
COE 758 Design Tutorial Page 1

COE 758 - Design Process Tutorial

I. Introduction

This tutorial describes a formal design process for the creation of digital systems. The aim of this design

process is to provide a systematic approach to the design of digital components, beginning with a design

specification, and ending with a working component which meets all specifications. The process being

described limits itself to digital designs. Throughout the document, a simple example circuit is used to

better illustrate each step.

The process begins with the introduction of Design Specifications, and their analysis. Based on these

specifications, a Symbol for the component is created. This describes the system’s inputs and outputs, and

all interfaces to the surrounding environment. Once the symbol is complete, a block diagram is

constructed, based on the required functionality of the system. The elements of the block diagram are then

implemented as VHDL code, and integrated into a single design. This design is then implemented as a

circuit and testing and verification can take place. Each stage will be described in more detail in the

following sections. To recapitulate, the steps of the design process are:

1. Specification Analysis.

2. Symbol Creation.

3. Block Diagram and Behavioural Description Creation.

4. HDL Implementation.

5. System Integration.

6. Synthesis and circuit implementation.

7. Test and Verification.

II. Design Specifications

Design specifications are the starting point of any design. These are the requirements that the digital

circuit being implemented must address. Such specifications come in two types: Functional and

Technical specifications. Functional specifications describe the functionality that a given circuit must

implement. They describe the required behaviour of the circuit. Technical specifications describe

specific technical aspects associated with the circuit as well as surrounding systems. They augment the

functional specifications, by accurately describing the parameters of the circuit behaviour.

EXAMPLE:

Consider the creation of a Reset Block, a circuit which monitors an external reset signal, and generates

three auxiliary reset signals which will be used in other designs. This circuit example will be used as an

illustrative example for the remainder of this document. Below are listed the functional specifications for

the circuit.

COE 758 Design Tutorial Page 2

Reset Block (Functional Specification):

1. Monitor external reset signal.

2. When external reset is asserted, generate three auxiliary reset signals for use inside local digital

systems.

3. The three auxiliary signals must each stay asserted for a specific amount of time from the

assertion of the external reset.

4. Once all auxiliary resets are de-asserted, the reset block must be ready to repeat the process.

Reset Block (Technical Specification):

1. The Reset Block is synchronized to the rest of the system via a clock with a frequency of 50

MHz.

2. The external reset signal stays asserted for 4 clock cycles.

3. Auxiliary reset signal rstAux1 must stay asserted for 30 clock cycles after the external reset is

first asserted.

4. Auxiliary reset signal rstAux2 must stay asserted for 24 clock cycles after the external reset is

first asserted.

5. Auxiliary reset signal rstAux3 must stay asserted for 16 clock cycles after the external reset is

first asserted.

III. Symbol Creation

A component symbol gives a “black box” top-level view of the component being designed. The symbol

diagram consists of a rectangle representing the component proper, with arrows representing all top level

ports. Input ports are represented by arrows pointing towards the rectangle from the left, while output

ports are represented as arrows pointing away from the rectangle, towards the right.

The component symbol is the first part of the design which is created; it is important that the symbol is as

complete as possible before proceeding to other design steps. While an iterative process may be used in

certain situations, it is best to try to clarify the majority of top-level ports before any other steps are taken.

Once the component symbol is complete, it corresponds with the top-level Entity declaration for your

designed component.

EXAMPLE:

The Reset Block receives one input: the external reset signal. It generates three outputs: the three internal

reset signals. The Reset Block must be synchronized with the rest of the systems surrounding it, and

receives a clock signals as an input as well. The external reset signal and the clock are single-bit signals.

The three internal reset signals generated by the Reset Block are also single-bit signals. Based on this, the

symbol for the Reset Block is shown below in Figure 1, with the component entity declaration listed after

it.

