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Optimal Power Allocation for Maximum Throughput
of General MU-MIMO Multiple Access Channels

With Mixed Constraints
Peter He, Member, IEEE, and Lian Zhao, Senior Member, IEEE

Abstract—Based on the efficient generalized water-filling with
group peak power constraints (GWFGP), this paper proposes an
iterative algorithm to compute the optimal solutions to system
throughput (sum-rate) maximization problems. This class of prob-
lems is equipped with the multiuser multiple input multiple output
multiple access channels (MU-MIMO MAC) in the general com-
munication systems. The proposed iterative GWFGP algorithm
(IGWFGP) has two levels of loops. The inner loop aims at com-
puting the solution to each member in the family, while the outer
loop aims at computing the solution to the target problem based
on the results obtained by the inner loop. Both GWFGP and the
convergence theory of an algorithm are used in the inner loop and
the outer loop respectively. Furthermore, by exploiting the con-
cept of variable weighting factor for covariance update, IGWFGP
owns fast convergence and provides optimal solutions to the sum
rate maximization problems. The usage of the convergence the-
ory in IGWFGP and the algorithm of GWFGP are efficient and
novel. To the best of the authors’ knowledge, no prior algorithm
has been reported in the open literature to solve the targeted prob-
lem in this paper. In addition, the proposed algorithm does not
require to choose the initial value for computation. This feature is
a significant advantage of the algorithm, especially for large and
complicated systems.

Index Terms—Maximum throughput, multi-user MIMO (MU-
MIMO), multiple access channel (MAC), optimal power distribu-
tion, generalized water-filling algorithm with group peak power
constraints (GWFGP), iterative GWFGP (IGWFGP).

I. INTRODUCTION

T HE multiple-input multiple-output (MIMO) communica-
tion system has multiple antennas. These antennas are

equipped at either the transmitter or the receiver or both. The
purpose of MIMO is to significantly increase data throughput
and link range without using additional bandwidth or trans-
mitted power. Thus MIMO plays an important role in wireless
communications today, e.g., [1]–[2]. It is a hot topic since some
important issues need further solving. As the development of
the MIMO system continuously progresses, it now needs to
consider the mixed constraints of the individual power and the
sum power together. This background of these constraints is
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from field requirements, such as, avoiding the saturation of
powers allocated to the users and avoiding system level power
leakage out of band due to the non-linearity generated by the
users.

Some earlier investigations have been reported to solve the
target problem by solving a roughly approximated problem,
e.g. [3] (referring to its (13) and (34)) and [4] (referring to its
obtaining (6) from (5)). The limitation is that these proposed
algorithms, being designed to solve approximated problem
instead, cannot guarantee to converge to the optimal solution of
the original problem. Together with the differentiability issue,
they belong to a separate category and therefore are not cho-
sen as reference algorithms to compare with in this paper.
Fundamentally, the convex optimization theory and methods
are built up on the basis of the real space [5]. Our approach
avoids the problem that the objective function, in several com-
plex optimization variables, is actually not differentiable. At
the same time, our novel design principle can solve the target
problems more efficiently.

The contributions of this paper are twofold, 1) directly solv-
ing the target problem, and 2) correctly utilizing the fundamen-
tal concept of the differentiability. We proposed an algorithm
with two levels of loops to obtain the optimal solution to the
target problem. The target problem is first decomposed into a
family of the equivalent optimization sub-problems over real
space. The inner loop computes the solution for each member
in the family; while the outer loop computes the solution to
the target problem based on the results obtained by the inner
loop. Both the proposed generalized water-filling with group
peak power constraints (GWFGP) and the convergence the-
ory of an algorithm are used in the inner loop and the outer
loop respectively, and are formed into the proposed algorithm:
iterative GWFGP (IGWFGP). The GWFGP is only used once
with a finite amount of computation and a low computational
complexity during each of the inner loop. This point leads to
IGWFGP being convergent.

The conventional iterative water-filling algorithms [6] and
[7] cannot solve the target problem in this paper. The prob-
lem that the algorithm in [6] solved does not have peak power
constraint; while the problem that the algorithm in [7] solved
does not have sum power constraint. These problems are spe-
cial cases of the target problem in this paper. One is achieved
by relaxing the group peak power constraints, and another by
relaxing the sum power constraint of the proposed problem.
The proposed problem and algorithm are more general. At
the same time, the investigated object of General multi-user
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Multiple Input Multiple Output Multiple Access Channel is
briefly referred to as GMU-MIMO MAC in this paper.

The conventional water-fillings [8]–[11] cannot be substi-
tuted for GWFGP in the inner loop due to the additional group
peak power constraints posed by our general problem, which
[8]–[11] do not take into consideration. Other optimization
methods, such as the popular primal-dual interior point method
(PD-IPM), cannot complete the computation of each inner loop
with a finite amount of computation. In addition, they require
the initial point selections.

In the remaining of this paper, the system model of the GMU-
MIMO MAC and its throughput are described in Section II.
Section III proposes GWFGP, a fundamental block of the pro-
posed algorithm. Then, the algorithm (IGWFGP) based on
iteration is presented to solve the target problem. Section IV
provides the convergence proof of IGWFGP. Section V presents
the numerical results to show the effectiveness of the proposed
IGWFGP, when IGWFGP is compared with others. Section VI
concludes the paper.

Key notations that are used in this paper are as follows:
|A| and Tr (A) give the determinant and the trace of a square
matrix A, respectively; E[X ] is the expectation of the random
variable X ; and the capital symbol I for a matrix denotes the
identity matrix with the corresponding size. A square matrix
B � 0 means that B is a positive semi-definite matrix. Further,
for arbitrary two positive semi-definite matrices B and C, the
expression B � C means the difference of B − C is a positive
semi-definite matrix. In addition, for any complex matrix, its
superscripts † and T denote the conjugate transpose and the
transpose of the matrix, respectively. For convenience, a table
of some notations or symbols is added here to help the readers
keep track of the notations.

II. SYSTEM OF GMU-MIMO MAC AND ITS

THROUGHPUT

For a MIMO-MAC, assume that there are one base-station
(BS) with Nr antennas, and K users. Each of the users is
equipped with Nt antennas. The received signal y ∈ C

Nr ×1 at
the BS is described as

y = ∑K
i=1 H†

i xi + z, where Hi ∈ C
Nt ×Nr , i = 1, 2, . . . , K ,

(1)

the xi ∈ C
Nt ×1 is a complex input signal vector from the i-th

user and it is also assumed to be a Gaussian random vector
having zero mean for any i . Further {xi }K

i=1 is a set of indepen-
dent random vectors. The noise term, z ∈ C

Nr ×1, is an additive
Gaussian noise random vector, i.e., z,∼ N(0, I), without loss
of generality. The channel input, {xi }K

i=1, and the noise z are
also assumed to be mutually independent. Furthermore, the i-th
user’s transmitted power can be expressed as Tr(Si ), where

Si
�= E

[
xi
(

xi
)†
]

, i = 1, 2, . . . , K . (2)

