Engineering Algorithms and Data Structures

Ken Clowes

2002

ii

Copyright ©2000-2003 by Ken Clowes (kclowesQee.ryerson.ca)
All rights reserved.

Version 1.1 Jan 24, 2003

Contents

Preface

I Fundamentals

1 Algorithms

1.1
1.2
1.3

14

1.5
1.6

What is an algorithm? 0.,
A simple sort algorithm (Selection Sort)
A better sorting algorithm (Merge Sort)
1.3.1 Merge oL
1.3.2 Combining Selection Sort and Merging
1.3.3 The Merge Sort algorithm
1.3.4 The analysis of “merge sort”
Implementation Lo oL
1.4.1 A test harness for implementation
Further reading o oL
Problems. oo

2 Recursion

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

What is recursion?
Simple example: Addition
How does recursion work
Tail recursion
Example: Fibonacci numbers
Example: Towers of Hanoi
Example: Counting ways to make change
Problems.o

Version 1.1 Jan 24, 2003

xi

iv CONTENTS
3 Parsing 49
3.1 What is formal language theory? 49
3.1.1 Sometermso 50

3.2 Backus-Naur Form o1
3.2.1 Example: Noun phrases in English 02
3.2.2 Example: Arithmetic expressions 53
3.23 Parsetrees.o oo o6

3.3 Implementing a parser/interpreter o7
3.3.1 Overview of Parser Architecture 57
3.3.2 Moving on—Tokens and Actions 61
3.3.3 Example: A Noun Phrase Word Counter 64
3.3.4 Example: A Simple Calculator. 67

34 Problems. 71
Complexity 75
4.1 Basic Concepts e 75
4.1.1 Average-, Worst- or Best-case Analysis 76
4.1.2 Time and Space complexity 7

4.2 O() notation: asymptotic upper bound 78
4.2.1 Formal definitionof O() 78
4.2.2 Remarks about O() notation. 79
4.2.3 Tips for determining O() complexity 80

43 () and O() notations 81
431 O©()notation o 82

4.4 Remarks on ©(), O() and () notations 83
4.4.1 Basic propertieso Lo L 83
442 Whentouse O(), 2() and ©() 84

4.5 Analysis of non-recursive algorithms. 86
4.5.1 Simpleloops. L. 87

4.6 Analysis of recursive algorithms 89
4.6.1 Solving recurrences 89
4.6.2 Generating functions (z-transforms) 96

4.7 Problems. 98
Abstract Data Types 101
51 Whatisan ADT? 101
5.2 A Simple “Bag” ADT specification 102
5.3 Basic implementations of an “integer bag” 103

Version 1.1 Jan 24, 2003

CONTENTS

5.3.1 Linked list implementation of IntBag 104
5.3.2 Resizeable array implementation of an Integer Bag . . 110

54 IntBag 115
5.4.1 Under the hood of IntBag 117

55 AwgenericBag Lo 124
5.6 Genericobjects L Lo 125
5.7 Remarks and Caveats 125
5.8 Postscript: Using Java o000 125
5.9 Problems. 125
II Data Structures 129
6 Stacks and Queues 131
6.1 Stacks 132
6.1.1 Theusesofstacks. 132
6.1.2 The implementation of stacks 137
6.1.3 Exampleso 138
6.1.4 “Peekable stacks” 144
6.1.50 Stack Frames, 145

6.2 Queues e e 146
6.2.1 Implementation 147

6.3 Priority Queues L Lo 151
6.3.1 Delta time queueo 152

6.4 Problems. 152
7 Trees 157
71 Whatisatree? 157
7.2 Definitions and termso 163
7.3 Representation of trees 165
7.4 Traversing Trees. 167
7.5 Binarytrees Lo L 169
7.5.1 Representing Binary trees 169
7.5.2 Binary Search Trees 172
753 Heaps 174

7.6 Problems. o 177

Version 1.1 Jan 24, 2003

vi CONTENTS
8 Balanced Binary Search Trees 179
8.1 The problem with ordinary Binary Search Trees(BSTs) 179
81.1 Whatcanwedo? 180
8.1.2 What does “reasonably balanced” mean? 180

8.2 Basic re-balancing methods 000000 181
8.3 'The Red-Black tree algorithm 182
8.3.1 Red-Black Tree (RBT) definition 182
8.3.2 RBT insert algorithm 182

84 AVL trees 189
85 Splaytreeso 189
86 Problems. 189
Hash tables 191
9.1 Mapping data to numberso 191
9.2 Hashtables 193
9.2.1 Collision resolution by chaining 194
9.2.2 Collision resolution by probing 194
9.2.3 Collision resolution by double hashing 194

9.3 Problems. 195
10 Graphs 197
10.1 Some definitionso Lo 197
10.1.1 Graph terminology 197
10.1.2 Freetrees 198
10.1.3 Rooted trees 198

10.2 Graph representations 199
10.3 Traversal algorithms 200
10.4 Breadth first searcho 201
10.5 Depth first search (DFS) 202
10.6 Topological Sort 202
10.7 Weighted Graphs 0oL 202
10.8 Minimum Spanning Tree 202
10.8.1 Prim’s algorithm 202

10.9 Shortest distanceo L. 203
10.9.1 Relaxation 203
10.9.2 Dijkstra’s algorithm 203
10.9.3 DAG shortest path 203
10.10Problemso Lo 203