COE 758 Design Tutorial Page 3

IV. Block Diagram Generation

Once the component symbol is created, the internal architecture of the component can be designed, in the

form of a Block Diagram. The block diagram is a high-level description of a component’s internal

architecture. The individual blocks which make up the diagram are selected based on the required

functionality of the component being designed. Blocks at this level can include adders/subtractors,

decoders, multiplexers, storage elements of various types or finite-state machines; depending on the

complexity of the component, the block diagram may be hierarchical, and include further, lower level

block diagrams for some of the sub-components used.

In addition to the internal structure of the component, its behaviour must also be determined in detail,

based on the design specifications. This behavioural description consists of two types of elements:

process diagrams and timing diagrams. Process diagrams are abstract descriptions of the required

behaviour, and may group together multiple activities into a single abstract block. Timing diagrams are

clock-cycle accurate diagrams representing the required behaviour of the sequential circuits being used.

The timing diagrams are used to create the state diagrams for the various FSMs present inside the

component.

entity resetBlock is

 Port (

 clk : in std_logic;

 rst : in std_logic;

 rstAux1 : out std_logic;

 rstAux2 : out std_logic;

 rstAux3 : out std_logic

);

end resetBlock;

Figure 1: Example Symbol

COE 758 Design Tutorial Page 4

EXAMPLE:

The Reset Block must detect a particular level on an input signal. It must then wait a specific amount of

time, and assert certain outputs at specific points in time. Based on these requirements, the design will

incorporate an up-counter, used to count clock cycles, and a control unit in the form of a FSM. Finally,

the component must detect when certain count values are reached, which implies comparators. Based on

these requirements, the block diagram below can be derived. It consists of one FSM, a counter, and three

comparators which indicate 16, 24 and 30 clock cycles have been counted.

The FSM must assert all three internal reset signals when it detects that the external reset is asserted, and

must then de-assert the reset signals as the counter advances. At an abstract level, this behaviour can be

split into two main activities: monitoring the external reset signal and generating the auxiliary reset

signals, as shown in Figure 3 below. The timing diagram for this process is shown in Figure 4, and

describes the required behaviour of the circuit on a clock cycle by clock cycle basis. To accomplish this

behaviour, the FSM will be designed to have three states, in which the resets are asserted, one state where

the counter is reset, and one rest state, where it waits for the next external reset. The state diagram for the

FSM is shown in Figure 5.

Figure 3: Example Process Diagram

Figure 2: Example Block Diagram

COE 758 Design Tutorial Page 5

Figure 3: Example State Diagram

Figure 4: Example Timing Diagram

COE 758 Design Tutorial Page 6

V. HDL Implementation

Once a complete block diagram is constructed, the circuit can be implemented using HDL; for the

purposes of this tutorial, VHDL is used. Each block in the block diagram should be implemented, using

either VHDL components, or processes; certain components, such as simple gates, can also be

implemented using simple statements. At this point, a decision must be made as to whether each block

should be implemented as a separate component or as a process. This decision is based on a number of

parameters, including the size of the block and the complexity of the overall design.

EXAMPLE:

The Reset Block being designed is a simple system, so it may be implemented as a collection of

processes. The primary processes being considered are the up-counter, the comparators, and the finite-

state machine. Below, code examples are given for the FSM, one of the comparators and the up-counter.

Up-Counter:

Comparator (pure combinational circuit):

Comparator (registered output):

comparator16 : process(clk, countVal)

begin

 if(clk‟event and clk = „1‟)then

 if(countVal = “10000”)then

 match16 <= „1‟;

 else

 match16 <= „0‟;

 end if;

 end if;

end process;

comparator16 : process(countVal)

begin

 if(countVal = "10000")then

 match16 <= '1';

 else

 match16 <= '0';

 end if;

end process;

upCounter: process(clk, rstC, incC)

begin

 if(rstC = '1')then

 countVal <= "00000";

 else

 if(clk'event and clk = '1' and incC = '1')then

 countVal <= countVal + "00001";

 end if;

 end if;

end process;

COE 758 Design Tutorial Page 7

FSM:

-- State storage.

stateStorage: process(clk, st1N)

begin

 if(clk'event and clk = '1')then

 st1 <= st1N;

 end if;

end process;

-- Next state generation.

nextStateGen : process(st1, rst, match16, match24, match30)

begin

 if(st1 = "000")then -- S0: Rest state.

 if(rst = '1')then

 st1N <= "001";

 else

 st1N <= "000";

 end if;

 elsif(st1 = "001")then -- S1: generate all three reset signals.

 if(match16 = '1')then

 st1N <= "010";

 else

 st1N <= "001";

 end if;

 elsif(st1 = "010")then -- S2: generate only two reset signals.

 if(match24 = '1')then

 st1N <= "011";

 else

 st1N <= "010";

 end if;

 elsif(st1 = "011")then -- S3: generate only one reset signal.

 if(match30 = '1')then

 st1N <= "100";

 else

 st1N <= "011";

 end if;

 elsif(st1 = "100")then -- S4: de-assert all reset signals.

 st1N <= "101";

 elsif(st1 = "101")then -- S5: reset up-counter.

 st1N <= "000";

 else

 st1N <= "000";

 end if;

end process;

COE 758 Design Tutorial Page 8

-- Output generation.

outGen: process(st1)

begin

 if(st1 = "000")then -- S0: Rest state.

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "001")then -- S1: generate all three reset signals.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '1';

 rstAux3 <= '1';

 elsif(st1 = "010")then -- S2: generate only two reset signals.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '1';

 rstAux3 <= '0';

 elsif(st1 = "011")then -- S3: generate only one reset signal.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "100")then -- S4: de-assert all reset signals.

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "101")then -- S5: reset up-counter.

 incC <= '0';

 rstC <= '1';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 else

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 end if;

end process;

COE 758 Design Tutorial Page 9

VI. Design Integration

Once all block diagram blocks have been implemented, they must be connected together to create the

complete design. The complete design will be assembled into a top-level VHDL file: the entity portion of

this file will correspond to the symbol of the component, and the architecture portion will contain all

blocks from the block diagram. Blocks implemented as discrete components are instantiated inside the

design using the port map command. On the other hand, blocks implemented as processes are simply

copied into this file. All blocks must be connected correctly using signals.

EXAMPLE:

The complete code for the Reset Block is listed below.

COE 758 Design Tutorial Page 10

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity resetBlock is

 Port (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 rstAux1 : out STD_LOGIC;

 rstAux2 : out STD_LOGIC;

 rstAux3 : out STD_LOGIC

);

end resetBlock;

architecture Behavioral of resetBlock is

 -- Up counter.

 signal countVal : std_logic_vector(4 downto 0) := "00000";

 signal rstC, incC : std_logic;

 -- Comparators.

 signal match16, match24, match30 : std_logic;

 -- FSM control unit.

 signal st1 : std_logic_vector(2 downto 0) := "000";

 signal st1N : std_logic_vector(2 downto 0);

begin

 -- System up-counter, used to keep track of time.

 upCounter: process(clk, rstC, incC)

 begin

 if(rstC = '1')then

 countVal <= "00000";

 else

 if(clk'event and clk = '1' and incC = '1')then

 countVal <= countVal + "00001";

 end if;

 end if;

 end process;

 -- Comparators, used to flag specific counter values.

 comparator16 : process(countVal)

 begin

 if(countVal = "10000")then

 match16 <= '1';

 else

 match16 <= '0';

 end if;

 end process;

COE 758 Design Tutorial Page 11

 comparator24 : process(countVal)

 begin

 if(countVal = "11000")then

 match24 <= '1';

 else

 match24 <= '0';

 end if;

 end process;

 comparator30 : process(countVal)

 begin

 if(countVal = "11110")then

 match30 <= '1';

 else

 match30 <= '0';

 end if;

 end process;

 -- FSM control unit, with 6 states.