Note that Si ,∀i, is positive semi-definite, i.e., Si � 0.
A mathematical model of the throughput optimization prob-

lem for the MU-MIMO MAC in the general system can be

formed. It is stated as follows (refer to [12, (2.16) for the
concept of multi-user MIMO MAC]):

max{Sk }K
k=1

log |I +
K∑

j=1

H†
j S j H j |

subject to: Sk � 0; Tr(Sk) ≤ Pk,∀k;
K∑

k=1

gkTr (Sk) ≤ PT , (3)

where, for the MAC cases, the peak power constraint on the
kth user exists and is denoted by Pk in a group of posi-
tive numbers: Pi , i = 1, . . . , K ; and the upper bound of the
(total) weighted sum power is denoted by a positive number
PT . In the weighted sum power expression, {gk}K

k=1 is a set of
weights or gains. As a general assumption, they are positive
numbers. When gk = 1,∀k, as our special case, this was the
assumption in [6]. As a summary, the system of MU-MIMO
MAC together with the user peak power and the weighted sum
power constraints is the system of GMU-MIMO MAC. The tar-
get problem (3) is just to look for the maximum throughout of
GMU-MIMO MAC. Solving the target problem (3) needs solv-
ing some sub-problems. To distinguish the target problem from
the sub-problems, the target problem is also called the original
problem, in the following. Note that if ∃Hi0 = 0, 1 ≤ i0 ≤ K ,
in (3), the user i0 is removed, and the number of the users is
reduced to K − 1. In this way, we can assume that Hi 	= 0,∀i .
Note that besides the well known Jensen’s inequality, a con-
vex optimization problem requires the objective function to be
a mapping from a set of real space to the set of real numbers
[5, p. 7]. The objective function of the original problem (3) is a
mapping from a set of complex matrix-valued variables to the
set of real numbers. Although it satisfies the Jensen’s inequal-
ity, it does not satisfy the mapping condition in the definition of
a convex optimization problem. Therefore, the original problem
(3) is not a convex optimization problem.

III. ALGORITHMS FOR SYSTEM OF GMU-MIMO MAC

In this section, we discuss the proposed algorithms to solve
the throughput maximization problem, as the original problem,
in the system of GMU-MIMO MAC. In the first subsection, the
generalized water-filling problem with the mixed constraints is
first investigated, and then its algorithm, GWFGP is proposed.
In the second subsection, the proposed algorithm IGWFGP is
presented. It treats the algorithm GWFGP as a basic functional
block. Then it iteratively utilizes this functional block to com-
pute the solution to the original or target problem. In the final
subsection, we introduce the algorithm which is a realization of
the Primal-Dual approach for the cases with Group Peak power
constraints, referred to as PD-GP, for comparison purpose.

A. Algorithm of Generalized Water-Filling With Group Peak
Power Constraints (GWFGP)

In the first part of this subsection, the background of GWFGP
is stated. In the second part, the statement of GWFGP is
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proposed and then optimality of GWFGP, as an algorithm,
is provided. In the third part, through a formal definition of
the equivalence between two optimization problems, GWFGP
is explained as a basic functional block for completing one
iteration of IGWFGP.

1) Background of GWFGP: For the original problem (3),
it is first assumed that an iterative algorithm can be used to
compute an optimal solution. Formally, the iterative algorithm
should form a point sequence, through iterations, from a point
to the next one. At the same time, any limit point of this
sequence would be an optimal solution, i.e., to meet conver-
gence of the iterative algorithm. Thus how to design each of
such iterations, from a point to the next point, becomes impor-
tant. The mentioned next point, however, is generally not an
optimal solution to the original problem.

Then, each of the iterations generates the next point from
a given point. This generation is stated with three steps as
follows.

First Step: Let us denote a point that has been obtained
just before an iteration, by (S1, . . . , SK ). The
objective function of (3) is denoted by f .

Second Step: For the given point: (S1, . . . , SK ), let us compute
the optimal solution to the following optimiza-
tion problem:

max{Sk }K
k=1

1

K

K∑
k=1

f
(

S1, . . . , Sk−1, Sk, Sk+1, . . . , SK

)
subject to: Sk � 0; Tr (Sk) ≤ Pk,∀k;

K∑
k=1

gkTr (Sk) ≤ PT , (4)

i.e., this feasible set is the same as that of (3).
The optimal solution to this just mentioned opti-
mization problem is denoted by (S̃1, . . . , S̃K ).

Third Step: ( K−1
K S1 + 1

K S̃1, . . . ,
K−1

K SK + 1
K S̃K ) is, as a

new point, generated by this step. For conve-

nience, it is written as {Sk}K
k=1.

To compute the solution to (4), while only involving the
Second Step, is the motivation or background of GWFGP. With
any limit point of the point sequence determined by all the
three steps, iteratively, being an optimal solution to the origi-
nal problem (3), this becomes the motivation or background of
the iterative GWFGP. These two points would account for back-
ground difference between GWFGP and the iterative GWFGP.
In addition, since the function f mentioned above satisfies the
Jensen inequality, it is easy to see that with each iteration, the
objective function of (3) increases.

For the Second Step, let us focus on maximizing
1
K

∑K
k=1 f (S1, . . . , Si−1, Si , Si+1, . . . , SK ) in the optimiza-

tion variable (S1, . . . , SK ) over the feasible set. Since

K∑
k=1

log

∣∣∣∣∣∣I + H†
kSkHk +

∑
i∈{1,...,K }\{k}

H†
i Si Hi

∣∣∣∣∣∣

=
K∑

k=1

log
∣∣∣I + G†

kSkGk

∣∣∣

+
K∑

k=1

∣∣∣∣∣∣I +
∑

i∈{1,...,K }\{k}
H†

i Si Hi

∣∣∣∣∣∣ , (5)

where Si ,∀i, is fixed and

Gk = Hk

(
I +∑

i∈{1,...,K }\{k} H†
i Si Hi

)− 1
2
,∀k, (6)

the mentioned optimization problem (4) with the detailed form:

max{Sk }
∑K

k=1
log |I + H†

kSkHk +∑
i∈{1,...,K }\{k} H†

i Si Hi |
subject to: Sk � 0,∀k;

Tr (Sk) ≤ Pk,∀k;∑K
k=1 gkTr (Sk) ≤ PT

is identical to the problem below:

max{Sk }
∑K

k=1 log
∣∣∣I + G†

kSkGk

∣∣∣+ C

subject to: Sk � 0,∀k;
Tr(Sk) ≤ Pk,∀k;∑K

k=1 gkTr(Sk) ≤ PT ,

(7)

where C is the constant of
∑K

k=1

∣∣∣I +∑
i∈{1,...,K }\{k} H†

i Si Hi

∣∣∣.
With or without the constant of C in the objective function, the
optimum point set to this simplified optimization problem (7) is
the same as the optimum point set of the optimization problem:
(4). A constant C in the objective function has no effect on the
set of the optimal solutions. In addition, according to the afore-
mentioned two motivations above, the optimization problem (7)
is not identical to the original problem (3).

The kth term in the summation of the objective function for
the simplified optimization problem only contains Sk without
others, for any k. This structure permits us to design an efficient
GWFGP to compute the solution to the simplified optimization
problem.

2) Statement of GWFGP: As a fundamental block of
the optimum resource allocation problem for the GMU-
MIMO MAC systems, the generalized water-filling problem is
abstracted as follows.

For a multiple receiving antenna system of parallel indepen-
dent channels, it is divided as K groups. Each group has Nt

channels. It is given that PT > 0, as the total power or vol-
ume of the water; squares of the channel gain norms, {a j }K Nt

j=1 ,
are partitioned as the K groups, the index sets of which are
labelled as {�k}, k = 1, . . . , K , such that {�k}K

k=1 is a partition
of {1, 2, . . . , K Nt }, with �k = {(k − 1)Nt + 1, (k − 1)Nt +
2, . . . , k Nt },∀k; all the corresponding channels in the group k
share a power gain labelled as gk , i.e., {a j } j∈�k corresponds to
gk ; and the allocated powers of the kth group of channels are
given as {s j } j∈�k ,∀k.

