
Digsim: The User Guide

by

1. Publication Information

Date published: 25 March 2004

Copyright ©2004 by Ken Clowes All rights reserved.

2. Introduction

The digsim application simulates digital circuits. (The application is implemented in the Java
programming language and has been used to introduce electrical engineering students to
object-oriented analysis, design and implementation. The source code and design
documentation are available.) However, this document describes the user interface only; no
knowledge of digsim's inner workings is required or assumed.

2.1. Ensure that digsim is installed

Start a digsim session with the command: digsim

If the digsim application has been installed, you will see the message (on stderr): Welcome to
digsim...We await your commands.

Terminate the session by entering the end command. (digsim will respond with All done.)

2.2. First simulation

The first circuit to simulate is a 2-input NAND gate that evaluates the Boolean expression:
Z = not(AB)

Invoke digsim and enter the command:
Nand A B Z

Next enter the command: display * The following is displayed:

Node "A": 0

Page 1
Copyright © 2004 Ken Clowes. All rights reserved.



Node "B": 0
Node "Z": 1

To terminate the simulation session, type in the command end.

3. Clocked D-Latch circuit

We now examine a more complex circuit (a clocked D-latch based on nand gates) and its
simulation. The following annotated listing shows how the circuit is described (using a
spice-like description language) and then simulated.

3.1. Clocked D-Latch
//Circuit description
Nand D=1 Dbar (delay=5)
Nand D Clk=0 Sbar //default 10ns delay
Nand Dbar Clk Rbar (delay=15)
Nand Sbar Qbar Q=1 (delay=20)
Nand Rbar Q Qbar (delay=25)

display *
trace *
set Clk 1 at 10
set D 0 at 100
set Clk 0 at 200
step 100
//The next line is illegal
set Clk 1 at 100
set Clk 1 in 100
set D to 1 in 90
step 50

The "//" string can be used anywhere as a comment; the rest of the line is ignored.

The default delay can be overriden with the delay parameter.

The initial value of a node can be specified using the equals (=) sign.

Blank lines can be used for readability.

The display command prints the current value of the named nodes. The wildcard character
(*) can be used to specify all nodes.

The trace command prints any change to a Node during a simulation.

The set command schedules a value for a Node at a specific (future) time.

The step command simulates the circuit for at most n Node changes.

Digsim: The User Guide

Page 2
Copyright © 2004 Ken Clowes. All rights reserved.



This set command is illegal because it attempts to set the value for a Node in the past.
(While we all sometimes wish we could change the past, digsim is not a “Back to the Future”
machine.)

3.2. Output

Most commands produce no output. (Syntax error messages are printed to stderr.) Two
commands always produce some output: display nodes

Immediately prints to stdout the values of the named nodes.

step num

Prints results of any trace commands. Always prints a summary.

Note that the trace node(s) command does not produce output immediately; however, it
specifies which Nodes should print any value changes when the simulator is invoked with the
step command.

3.2.1. Clocked D-Latch example output

The first command in the previous example that produces output is the display *
command on line 8. The output is:
Node "Clk": 0
Node "D": 1
Node "Dbar": 0
Node "Q": 1
Node "Qbar": 0
Node "Rbar": 1
Node "Sbar": 1

The next command that produces output is the step 100 command at line 13. The step n
command simulates at most n Node changes. The Node changes may be either previously
explicitly specified changes (with the set command) or derived changes deduced by the
simulator. In the present case, the circuit settles down to a stable and consistent configuration
after 10 Node changes. (We use the term “Event” to mean a change in the value of a Node.)
The last line of the output gives the total number of Events that were processed and the
number of scheduled Events that have not yet been simulated. The output is:
"Clk" set to 1 at 10
"Sbar" set to 0 at 20
"D" set to 0 at 100
"Dbar" set to 1 at 105
"Sbar" set to 1 at 110
"Rbar" set to 0 at 120
"Qbar" set to 1 at 145
"Q" set to 0 at 165

Digsim: The User Guide

Page 3
Copyright © 2004 Ken Clowes. All rights reserved.



"Clk" set to 0 at 200
"Rbar" set to 1 at 215
Events processed: 10; Events pending: 0

The final block of output is triggered by the step 50 command at line 18. The output is:
"D" set to 1 at 305
"Dbar" set to 0 at 310
"Clk" set to 1 at 315
"Sbar" set to 0 at 325
"Q" set to 1 at 345
"Qbar" set to 0 at 370
Events processed: 6; Events pending: 0

4. Block macros

Complex digital circuits can be defined in terms of other blocks using the defBlock
construct.