 -- State storage.

 stateStorage: process(clk, st1N)

 begin

 if(clk'event and clk = '1')then

 st1 <= st1N;

 end if;

 end process;

 -- Next state generation.

 nextStateGen : process(st1, rst, match16, match24, match30)

 begin

 if(st1 = "000")then -- S0: Rest state.

 if(rst = '1')then

 st1N <= "001";

 else

 st1N <= "000";

 end if;

 elsif(st1 = "001")then -- S1: generate all three reset signals.

 if(match16 = '1')then

 st1N <= "010";

 else

 st1N <= "001";

 end if;

 elsif(st1 = "010")then -- S2: generate only two reset signals.

 if(match24 = '1')then

 st1N <= "011";

 else

 st1N <= "010";

 end if;

 elsif(st1 = "011")then -- S3: generate only one reset signal.

 if(match30 = '1')then

 st1N <= "100";

 else

 st1N <= "011";

 end if;

 elsif(st1 = "100")then -- S4: de-assert all reset signals.

 st1N <= "101";

 elsif(st1 = "101")then -- S5: reset up-counter.

 st1N <= "000";

 else

 st1N <= "000";

 end if;

 end process;

COE 758 Design Tutorial Page 12

 -- Output generation.

 outGen: process(st1)

 begin

 if(st1 = "000")then -- S0: Rest state.

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "001")then -- S1: generate all three reset signals.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '1';

 rstAux3 <= '1';

 elsif(st1 = "010")then -- S2: generate only two reset signals.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '1';

 rstAux3 <= '0';

 elsif(st1 = "011")then -- S3: generate only one reset signal.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "100")then -- S4: de-assert all reset signals.

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "101")then -- S5: reset up-counter.

 incC <= '0';

 rstC <= '1';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 else

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 end if;

 end process;

end Behavioral;

COE 758 Design Tutorial Page 13

VII. Implementation

Once the complete design has been prepared, it can be synthesized, translated, mapped, placed and routed.

It is also at this time that specific constraints are placed on the design, if necessary. The final result of this

process, if FPGA implementation is being targeted, is a configuration bit-stream.

If ChipScope or some other form of integrated analysis and test process is sued, it must be incorporated

into the design at this stage. This can be done by instantiating the test circuits inside the component, or by

creating a separate top-level test file, and instantiating both the test circuits and the component under test

there. Internal signals from the component being tested can be brought out through debug ports, to be

monitored by the test circuits.

EXAMPLE:

To test the Reset Block, a new top-level test VHDL file was created, and the Reset Block, ICON, ILA and

VIO components were instantiated there. To verify the internal behaviour of the Reset Block, the state

registers, counter, and comparator match signals were brought out and connected to the ILA. The

complete code for the top-level test file, along with the updated Reset Block (with debug ports) is listed in

Appendix A.

VIII. Test and Verification

Once the complete design has been implemented, it must be tested, to ensure the correct behaviour was

achieved, as well as to verify that the technical parameters were met. Such testing can take any number of

forms, and can rely on any number of tools, including automated test pattern generators, oscilloscopes,

logic analyzers or integrated logic analyzers (ChipScope).

EXAMPLE:

The Reset Block was tested using ChipScope, as described in the previous section. The ILA was used to

monitor the state, counter and internal signals of the Reset Block, as well as its outputs and inputs. The

VIO was used to generate an external reset signal for the Reset Block.

NOTE: the testing process used violates one of the technical specifications, in that the external reset

signal remains asserted for over 200 clock cycles (due to the speed limitations of the VIO), meaning that

the Reset Block is triggered repeatedly. However, this does not affect the behaviour of the circuit-under-

test.

Figures 6 and 7 show that the circuit works correctly. Figure 6 shows the auxiliary reset signals being

asserted for the correct periods of time. It also shows the FSM performing the correct state transitions.

Figure 7 shows a more detailed view of the up-counter, and also shows the assertion of the match

indicator signals on the appropriate count values.