From the partition mentioned above, a mapping σ is defined,
for clarity, as follows: if for channel j , there exists a unique
k, 1 ≤ k ≤ K such that j ∈ �k , then σ( j) = k. Without loss
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Fig. 1. Illustration for the proposed Generalized Water-Filling (GWF) algo-
rithm (σ(i) is assumed to be a constant, for any i). (a) Illustration of water
level step k∗ = 3, allocated power for the third step s∗

3 , and step/stair depth
di = gσ(i)/ai . (b) Illustration of P2(k) (shadowed area, representing the total
water/power above step k) when k = 2. (c) Illustration of P2(k) when k = 3.

of generality, it is assumed that the sequence {a j/gσ( j)}K Nt
j=1

is monotonically decreasing; else, we would have to tediously
utilize permutation of the subscript sequence used by the sum-
mation operator. Thus, under the assumptions mentioned above,
we can find the problem:

max{s j }K Nt
j=1

∑K Nt
j=1 log

(
1 + a j s j

)
subject to: 0 ≤ s j ,∀ j;∑

j∈�k
s j ≤ Pk,∀k;∑K

k=1
∑

j∈�k
gks j ≤ PT .

(8)

Note, as
∑K

k=1 gk Pk ≤ PT , the solution to problem (3) is
regressed into a trivial case. Hence,

∑K
k=1 gk Pk > PT is

assumed. When Pk � 0,∀k, then the problem (8) is reduced
into the simple case that can be solved by the conventional
water-filling problem [8]. In general case, the problem struc-
ture in (8) cannot be solved by the conventional water-filling.
Our proposed GWFGP is presented to solve this generalized
radio resource management problem.

Firstly let us introduce a vivid description of water-filling
algorithm from a geometric point of view by pouring the water
of volume PT into a tank with the bottom of K stairs as shown
in Fig. 1, for four steps/stairs (K = 4) with unit width inside
a water tank. For the conventional approach, the dashed hori-
zontal line, which is the water level μ, needs to be determined
first and then the power allocated (water volume) above is
solved.

In the following, we will introduce four variables used in our
approach. The first variable, P2(k), is defined as the total water
volume above the kth stair. The second variable is si , as the allo-
cated power for the i th channel. The third variable is water level
step, denoted as k∗. It denotes the highest step under water. The
fourth variable, sk∗ is defined as the optimal power allocated to
the water level step. Fig. 1(a) illustrates the concept of k∗. Since
the third level is the highest level under water, we have k∗ = 3.
The shaded area denotes the allocated power for the third step
by s∗

3 . Fig. 1(b) and Fig. 1(c) illustrate the concept of P2(k)

when k = 2 and k = 3 respectively.
Let us use gσ(i)/ai to denote the “step depth” of the i th stair

which is the height of the i th step to the bottom of the tank, and
is given as

di = gσ(i)

ai
, for i = 1, 2, . . . , K Nt . (9)

Since the sequence ai/gσ(i) is sorted as monotonically decreas-
ing, the step depth of the stairs indexed as [1, . . . , K Nt ] is
monotonically increasing. We further define δi, j as the “step
depth difference” of the i th and the j th stairs, expressed as

δi, j = di − d j = gσ(i)

ai
− gσ( j)

a j
, as i ≥ j and 1 ≤ i, j ≤ K Nt .

(10)

Instead of trying to determine the water level μ which is a
real nonnegative number, as in the conventional WF algorithm,
we aim to determine the water level step, k∗, which is an integer
number from 1 to K Nt , as the highest step under water. Based
on the result of k∗, we can write out the solutions for power
allocation explicitly.

In the following, we explain how to find k∗ without the
knowledge of the water level μ. The value of P2(k) can be
solved by subtracting the volume of the water under step k from
the total power PT , as

P2(k) =
{

PT −
[∑K Nt −1

i=1

(
gσ(k)

ak
− gσ(i)

ai

)]}+

=
{

PT −
[∑K Nt −1

i=1 δk,i

]}+
, k = 1, . . . , K Nt .

(11)

As an example of Fig. 1(c), the water volume under step 3 can
be expressed as the sum of the two terms: (i) the step depth
difference between the 3rd and the 1st step, δ3,1, and (ii) the step
depth difference between the 3rd and the 2nd step, δ3,2. Thus,
P2(k = 3) can be written as P2(k = 3) = [

PT − δ3,1 − δ3,2
]+

which is an expansion of the composite form of (11).
Generally, from Fig. 1, we can have

P2(k) =
[

PT −∑E�−1
t=1

(
gσ(ik )

aik
− gσ(it )

ait

)]+
,

for k = 1, . . . , E�,
(12)

where E is a subsequence of the sequence {1, 2, . . . , K Nt },
E� is the cardinality of the set E , so E can be expressed as
{i1, i2, . . . , iE�}. As a reminder, the definition of a special case
for the summation is:

∑n
i=m bi = 0, as m > n, where {bi } is a

general series of numbers. The water level step k∗ is given as

k∗ = max
{
k
∣∣P2(k) > 0, 1 ≤ k ≤ E�

}
(13)

and the power level for this step is

sik∗ = 1

k∗gσ(ik∗)
P2
(
k∗) . (14)

The power levels for all other steps are given as

sit =
{ g

σ(ik∗)
gσ(it )

(
sik∗ + 1

aik∗

)
− 1

ait
, 1 ≤ t ≤ k∗

0, k∗ < t ≤ E�.
(15)

Based on these results, the steps of the GWFGP can be
described as below.
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Algorithm GWFGP:

Input: the squared channel gain norms {ai }K Nt
i=1 , the power

gains {gi }K
i=1, the individual power peak or upper limit

{Pi }K
i=1, the index set E = (E0 =){1, 2, . . . , K Nt }, the parti-

tion {�i }K
i=1 and the sum power constraint PT .

1) Utilize Eqns. (12)–(15) to compute {si }..
2) The set � is defined by the set {i |∑ j∈�i

s j > Pi , 1 ≤
i ≤ K }. If � is the empty set, output {si }K Nt

i=1 ; else,
let

∑
j∈�i

s j = Pi , as i ∈ �. Further, continuously uti-
lize similar Eqns. (12)–(15) as these similar expressions.
These similar expressions differ only by changing from
PT in (12)–(15) to gi Pi and from E� in (12)–(15) to �i

for any i ∈ �, and then obtain s j , j ∈ ∪i∈��i .
3) E \ ∪i∈��i → E , where the symbol “→” means the

assignment operation forwarding the value of the LHS
(left-hand side) to that of the RHS (right-hand side).
PT −∑

i∈� gi Pi → PT . Then return to 1) of GWFGP.

For 2) above, the set � consists of the indexes, where the
index i in the set corresponds to group i . The sum power of
this group is strictly greater than Pi , when first compute 1) of
GWFGP. If � is empty, then output {si }K Nt

i=1 , which were just
obtained by 1). Else, for any i ∈ �, using �i is to solve the
following (sub-)problem:

max{s j } j∈�i

∑
j∈�i

log
(
1 + a j s j

)
subject to: 0 ≤ s j ,∀ j ∈ �i ;

gi
∑

j∈�i
s j ≤ gi Pi ,

(16)

where gi > 0. The mentioned set of formulas is used without
introducing additional set of new formulas. The index set E is
then replaced with E \ ∪i∈��i in 3) above. This procedure has
been carried out to shrink the index set.

Regarding optimality of the proposed GWFGP, we can obtain
the following conclusion:

Proposition 3.1: Algorithm GWFGP can provide the exact
optimal solution to the problem (8) via a finite amount of
computation.

