same demand adjustment methodology
in [3] to show different behavior in five consecutive days.
Fig. 10(b) is the result when inelastic load power consump-
tion is raising by increasing the probability to start the load.
Correspondingly, the reference level is increasing (from 2742
to 3572 kWh) when the overall power budget is increasing.
81.25% of the scheduled overall power consumption is close
to the reference level, where tolerance is applied (100 kWh).
The fluctuation is decreased from 1503 to 258 in the stan-
dard deviation. In Fig. 10(c), inelastic load power consumption
attenuates with decreasing the probability to start the load. The
reference level is adjusted from 3971 to 3023 kWh since the
distributed power (reference level) is greater than the power
consumed. The standard deviation is reduced from 1522 to
379. We see although the power demand is varied, the OELPA
still achieves load balancing to accommodate the real-time
demand.

We also evaluate the performance of computation effi-
cient OELPA (EOELPA) algorithm. Fig. 11 illustrates the
zoomed-in overall load of EOELPA and OELPA in five con-
secutive days, with the same system setting as in Fig. 10. The
predicted reference level of EOELPA algorithm is also shown
in Fig. 11. In EOELPA, the inelastic load consumption for
next three time slots (m = 3) is predicted by cubic extrap-
olation in MATLAB. The system allocates elastic loads for
those three slots offline. Then the system backs to online and
the inelastic loads are predicted again after three time slots
being elapsed. Comparing these two algorithms, EOELPA
shows more ripples than OELPA results since the gap exists
between the predicted inelastic load information and practi-
cal inelastic power consumption. However, the trend of those
two algorithms’ results is consistent, and the fluctuation is still
much smaller than that of unscheduled operation.
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(a)

(b)

(c)

Fig. 11. Power consumption of inelastic, elastic, and total loads scheduled
by EOELPA and OELPA for five days. (a) With same load budget. (b) Load
budget increasing. (c) Load budget descending.

TABLE III
STANDARD DEVIATION OF OVERALL POWER CONSUMPTION

IN FIVE CONSECUTIVE DAYS (FIG. 11)

Table III shows the standard deviation of the overall load
in Fig. 11 under three cases (OELPA, EOELPA, and unsched-
uled operation). The results of EOELPA is slightly floating
on the results in OELPA because EOELPA allocates the loads
according to prediction. Nevertheless, the results in EOELPA
are around (1/4) of the standard deviation of the unscheduled
case. Note that the reference level computation by EOELPA
is reduced to (1/3) of computation by OELPA, so EOELPA
is also a considerable solution to achieve load balancing when
the system computation is limited.

Fig. 12 depicts the impact of the factor m selection in the
EOELPA algorithm. With increased m values, the computing
efficiency of the load balancing is improved but the power
fluctuation raises correspondingly because of the prediction
accuracy decreasing. Although the result of EOELPA has
higher variance than the result of OELPA, especially in
higher m values, the overall power fluctuation of EOELPA
is still significantly reduced than the unscheduled case in the
range of simulation as shown in Fig. 12. Overall, OELPA is
more appropriate when the system emphasizes on the better
performance with minimizing the power fluctuation in real
time. Otherwise, if the communication resource is limited with
large-scale computation in the system, EOELPA is more suit-
able for the solution with appropriate tolerance on the power
fluctuation.

Fig. 12. Standard deviation versus parameter m for unscheduled, OELPA,
and EOELPA schemes.

VI. CONCLUSION

In this paper, we presented three algorithms to solve the load
balancing problem in the smart grid. First, we reviewed the
load balancing model and its optimal offline solution inves-
tigated in our earlier work. Then we extend the solution to
its online algorithm to compute and distribute the elastic load
among the time slots and individuals based on the WF concept
and load prediction. Furthermore, we proposed computation
efficient online algorithm making use of prediction and extrap-
olation. Simulation results are presented to show that both
online algorithms significantly reduce the load fluctuation. We
also extended this paper by enabling different levels of con-
straints to play roles in the algorithms in order to improve
the controllability in the smart grid. For future works, first,
we need to consider the tolerance of the elastic load flexi-
bility. Second, the research needs to be extended to get the
precise prediction for reference levels in the online algorithm.
The influence of the system when error prediction occurred is
another scenario in our further study.
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