COE 758 Design Tutorial Page 14

Figure 5: Detailed View of Up-Counter and Comparators

Figure 4: Reset Block Test Results

COE 758 Design Tutorial Page 15

Appendix A – Reset Block Test VHDL Code

Updated Reset Block, with added debug ports.

--

-- Company:

-- Engineer:

--

-- Create Date: 15:39:41 09/22/2012

-- Design Name:

-- Module Name: resetBlock - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity resetBlock is

 Port (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 rstAux1 : out STD_LOGIC;

 rstAux2 : out STD_LOGIC;

 rstAux3 : out STD_LOGIC;

 -- Debug

 debSt : out std_logic_vector(2 downto 0);

 debC : out std_logic_vector(4 downto 0);

 debM16 : out std_logic;

 debM24 : out std_logic;

 debM30 : out std_logic

);

end resetBlock;

architecture Behavioral of resetBlock is

 -- Up counter.

 signal countVal : std_logic_vector(4 downto 0) := "00000";

 signal rstC, incC : std_logic;

 -- Comparators.

 signal match16, match24, match30 : std_logic;

 -- FSM control unit.

 signal st1 : std_logic_vector(2 downto 0) := "000";

 signal st1N : std_logic_vector(2 downto 0);

begin

COE 758 Design Tutorial Page 16

 -- System up-counter, used to keep track of time.

 upCounter: process(clk, rstC, incC)

 begin

 if(rstC = '1')then

 countVal <= "00000";

 else

 if(clk'event and clk = '1' and incC = '1')then

 countVal <= countVal + "00001";

 end if;

 end if;

 end process;

 debC <= countVal;

 -- Comparators, used to flag specific counter values.

 comparator16 : process(countVal)

 begin

 if(countVal = "10000")then

 match16 <= '1';

 else

 match16 <= '0';

 end if;

 end process;

 debM16 <= match16;

 comparator24 : process(countVal)

 begin

 if(countVal = "11000")then

 match24 <= '1';

 else

 match24 <= '0';

 end if;

 end process;

 debM24 <= match24;

 comparator30 : process(countVal)

 begin

 if(countVal = "11110")then

 match30 <= '1';

 else

 match30 <= '0';

 end if;

 end process;

 debM30 <= match30;

 -- FSM control unit, with 6 states.

 -- State storage.

 stateStorage: process(clk, st1N)

 begin

 if(clk'event and clk = '1')then

 st1 <= st1N;

 end if;

 end process;

 debSt <= st1;

 -- Next state generation.

 nextStateGen : process(st1, rst, match16, match24, match30)

 begin

 if(st1 = "000")then -- S0: Rest state.

 if(rst = '1')then

 st1N <= "001";

 else

 st1N <= "000";

 end if;

 elsif(st1 = "001")then -- S1: generate all three reset signals.

 if(match16 = '1')then

 st1N <= "010";

COE 758 Design Tutorial Page 17

 else

 st1N <= "001";

 end if;

 elsif(st1 = "010")then -- S2: generate only two reset signals.

 if(match24 = '1')then

 st1N <= "011";

 else

 st1N <= "010";

 end if;

 elsif(st1 = "011")then -- S3: generate only one reset signal.

 if(match30 = '1')then

 st1N <= "100";

 else

 st1N <= "011";

 end if;

 elsif(st1 = "100")then -- S4: de-assert all reset signals.

 st1N <= "101";

 elsif(st1 = "101")then -- S5: reset up-counter.

 st1N <= "000";

 else

 st1N <= "000";

 end if;

 end process;

 -- Output generation.

 outGen: process(st1)

 begin

 if(st1 = "000")then -- S0: Rest state.

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "001")then -- S1: generate all three reset signals.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '1';

 rstAux3 <= '1';

 elsif(st1 = "010")then -- S2: generate only two reset signals.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '1';

 rstAux3 <= '0';

 elsif(st1 = "011")then -- S3: generate only one reset signal.

 incC <= '1';

 rstC <= '0';

 rstAux1 <= '1';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "100")then -- S4: de-assert all reset signals.