Proof: See Appendix A. �
From the computational details of the GWFGP, the com-

putational complexity of the proposed algorithm is, at worst,∑K Nt
i=1 (8i + 2) = 4K N 2

t + 6K Nt , i.e., a moderate computa-
tional complexity, to solve a more generalized case of a
weighted water-filling problem with sum and individual peak
power constraints. Proposition 3.1 is also applicable. Note that
only the most popular PD-IPM can guarantee the computational
complexity of O(log( 1

ε
)(K Nt )

3.5) to compute an ε solution,
which is not an optimal solution.

As a side note, the conventional water-filling approach
(CWF) attempts to directly solve the KKT conditions for solu-
tion. This CWF vastly differs from ours. If we used the CWF
to solve the problem (8), a non-linear system with non-linear
equations and inequalities in multiple dual variables would have

had to be solved. The problem becomes (very difficult),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑K
k=1

∑
j∈�k

(
1

λ×gk+σk
− 1

a j

)+ = PT ,∑
j∈�k

(
1

λ×gk+σk
− 1

a j

)+ ≤ Pk, for k = 1, 2, . . . , K ;
σk

(∑
j∈�k

(
1

λ×gk+σk
− 1

a j

)+ − Pk

)
= 0,

for k = 1, 2, . . . , K ;
λ ≥ 0; σk ≥ 0, for k = 1, 2, . . . , K .

(17)
There seems no existing result that can solve such a system.
3) Equivalence of GWFGP: A clear definition for the

equivalence between two optimization problems is stated for-
mally next. This definition was only provided in an informal
form (mentioned in [5, p. 130]); and many other books have
seldom included this formal definition. For clarity, the formal
definition of two optimization problems being equivalent is
provided as below.

Definition 3.3.1 (Equivalence between Two Optimization
Problems): Two optimization problems are said to be equiv-
alent iff there exists a bijection between their optimal solution
sets.

Therefore, different objective functions and/or feasible sets
needn’t lead to non-equivalence. A typical example to this is:
minx x2, subject to: |x | ≤ 2; and minx | sin x | + 1, subject to:
|x | ≤ 1. The two optimization problems are equivalent due to
existence of the identity mapping between the two optimal solu-
tion sets. Also, the definition of equivalence implies that, if
both the optimal solution set to the first optimization problem,
and the bijection are given, then the optimal solution set to the
second optimization problem can be found. While the first opti-
mization problem is typically simpler than the second one, the
construction of the bijection is key.

It is seen that the following problem is just an instance of the
optimization problem (8):

max
K∑

k=1

Nt∑
j=1

log (1 + dk( j)sk( j))

subject to: sk( j) ≥ 0, for 1 ≤ k ≤ K , 1 ≤ j ≤ Nt ;
Nt∑

j=1

sk( j) ≤ Pk,∀k;

K∑
k=1

gk

Nt∑
j=1

sk( j) ≤ PT , (18)

where dk( j), 1 ≤ j ≤ Nt , is an eigenvalue of the matrix
Gk (Gk)

† ,∀k. At the same time, it can be obtained from the
eigendecomposition. Thus, the optimization problem (18) can
be solved by GWFGP.

Proposition 3.2: The optimization problems (18) and (7) are
equivalent.

Proof: Resorting to the well known Hadamard’s inequal-
ity on positive definite matrices, the equivalence may be
proven. Given a family of the positive semi-definite matri-
ces: {Gk G†

k}K
k=1, there exists a family of the unitary matrices:
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{Uk}K
k=1 such that U †

k Gk G†
kUk is a diagonal matrix, denoted

by Dk , through the eigendecomposition, for k = 1, . . . , K .
Further, the major diagonal entries of this diagonal matrix
are the eigenvalues of Gk G†

k . That is to say, the diagonal

matrix and Gk G†
k are unitarily similar. Thus, we have a bijec-

tion from the set of feasible solutions to (18) to that to (7):
(sk(1), . . . , sk(Nt )) �→ Ukdiag(sk(1), . . . , sk(Nt ))U

†
k ,∀k. The

following will prove that the bijection is the mentioned one
in the definition of equivalence between two optimization
problems.

Let us take any optimum point to (18),
denoted by {(sk(1), . . . , sk(Nt ))}. It is seen that
{Ukdiag(sk(1), . . . , sk(Nt ))U

†
k } is a feasible point to (7).

Evaluate the objective function of (7) at this feasible point.
Thus we obtain:

K∑
k=1

log
∣∣∣I + G†

kUkdiag(sk(1), . . . , sk(Nt ))U
†
k Gk

∣∣∣
=

K∑
k=1

log
∣∣∣I + U †

k GkG†
kUkdiag(sk(1), . . . , sk(Nt ))

∣∣∣
=

K∑
k=1

log |I + Dkdiag(sk(1), . . . , sk(Nt ))|

=
K∑

k=1

Nt∑
j=1

log(1 + Dk( j, j)sk( j)). (19)

Assume, to the contrary, that this feasible point is not an opti-
mal solution to (7). There is another feasible solution to (7),
denoted by {Sk}K

k=1 (a set of the matrices) such that

K∑
k=1

Nt∑
j=1

log(1 + Dk( j, j)sk( j)) <

K∑
k=1

log
∣∣∣I + G†

k SkGk

∣∣∣ .
Since

K∑
k=1

log
∣∣∣I + G†

k SkGk

∣∣∣ =
K∑

k=1

log
∣∣∣I + GkG†

k Sk

∣∣∣
=

K∑
k=1

log
∣∣∣I + U †

k GkG†
kUkU †

k SkUk

∣∣∣ , (20)

according to the Hadamard’s inequality,

K∑
k=1

log
∣∣∣I + U †

k GkG†
kUkU †

k SkUk

∣∣∣
≤

K∑
k=1

Nt∑
j=1

log(1 + Dk( j, j)(U †
k SkUk)( j, j)). (21)

Thus,

K∑
k=1

Nt∑
j=1

log(1 + Dk( j, j)sk( j))

<

K∑
k=1

Nt∑
j=1

log(1 + Dk( j, j)(U †
k SkUk)( j, j)), (22)

where (U †
k SkUk)( j, j) denotes the j th diagonal entry of the

matrix U †
k SkUk , for any j and k. Hence, since it is seen

that {(U †
k SkUk)( j, j)}, i.e., ∪K

k=1{(U †
k SkUk)( j, j)}Nt

j=1, is a
feasible solution to (18), {(sk(1), . . . , sk(Nt ))} is not an opti-
mum point to (18). A contradiction is obtained. Therefore,
{Ukdiag(sk(1), . . . , sk(Nt ))U

†
k } is an optimum point to (7)

under the bijection.
Similarly, the bijection can project an optimum point to (7)

to an optimum point to (18).
As a result, equivalence between (7) and (18) holds. �
Since the solution to (18) can be computed rapidly and

exactly, and a bijection has been constructed, (7) can be solved
rapidly and exactly as well.

B. Algorithm IGWFGP and Its Implementation

The proposed IGWFGP is based on the combination of
the MU-MIMO MAC with the mixed power constraints. The
algorithm is listed below.

Note that the new algorithm employs variable weighting
factors or innovation, which are obtained to maximize the
objective function and to update the covariance.

From the process mentioned above, it is seen that the
(S̃(n)

1 , . . . , S̃(n)
K ) is a preparation for computation of the

(S(n)
1 , . . . , S(n)

K ). The (S(n)
1 , . . . , S(n)

K ) is also briefly written

into p(n). The (S̃(n)
1 , . . . , S̃(n)

K ) corresponds to the non-iterative

GWFGP; while the (S(n)
1 , . . . , S(n)

K ), corresponds to the iterative
IGWFGP.