Suppose we need a 2-input OR gate and wish to construct it from NAND gates. Boolean
algebra (DeMorgan's laws) tell us that we can turn a 2-input NAND gate into an OR gate by
inverting its inputs. This idea is expressed with the following macro definition:
defBlock or2 a b out
Nand a aBar
Nand b bBar
Nand aBar bBar out
enddef

Note that you do not type in macros like this directly to the simulator. Rather, you place them
in a file and then load the file into the simulator.

Suppose that the macro definition above were in a file called or2.block. A sample
simulator session is given below. Note the use of the load file command used to inform the
simulator of the macro. (In the session sample below, this font indicates user input and
another font is used for computer output.

load or2.block
or2 A B Z
display A B Z
Node "A": 0
Node "B": 0
Node "Z": 0
or2 AA=1 BB CC
display AA BB CC
Node "AA": 1
Node "BB": 0
Node "CC": 1
set AA 0 in 100

Digsim: The User Guide

Page 4
Copyright © 2004 Ken Clowes. All rights reserved.



trace *
step 20
"AA" set to 0 at 100
"or2.2.aBar" set to 1 at 110
"CC" set to 0 at 120
Events processed: 3; Events pending: 0

A block can be defined in terms of primitive circuit elements (such as Nand gates) supported
directly by the simulation engine or in terms of previously defined macro blocks. For
example, the file or.blocks contains definitions for both 2-input and 3-input OR gates as
follows:
defBlock or2 a b out
Nand a aBar
Nand b bBar
Nand aBar bBar out
enddef

//Define a 3-input OR gate in terms of the or2 macro
defBlock or3 a b c out
or2 a b tmp
or2 tmp c out
enddef

A sample session using this macro definition file is shown below:
load or.blocks
or3 P Q R z
display P Q R z
Node "P": 0
Node "Q": 0
Node "R": 0
Node "z": 0
set P to 1 at 100
trace *
step 20
"P" set to 1 at 100
"or2.1.aBar" set to 0 at 110
"or3.1.tmp" set to 1 at 120
"or2.2.aBar" set to 0 at 130
"z" set to 1 at 140
Events processed: 5; Events pending: 0

5. That's all folks...(for now)...

This document is not a complete user guide. Alas, the user has to infer the meaning of
various commands (and options) from the examples given here. In addition, not all features
are described. For additional information, your only option to UTSL.
1

Digsim: The User Guide

Page 5
Copyright © 2004 Ken Clowes. All rights reserved.



Nonetheless, I hope that these simple examples may be useful to students in COE618 and
ELE428. COE618

The user-interface presented here is based on the simulation engine analyzed in the course.
No changes have been made to the digsim package; this user-interface is implemented
entirely in the separate digsim.ui package. The source code is available.

ELE428

Labs 7 and 8 have examined the architecture and some of the implementation of a digital
circuit simulator written in C. Although digsim is written in Java rather than C, the overall
architecture of the software is basically the same as the one you have studied. Note that the
user interface in digsim goes well beyond the requirements in Lab 8. Note also that while you
are welcome to look at the source code of digsim, it is unlikely that you could just cut and
paste various code snippets to complete Lab 8. (In particular, although both the Java and C
versions of the simulation engine have a very similar architecture, the software that
implements the user interface in Java has a very different structure than the simpler one
suggested for the C implementation in Lab 8.)

6. Footnotes

1) The Star Wars inspired acronym UTSL means “Use the Source Luke”. (May the source be
with you...) However, you don't need to use the actual source, the API (Application
Programming Interface) documentation is sufficient. (I cannot suggest that you
RTFM—Read the F...ing Manual—since this document is is the frigging manual.)

Digsim: The User Guide

Page 6
Copyright © 2004 Ken Clowes. All rights reserved.


	1 Publication Information
	2 Introduction
	2.1 Ensure that digsim is installed
	2.2 First simulation

	3 Clocked D-Latch circuit
	3.1 Clocked D-Latch
	3.2 Output
	3.2.1 Clocked D-Latch example output


	4 Block macros
	5 That's all folks...(for now)...
	6 Footnotes