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 elsif(st1 = "101")then -- S5: reset up-counter.

 incC <= '0';

 rstC <= '1';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 else

 incC <= '0';

 rstC <= '0';

 rstAux1 <= '0';

 rstAux2 <= '0';

 rstAux3 <= '0';

 end if;

 end process;

end Behavioral;

COE 758 Design Tutorial Page 18

Top-level test file.

--

-- Company:

-- Engineer:

--

-- Create Date: 16:00:53 09/22/2012

-- Design Name:

-- Module Name: topLevelTest - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity topLevelTest is

 Port (

 clk : in STD_LOGIC

);

end topLevelTest;

architecture Behavioral of topLevelTest is

 -- Component under test.

 component resetBlock

 port (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 rstAux1 : out STD_LOGIC;

 rstAux2 : out STD_LOGIC;

 rstAux3 : out STD_LOGIC;

 -- Debug

 debSt : out std_logic_vector(2 downto 0);

 debC : out std_logic_vector(4 downto 0);

 debM16 : out std_logic;

 debM24 : out std_logic;

 debM30 : out std_logic

);

 end component;

 -- Component outputs.

 signal rstA1, rstA2, rstA3 : std_logic;

 -- Debug outputs.

 signal debSt : std_logic_vector(2 downto 0);

 signal debC : std_logic_vector(4 downto 0);

 signal debM16, debM24, debM30 : std_logic;

 -- Test circuitry.

 -- ICON.

COE 758 Design Tutorial Page 19

 component sysIcon

 PORT (

 CONTROL0 : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0);

 CONTROL1 : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0)

);

 end component;

 signal control0, control1 : std_logic_vector(35 downto 0);

 -- ILA.

 component sysIla

 PORT (

 CONTROL : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0);

 CLK : IN STD_LOGIC;

 DATA : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

 TRIG0 : IN STD_LOGIC_VECTOR(7 DOWNTO 0)

);

 end component;

 signal ilaData : std_logic_vector(15 downto 0);

 signal ilaTrig : std_logic_vector(7 downto 0);

 -- VIO

 component sysVio

 PORT (

 CONTROL : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0);

 ASYNC_OUT : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)

);

 end component;

 signal vioOut : std_logic_vector(1 downto 0);

begin

 -- Component under test.

 compUnderTest: resetBlock

 port map(

 clk => clk,

 rst => vioOut(0),

 rstAux1 => rstA1,

 rstAux2 => rstA2,

 rstAux3 => rstA3,

 -- Debug

 debSt => debSt,

 debC => debC,

 debM16 => debM16,

 debM24 => debM24,

 debM30 => debM30

);

 -- Test circuits.

 -- ICON.

 systemIcon : sysIcon

 port map (

 CONTROL0 => control0,

 CONTROL1 => control1

);

 -- ILA.

 systemIla : sysIla

 port map (

 CONTROL => control0,

 CLK => clk,

 DATA => ilaData,

 TRIG0 => ilaTrig

);

 -- VIO.

 systemVio : sysVio

 port map (

 CONTROL => control1,

 ASYNC_OUT => vioOut

COE 758 Design Tutorial Page 20

);

 -- Debug signal assignments.

 -- Normal inputs and outputs.

 ilaData(0) <= vioOut(0);

 ilaData(1) <= rstA1;

 ilaData(2) <= rstA2;

 ilaData(3) <= rstA3;

 -- Debug outputs.

 ilaData(6 downto 4) <= debSt;

 ilaData(11 downto 7) <= debC;

 ilaData(12) <= debM16;

 ilaData(13) <= debM24;

 ilaData(14) <= debM30;

 ilaData(15) <= '0';

 -- Trigger assignment.

 ilaTrig(0) <= vioOut(0);

 ilaTrig(7 downto 1) <= (others => '0');

end Behavioral;