Remark 3.1: IGWFGP iteratively uses GWFGP in its
2), until it converges. Due to the objective function
f
(
βγ (n) + (1 − β)p(n−1)

)
in Step 3) of Algorithm IGWFGP

being (upper) convex, i.e., being concave, in the scalar variable
β, for computing the maximum solution to the correspond-
ing optimization problem, we can choose finite searching steps
with even fewer evaluations of the objective function. The
objective function in step 3) is evaluated at the four points{
β = 1

K , 1
K + 1

3

(
1 − 1

K

)
, 1

K + 2
3

(
1 − 1

K

)
and 1

}
by paral-

lel computation to determine β∗. For example to set the the
four points, if K = 4, β takes 1

4 , 2
4 , 3

4 and 1. That is to say,
this parallel operation can be distributed to and carried out
by the multiple processors (for example, 4 processors) at the
base station in order to expedite convergence of the proposed
algorithm.

We may replace the number “3” in β = 1
K + i

3 (1 − 1
K ) for

i = 0, 1, 2, 3, with m − 1 for β = 1
K + i

m−1 (1 − 1
K ), for i =

0, 1, 2, m − 1. Further, the integer m ≥ 4 is assumed. As long
as m ≥ 4, the conclusion in this paper still holds.

In Remark 3.1 above, β1 only takes four points, including
the point of β1 = 1/K . We evaluated f in the finite points of
β1, and then picked up the maximum over the finite points as
β∗. Without loss of generality, we can utilized different num-
ber of points of β1. If we only choose one point, β1 = 1/K ,
the proposed algorithm is still convergent, but its convergent
rate is slower than that of multiple points. Since a quad-core
CPU is popular for parallel processing, four points are cho-
sen. The more cores a CPU has, the faster the convergent
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Algorithm IGWFGP:

Input: Matrices Hi , S(0)
i = 0, i = 1, . . . , K ; n = 1.

1) Generate effective channels

Gi
(n) = Hi

⎛
⎝I +

∑
k∈{1,...,K }\{i}

H†
kS(n−1)

k Hk

⎞
⎠

− 1
2

,∀i,

(23)

where the superscript with a pair of bracket, (n), repre-
sents the number of iterations.

2) Treating these effective channels as parallel, noninterfer-

ing channels, the new covariances
{

S̃(n)
i

}K

i=1
are gener-

ated by the GWFGP under the sum power constraint PT .

That is to say,
{

S̃(n)
i

}K

i=1
is the optimal solution to (24):

max{Si }K
i=1

K∑
i=1

log |I +
(

G(n)
i

)†
Si G

(n)
i |

subject to: Si � 0,∀i;
Tr(Si ) ≤ Pi ,∀i;

K∑
i=1

gi Tr(Si ) ≤ PT . (24)

Note that (24) is just the expression of (7).
3) Update step: Let γ (n) and p(n−1) denote the newly

obtained covariance set and the immediate past covari-
ance set respectively,

γ (n) �=
(

S̃(n)
1 , S̃(n)

2 , . . . , S̃(n)
K

)
and

p(n−1) �=
(

S(n−1)
1 , S(n−1)

2 , . . . , S(n−1)
K

)
.

Let β∗ =

max

{
β1| β1 ∈ arg max

β∈{ 1
K + i

3 (1− 1
K )}3

i=0
f(

βγ (n) + (1 − β) p(n−1)
)

}
, (25)

as the innovation or spacer step (refer to [13] and [14]).
In this paper, for emphasizing variability of β∗, β∗ is also
called the variable weighting factor, where the function
f means the objective function of (3), mentioned before.
Then, the covariance update step is

p(n) =
(

S(n)
1 , S(n)

2 , . . . , S(n)
K

)
= β∗γ (n) + (

1 − β∗) p(n−1).

(26)

The updated covariance is a convex combination of the
newly obtained covariance and the immediate past covari-
ance.

4) Let n + 1 → n. Go to 1) until convergence.

rate of the proposed algorithm is. Hence, f (p(n)) = f (β∗) ≥
max { f (β1)} ≥ f (β1 = 1/K ) ≥ f (p(n−1)). The monotonicity
holds for the sequence { f (p(n))}. At the same time, if we
have one more maximum, we take the maximum with the
greatest value from β∗s for innovation, i.e., to speed up the
convergent rate [14]. Hence, we utilize this four-point method
of {β1 = 1/K , 1

K + 1
3 (1 − 1

K ), 1
K + 2

3 (1 − 1
K ), 1} which are

independent on the iteration number n.

C. Algorithm Based on Primal-Dual Approach

In the following, for comparison, we introduce a reference
algorithm, PD-GP, which instantiates the primal dual approach
(refer to [13]) to attempt to solve the target problem. The
essence of the primal dual approach is: firstly we should evalu-
ate exactly a dual function, and then optimize the dual function.
Often, we cannot exactly evaluate the dual functions by a finite
amount of computation, one of which is the dual function of the
target problem. This point leads to the fact that PD-GP cannot
obtain the optimal solution, unlike the proposed IGWFGP.

As well known, given λ ≥ 0 and the optimization problem:

max{Sk }K
k=1

log |I +
K∑

j=1

H j S j H
†
j |−

λ

(
K∑

k=1

gkTr(Sk) − PT

)

subject to Sk � 0, Tr(Sk) ≤ Pk,∀k, (27)

an optimization algorithm may be used here and the optimal
objective function value, as a value of the dual function of the
problem (27) is denoted by fd(λ). It is seen that fd(λ) is a
convex function over λ ≥ 0, and λ is a scalar. Thus, the sub-
gradient algorithm or a line search is often used to look for the
optimal solution λ∗ to the minimum value problem, as the outer
loop of the primal dual approach, of the dual function.

Note that the problem (27) has decoupled constraints.
Therefore, the block coordinate ascend algorithm (BCAA) or
the cyclic coordinate ascend algorithm (CCAA) (refer to [15])
can be used to attempt to solve the problem. The iterative
algorithm BCAA works as follows. In each step, the objec-
tive function is maximized over a single matrix-valued variable
Sk , while keeping all other Sks fixed, k = 1, . . . , K and then
repeating this process. Without loss of generality, let us con-
sider an optimization problem below over Sk, k = 1, with
respect to all other Sks being fixed, as follows:

max{S1} log |I +
K∑

j=1

H j S j H
†
j |−

λ

(
K∑

k=1

gkTr(Sk) − PT

)

subject to Sk � 0, Tr(Sk) ≤ Pk . (28)

Similar to the problem which GWFGP handled, we may use the
eigendecomposition with the unitarily similar meaning. As a
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Algorithm PD-GP:

1) Given ε > 0, initialize{
S(0)

1 = 0, . . . , S(0)
K = 0

}
, λmin and λmax.

2) Set λ = (λmin + λmax)/2.

3) Compute
{

S(n+1)
k

}K

k=1
= f1

({
S(n)

k

}K

k=1

)
. Then n +

1 → n. Repeat the above process until the optimal solu-
tion S∗

k}K
k=1 to the problem (27) is reached, where the

BCAA mentioned before is used. For each iteration of
BCAA that takes Sk as the optimization variable with
respect to others being fixed, the most popular PD-IPM
can be used.

4) If
∑K

k=1 gkTr(S∗
k) − PT > 0, then λmin is assigned by λ;

if
∑K

k=1 gkTr(S∗
k) − PT < 0, then λmax is assigned by λ;

and if
∑K

k=1 gkTr(S∗
k) − PT = 0, stop.

5) If |λmin − λmax| ≤ ε, stop. Otherwise, goto step 2).

note, for a matrix, denoted by A, if there exist a diagonal matrix
B and a unitary matrix U such that A = UBU†, then UBU† is
called the eigendecomposition of A with the unitarily similar
meaning. Further, it is known that the diagonal entries of B are
the eigenvalues of A. Thus, we can obtain the real optimization
problem:

max
xi }Nt

i=1

Nt∑
i=1

log (1 + λi xi ) − λ

(
g1

Nt∑
i=1

xi − PT

)

subject to xi ≥ 0,∀i,
Nt∑

i=1

xi ≤ P1,

(29)

where the matrix diag
(
λ1, . . . , λNt

)
, with {λi } being decreas-

ing ordered, is unitarily equivalent to the matrix G†G by the
unitary matrix U that is a matrix expression of the similar-
ity transformation. It is seen that we can compute the optimal
solution {x∗

i } to the problem (29) and then obtain the optimal

solution Udiag
(

x∗
1 , . . . , x∗

Nt

)
U† to the problem (28). Thus, the

proposed PD-GP algorithm, which is based on the primal-dual
approach, is concisely described as follows.

The designed PD-GP can indeed avoid the differentiability
issue from several complex optimization variable, and it can
be used to compare with the proposed algorithm: IGWFGP.
However, note that 3) of PD-GP cannot get the optimal solution
to (27), even if the PD-IPM is used.

IV. CONVERGENCE OF ALGORITHM IGWFGP

Convergence of the proposed algorithm can be proven by a
method similar to that of [16, Section II]. However, IGWFGP
taking the step 3), as the update step of the innovation or spacer
step, is different from that in [16]. Thus, its convergence proof
has different subtleties. The differences are accounted for here,
but the similarities are omitted.

Lemma 4.1: The optimization problem in (3) is equiva-
lent to a convex optimization problem over the field of real
numbers.

Proof of Lemma 4.1 can refer to [16, Proposition II.3].
The explicit real form of the function fr is fr =
1
2 log |Î +∑K

j=1 Ĥ†
j Ŝ j Ĥ j |. The corresponding real matrix-

valued optimization variable can take on the form

Ŝk =
(
Re (Sk) −Im (Sk)

Im (Sk) Re (Sk)

)
with four sub-blocks, for any

k. Î and Ĥ j Ĥ
†
j ,∀ j , can be treated similarly.

For any convergent subsequence, whose limit is denoted by
(S1, . . . , SK ), generated by Algorithm IGWFGP, we may use
the following lemma to prove that the limit is a fixed point under
Algorithm IGWFGP, when Algorithm IGWFGP is regarded as
a mapping.

Lemma 4.2: A point is the limit of a convergent subsequence
of the point sequence generated by Algorithm IGWFGP if and
only if this point is a fixed point under Algorithm IGWFGP.

Proof: See Appendix B. �
Lemma 4.3: The feasible solution (S1, . . . , SK ) is a fixed

point under Algorithm IGWFGP if and only if this feasible
solution (S1, . . . , SK ) is one of the optimal solutions to the
problem in (3).

Proof: Please refer to [16, Lemma II.5]. �
As a side note, revisit the previous typical example of

the optimization problems: minx x2, subject to: |x | ≤ 2, and
minx | sin x | + 1, subject to: |x | ≤ 1. Since the two optimiza-
tion problems have the same optimal solution set, they are
equivalent according to either the informal definition of the
equivalence [5, p. 130] or our formal definition. However, the
first optimization problem is convex (referring to [5]) but the
second one is not. Therefore, two optimization problems being
equivalent needn’t guarantee they are all convex.

Lemma 4.3 states that a point is an optimal solution to (3)
iff this point is a fixed point, where the optimal solution is
under the global optimality. Thus, if (3) has multiple optimal
solutions, evaluating the objective function at all the solutions
would yield the same value.

Based on the lemmas above, we obtain the conclusion that
Algorithm IGWFGP is convergent. At the same time, step 3) of
Algorithm IGWFGP is regarded as a computation for a point.
With these being stated, Algorithm IGWFGP generates a point
sequence and every point of the point sequence consists of
the K matrices, e.g. (S(n)

1 , . . . , S(n)
K ). The details are described

below.
Theorem IV.1: Algorithm IGWFGP is convergent. At the

same time, the sequence of objective values, obtained by
evaluating the objective function at the point sequence, mono-
tonically increases to the optimal objective value.

Proof: Please refer to [16, Theorem II.6]. �
To reduce the cost of computation, Eq. (25) in Section III

may utilize the Fibonacci search. To improve the performance
of the algorithm and reduce the cost of the computation, the
objective function in step 3) of IGWFGP can be evaluated at the
four points mentioned in Remark 3.1, via parallel computation
to find the estimate of β∗ of (25).
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Fig. 2. Different levels between performances of IGWFGP and PD-GP, as
K = 25.

V. NUMERICAL RESULTS

In this section, numerical results are provided to illustrate the
effectiveness of the proposed algorithm. For fair comparison,
the proposed IGWFGP and PD-GP in their inner loop employ
the same computational amount. In the presented figures, the
circle markers and the cross markers represent the results of the
proposed IGWFGP and PD-GP, respectively.

Let the numbers of the antennas at the base station (Nr ) and
at each mobile station (Nt ) be set as 5 respectively. The number
of user, K = 25. Channel gain matrices are generated ran-
domly using random Nr × Nt matrices with each entry drawn
independently from the standard Gaussian distribution. {Pk =
k|k = 1, . . . , K .} is the set of the chosen positive numbers. The
sum power constraint is PT = 60, i.e., about 17.8 dB. The pre-
sented results are the averaging of 100 independent simulation
runs. This averaging obtains the average of the performances in
the samples, where each of the samples is (H1, . . . , HK ). As the
sample size grows, the average of the performances can approx-
imate above or below the mean of the performance which is a
random variable.

Initial value for PD-GP is referred to in 1) of Algorithm
PD-GP. Further, we may take λmin = 0 and λmax = 1, i.e., the
domain of the dual function is the interval of [0, 1]. This result
comes from the KKT conditions of a derived model of the dual
function fd(λ) minimization problem. The proof is simple and
ignored here since IGWFGP is the main concern of this paper.

Fig. 2 compares the sum rate vs. the number of itera-
tions for the proposed algorithm IGWFGP with the reference
algorithm PD-GP. The proposed algorithm achieves higher
objective function values with less number of iterations for con-
vergence. Algorithm PD-GP under the primal-dual approach
cannot achieve the optimal solution.

Let f ∗ be the maximum throughput, f (n) the throughput at
the n-th iteration and | f (n) − f ∗| the error in the throughput.
Fig. 3 shows the corresponding error in the throughput ver-
sus the number of iterations. Note that using the fixed-point
theory from the convergence proof of the proposed algorithm
can determine the maximum throughput f ∗. PD-GP algorithm
exhibits an error floor even with the increasing of the iteration.

In addition, if we replace GWFGP of IGWFGP with PD-
IPM. This newly formed algorithm, called the iterative PD-IPM

Fig. 3. Error functions of IGWFGP and PD-GP, as K = 25.

Fig. 4. Throughput (Unit: bits) of IGWFGP, PD-GP and IPD-IPM, as K = 10,
12, 14, . . ., 38 and 40.

(or IPD-IPM), under the same comparison approach, is taken as
another comparison reference. Fig. 4 investigates the impact of
the number of users/channels, K , on the sum rate of these three
algorithms. It is shown that the proposed IGWFGP achieves the
highest sum rate.

Next, we define the required number of iteration to achieve ε

precision as

NIGWFGP � min{n|| f ( j) − f ∗| < ε, as j ≥ n}. (30)

It is seen that the point {( j, f ( j))} is generated by the corre-
sponding algorithm and ε = 10−3 without loss of generality.
Replacing the subscript of NIGWFGP with “PD-GP”, NPD-GP is
similarly defined, too. For different selection of K , we have the
corresponding results in Table II. Due to the fact that all NPD-GP
being infinity, NPD-GP is not listed. With different number of
users, the achieved throughput gain of IGWFGP over PD-GP
is in the range of 48% to 197%. When K is small, the gain is
more significant.

Fig. 5 shows the sum rate as a function in the number of
antennas (where Nt = Nr ) for the three algorithms when K =
10. With the increasing of the number of antennas, the achieved
sum rate by using IGWFGP improves more quickly than other
two algorithms.

Fig. 6 shows the sum rate as a function in the sum power
PT . To avoid the trivial case of the individual peak power upper
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TABLE I
LIST OF VARIABLES AND ABBREVIATIONS

TABLE II
COMPARISON OF THE ACHIEVED THROUGHPUT (Nt = Nr = 5)

Fig. 5. Throughput (Unit: bits) of IGWFGP, PD-GP and IPD-IPM, as Nt = 4,
6, 8, 10, 12, and 14.

bound sum being less than PT , let K = 12. For each sample of
the one hundred random experiments on (H1, . . . , HK ), such
a sample keeps the same for varying PT . According to such
random experiment arrangements, IGWFGP, PD-GP and IPD-
IPM can lift the obtained sum rates respectively, as the value of
PT increases, for the non-trivial case.

Fig. 6. Throughput (Unit: bits) of IGWFGP, PD-GP and IPD-IPM, as PT = 60,
61, . . ., 69 and 70.

Fig. 7. Throughput (Unit: bits) of IGWFGP, PD-GP and IPD-IPM, as {Pk } =
{k}6

k=1, {k + 2}6
k=1, {k + 4}6

k=1, {k + 6}6
k=1, {k + 8}6

k=1 and {k + 10}6
k=1.

Fig. 7 shows the sum rate as a function of the individual
peak power constraint, where {Pk} ∈ {{k + 2n}6

k=1}5
n=0. That

is to say, {Pk}6
k=1 = {k + 2n}6

k=1, for n = 0, 1, . . . , 5. Further,
{P1, P2, . . . , P6} = {1, 2, . . . , 6}; {1 +2, 2+2, . . . , 6+2}; {1 +
4, 2+4, . . . , 6+4}; {1+6, 2+6, . . . , 6+6}; {1+8, 2+8, . . . , 6 +
8}; and {1 + 10, 2 + 10, . . . , 6 + 10}, respectively. According
to this meaning, the assignment of {Pk}6

k=1 can be interpreted
based on the caption of Fig. 7. The sum rate increases with the
increase of the peak power for two reference algorithms, but no
significant increase for IGWFGP.

From these results, we can observe that the proposed
IGWFGP based on GWFGP is convergent; the comparison
reference algorithms, PD-GP based on BACC, and IPD-IPM
based on PD-IPM are not convergent. These results demonstrate
efficiency of the proposed IGWFGP.

VI. CONCLUSION

In this paper, IGWFGP is proposed based on GWFGP to
solve the throughput maximization problem in the networks
of GMU-MIMO MAC. It is formally proven to be convergent
through the utilization of the designed fixed point theory. To
the best knowledge of the authors, there is no existing algorithm
reported in the open literature to have solved the target problem,
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under the merit of convergence of an algorithm, while utilizing
the differentiability correctly. By exploiting the concept of vari-
able weighting factor for covariance update, IGWFGP achieves
fast convergence of the throughput maximization computation.
For the target problem, the proposed result shows that our algo-
rithm uses less number of iterations and achieves the optimal
system throughput, especially for large scale systems, while the
existing optimization methods cannot handle the target prob-
lem, even including the most efficient primal-dual interior point
method.

APPENDIX A
PROOF OF PROPOSITION 3.1

If the final set E in GWFGP is empty, it implies that∑K
i=1 gi Pi ≤ PT . Successively, since the optimal solution

{s j } j∈�i , for group i , satisfies
∑

j∈�i
s j ≤ Pi , through append-

ing such solutions of all the groups, we can obtain the solution
to the problem (8). It is easy to see that optimality of the men-
tioned {s j } j∈�i above is guaranteed, due to no peak power
constraint being considered for each of the groups (referring to
(16)). Also, it is easy to see that optimality of the appended
solution comes from two facts: the empty final set E ; and
structure of the problem (8).

Assume the final set E is not empty. For construct-
ing the optimal dual variables for the problem (8), the
symbols: {λE , σ E , {σ j | j ∈ E}}, {λ�i , σ�i , {σ j | j ∈ �i }} and
{λE0, σ E0, {σ j | j ∈ E0}} are introduced, here. Then symbols
will be assigned values by the following.

Since the final set E is non-empty, it implies that

1

gσ(k∗)
(

1
ak∗ + sk∗

) = 1

gσ( j)

(
1
a j

+ s j

) , as { j, k∗} ⊂ E

and s j > 0. Let λE = 1

gσ(k∗)
(

1
ak∗ +sk∗

) . According to the defini-

tions of k∗ and sk∗ , for j ∈ E and s j = 0,

1

gσ(k∗)
(

1
ak∗ + sk∗

) >
1

gσ( j)

(
1
a j

+ s j

) ,

let σ j = 1

gσ(k∗)
(

1
ak∗ +sk∗

) − 1

gσ( j)

(
j

a j
+s j

) > 0 and it is seen that

σ E = 0; for j /∈ E , let j ∈ �i . Then∑
j∈�i

s j = Pi , and

λ�i = 1

gσ(k∗(�i ))

(
1

ak∗(�i )
+ sk∗(�i )

) = 1

gσ( j)

(
1
a j

+ s j

) ,

as s j > 0. If s j = 0, then

σ j = 1

gσ(k∗(�i ))

(
1

ak∗(�i )
+ sk∗(�i )

) − 1

gσ( j)

(
1
a j

+ s j

) > 0

and σ�i = 0. Similarly, (12)–(14) in the initial utilization can
obtain sk∗ , which can be written as sk∗(E0). Thus we can obtain

λE0 = 1

gσ(k∗(E0))

(
1

ak∗(E0)
+ sk∗(E0)

) ,

σ j and σ(E0). (12)–(14) lead to that λE0 ≤ λ�i , where
∀�i ∩ E = ∅, and λE ≤ �E0 . Hence, we have obtained
{λE , σ E , {σ j | j ∈ E}}, {λ�i , σ�i , {σ j | j ∈ �i }} and
{λE0, σ E0, {σ j | j ∈ E0}}.

Therefore, there exist the Lagrange multipliers λ, {σ j }K Nt
j=1

and {σ i }K
i=1, the Lagrange function of which, for the problem

(8), is:

L
({si }, λ, {σ i }, {σ i }

)
=

K Nt∑
k=1

log (1 + aksk) − λ

⎛
⎝K Nt∑

j=1

gσ( j)s j − PT

⎞
⎠

−
K∑

i=1

σ i

⎛
⎝∑

j∈�i

s j − Pi

⎞
⎠+

K Nt∑
k=1

σ ksk,

where λ = λE ; σ j = σ E , as j ∈ E ; σ j = σ�i +(
λ�i − λE

)
g j , as j ∈ �i and ∀i ; and the other Lagrange

multipliers have been assigned above. By observation, they
satisfy the KKT conditions. Since the problem (8) is a differ-
entiable convex optimization problem with linear constraints,
not only are the KKT conditions mentioned above sufficient,
but they are also necessary for optimality. Note that it is seen
that the constraint qualification of the problem (8) holds.
Proposition 3.1 hence is proved.

APPENDIX B
PROOF OF LEMMA 4.2

Note that in the following proof, we use the notation n to
stand for number of the iterations for convenience.

The necessity is proved first. For any convergent sub-
sequence of the points generated by IGWFGP, letting
(Q1, . . . , QK ) be the limit of the convergent subsequence,
there is a convergent subsequence. This sequence is labelled

as
{
(Q(nk )

1 , . . . , Q(nk )
K )

}∞
k=0

(⊂
{(

Q(n)
1 , . . . , Q(n)

K

)}∞
n=0

) where{
(Q(n)

1 , . . . , Q(n)
K )
}∞

n=0
is the point sequence generated by

IGWFGP, such that(
Q1, . . . , QK

)
= limk→∞

(
Q(nk)

1 , . . . , Q(nk )
K

)
.

It is seen that(
S(nk+1)

1 , . . . , S(nk+1)
K

)
∈ arg max(S1,...,SK )∈V

K∑
i=1

f
(

Q(nk)
1 , . . . , Q(nk )

i−1 , Si , Q(nk )
i+1 , . . . , Q(nk )

K

)
.

This relationship comes from the definition of IGWFGP. The
definition of IGWFGP implies that

K∑
i=1

f
(

Q(n)
1 , . . . , Q(n)

i−1, S(n+1)
i , Q(n)

i+1, . . . , Q(n)
K

)

≥
K∑

i=1

f
(

Q(n)
1 , . . . , Q(n)

i−1, Si , Q(n)
i+1, . . . , Q(n)

K

)
, (31)
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for any n and (S1, . . . , SK ) ∈ V . Replacing n with nk, we
obtain:

K∑
i=1

f
(

Q(nk )
1 , . . . , Q(nk )

i−1 , S(nk+1)
i , Q(nk )

i+1 , . . . , Q(nk )
K

)

≥
K∑

i=1

f
(

Q(nk )
1 , . . . , Q(nk )

i−1 , Si , Q(nk )
i+1 , . . . , Q(nk )

K

)
. (32)

We have the following relationships:

f
(

Q(n+1)
1 , . . . , Q(n+1)

i−1 , Q(n+1)
i , Q(n+1)

i+1 , . . . , Q(n+1)
K

)
≥ f

(
K − 1

K
(Q(n)

1 , . . . , Q(n)
K ) + 1

K

(
S(n+1)

1 , . . . , S(n+1)
K

))

= f

(
K∑

i=1

1

K

(
Q(n)

1 , . . . , Q(n)
i−1, S(n+1)

i , Q(n)
i+1, . . . , Q(n)

K

))

≥ 1

K

K∑
i=1

f
(

Q(n)
1 , . . . , Q(n)

i−1, S(n+1)
i , Q(n)

i+1, . . . , Q(n)
K

)

≥ 1

K

K∑
i=1

f
(

Q(n)
1 , . . . , Q(n)

i−1, Q(n)
i , Q(n)

i+1, . . . , Q(n)
K

)

= f
(

Q(n)
1 , . . . , Q(n)

K

)
. (33)

Between relationships mentioned above, the first inequality and
the first equality hold due to step 3) of IGWFGP; the second
inequality results from the function f being concave; the third
inequality and the second equality are true because of step 2) of
IGWFGP, i.e., the definition of (S(n+1)

1 , . . . , S(n+1)
K ).

Thus, f (Q(n)
1 , . . . , Q(n)

K ) is monotonically increasing with
respect to n increasing, and

f
(

Q(n)
1 , . . . , Q(n)

K

)

≤ 1

K

K∑
i=1

f
(

Q(n)
1 , . . . , Q(n)

i−1, S(n+1)
i , Q(n)

i+1, . . . , Q(n)
K

)

≤ f
(

Q(n+1)
1 , . . . , Q(n+1)

K

)
.

(34)

From (34), we obtain:

K∑
i=1

f
(

Q(nk )
1 , . . . , Q(nk )

i−1 , S(nk+1)
i , Q(nk )

i+1 , . . . , Q(nk )
K

)

≤ K f
(

Q(nk+1)
1 , . . . , Q(nk+1)

K

)
.

From (32), we acquire:

K∑
i=1

f
(

Q(nk )
1 , . . . , Q(nk )

i−1 , S(nk+1)
i , Q(nk )

i+1 , . . . , Q(nk )
K

)

≥
K∑

i=1

f
(

Q(nk )
1 , . . . , Q(nk )

i−1 , Si , Q(nk )
i+1 , . . . , Q(nk )

K

)
.

Hence, it is true that

K f
(

Q(nk+1)

1 , . . . , Q(nk+1)

K

)

≥
K∑

i=1

f
(

Q(nk )
1 , . . . , Q(nk )

i−1 , Si , Q(nk )
i+1 , . . . , Q(nk )

K

)
.

Letting k approach to the infinity, we may acquire that

K∑
i=1

f
(

Q1, . . . , QK

)
= K f

(
Q1, . . . , QK

)

≥
K∑

i=1

f
(

Q1, . . . , Qi−1, Si , Qi+1, . . . , QK

)
,

where ∀(S1, . . . , SK ) ∈ V . Thus,(
Q1, . . . , QK

)
∈ arg max

(S1,...,SK )∈V

K∑
i=1

f
(

Q1, . . . , Qi−1, Si , Qi+1, . . . , QK

)
.

Note that the set

arg max
(S1,...,SK )∈V

K∑
i=1

f
(

Q1, . . . , Qi−1, Si , Qi+1, . . . , QK

)

is not guaranteed to be a single-point set. However, we may
choose (Q1, . . . , QK ) is an optimal solution to the problem

max(S1,...,SK )∈V
∑K

i=1 f
(

Q1, . . . , Qi−1, Si , Qi+1, . . . , QK

)
.

This corresponds to step 2) of IGWFGP. Further,
(Q1, . . . , QK ) = β∗(Q1, . . . , QK ) + (1 − β∗)(Q1, . . . , QK ),
based on the choice of the optimal solution mentioned above.
This corresponds to step 3) of IGWFGP.

Therefore, resulting from the two correspondences men-
tioned above and the definition of IGWFGP, it is true that
(Q1, . . . , QK ) is a fixed point under IGWFGP, which is viewed
as a mapping.

The sufficiency will be proved as follows:
Let (Q1, . . . , QK ) represent a fixed point under IGWFGP.

Assume that (Q(0)
1 , . . . , Q(0)

K ) to be a fixed point. It is denoted

by (Q1, . . . , QK ). Then (Q(1)
1 , . . . , Q(1)

K ) = (Q1, . . . , QK ),
i.e., the former is assigned by the latter, due to
(Q1, . . . , QK ) being a fixed point under IGWFGP. If it
is assumed that (Q(n)

1 , . . . , Q(n)
K ) = (Q1, . . . , QK ), then

(Q(n+1)
1 , . . . , Q(n+1)

K ) = (Q1, . . . , QK ) due to (Q1, . . . , QK )

being a fixed point under IGWFGP. According to the principle
of mathematical induction,(

Q(n)
1 , . . . , Q(n)

K

)
=
(

Q1, . . . , QK

)
∈ V,∀n.

Furthermore, limn→∞(Q(n)
1 , . . . , Q(n)

K ) =
(

Q1, . . . , QK

)
∈ V .

Therefore, the sufficiency is true.
Note that in the proving process above, we do not have the

following assumption:(
Q1, . . . , QK

)
= lim

k→∞

(
Q(nk+1)

1 , . . . , Q(nk+1)
K

)
.
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