Version 1.1 Jan 24, 2003

CONTENTS

vii

11 Computational theory
12 Strategies

13 Algorithms in Hardware

III Projects

14 A Simple Digital Circuit Simulator Engine

14.1 How to simulate a digital circuit (Analysis)
14.1.1 An ideal 2-input AND gate
14.1.2 An ideal AND followed by a delay
14.1.3 A clock generator circuit using an INVERTER
14.1.4 A clocked D-latch
14.1.5 Generating Fibonacci Numbers in hardware

14.2 The data types needed (Design)
14.2.1 The overall algorithm

14.2.2 Value.o
1423 Event
14.2.4 Event Queue
1425 Wire e
14.2.6 Block.
1427 Nando
14.3 Exercises

15 Combinational Logic

A Coding Standards

A.1 Recommended Organizational and Coding Standards
A.2 Other C programming conventions
A2.1 The eprintf libraryo
A22 Using assertso
A.2.3 Incorrect conventions
A.2.4 Miscellaneous conventions
A.3 Conventions used in preparing this book

Version 1.1 Jan 24, 2003

205
207

209

211

213
213
214
215
216
217
218
218
218
221
221
221
222
223
223
224

225

viii CONTENTS
B Data Structures, Memory and Pointers 235
B.1 Data structures 235
B.1.1 Strings in data structures 236

B.1.2 Compound data structures 239

B.2 Pointers to data structures 240
B.2.1 Linked structures 241

B.3 Problems. 244

C Modules, Linking and Scope 247
C.1 A Simple Example 247
C.2 Problems. 247

D Solutions 249
D.1 Answers for Chapter 1 250
D.2 Answers for Chapter 2 258
D.3 Answers for Chapter 3 263
D.4 Answers for Chapter 4 265
D.5 Answers for Chapter 5 269
D.6 Answers for Chapter 6 270
D.7 Answers for Chapter 7 275
D.8 Answers for Chapter 8 276
D.9 Answers for Chapter 9 276
D.10 Answers for Chapter 10. 276
D.11 Answers for AppendixBo 276

E Source code 281
E.1 Algorithms. 281
E.1.1 README 281

E.1.2 Makefile L 282

E.1.3 metricsh. 282

E.1.4 metrics.c. L Lo 283

E.1.5 selectionSort.c, 286

E.1.6 sortDriver.c 289

E.1.7 easter.c 290

E.2 Recursion 292
E.2.1 README 292

E.2.2 CountChange.c 292

E.2.3 CountChangeShowWays.c 293

Version 1.1 Jan 24, 2003

CONTENTS

ix

E.3

E.4

E.5

E.6

E.24 Makefileo oo 295
E.25 euclidc 296
E.2.6 fib-linear.c oL oo 297
E2.7 fibe ... o 298
E.2.8 goodTowers.c 298
E.29 towers.c 301
Parsing o 304
E.3.1 README 304
E3.2 Makefile oo 304
E33 calcec.o 305
E.3.4 nounPhraseWordCounter.c 309
ADTs . . . o 314
E.41 README 315
E4.2 Makefileo oo 316
E43 IntLLBagh 0. 316
E4.4 IntLLBag.c oo 318
E45 IntVBagh oo oo 320
E4.6 IntVBage oo, 322
EA47 IntBagh o oo 324
E48 IntBagPh o000 326
E49 IntBage oo oo 326
E.4.10 IntLLBag2.c oo 0oL 328
E.4.11 IntVBag2.c 331
E.4.12 simpleTestIntLLBag.c 333
E.4.13 simpleTIntBag.c 334
Trees o o e 334
E.51 README 0. 335
E.5.2 Makefile oo oo 335
Eb53 treesh oo 335
E54 myFamilye 0000000 336
E.5.5 traverse.c 336
Source code listings for Digital Simulator 337
E.6.1 A sample main function 337
E.6.2 The simulation algorithm (simulate.c) 340
E6.3 wvalueho oo 342
E.64 wireho o o 342
E6.5 blockh. oo 344
E.6.6 nand.ho 345

Version 1.1 Jan 24, 2003

CONTENTS

Version 1.1 Jan 24, 2003

E6.7 eventh 346

E.6.8 Event Q implementation 347

E6.9 eventQh o 347

E.6.10 priorityQ.ho L 347

E.7 Data Structs and pointers (Appendix B) 348
E.71 README, 348

E.72 Makefile 348

E.7.3 celestialBodies.c 349

E.7.4 nameDS.c 350
Colophon 357

Preface

This book is used as the course notes for the Ryerson Electrical and Computer
Engineering second year course FLE 428 —Engineering Algorithms and Data
Structures.

The book describes classic algorithms and data structures including stacks,
queues, priority queues, trees, graphs and hash tables. The emphasis is on
understanding the various algorithms in language-independent way and to
be able to analyze their performance.

In addition to basic understanding, however, we also place importance on
the ability to design and implement algorithms in a programming language
in a competent, professional manner. The primary programming language
we use is C.

The book is divided into three parts: Part I—Fundamentals—gives an
overview of the definition of algorithms and data structures, how they are
presented in this book, and how to analyze their performance. Part II—
Data Structures—forms the core of the book. The basic data structures and
associated algorithms for searching, sorting, and modifying sets, bags and
graphs are described and implemented. Part III—Projects—puts the ideas
presented in the first two parts to practical use in engineering applications.

Detalils

Just the facts, ma’am
—Sgt. Friday on Dragnet
We now give a brief overview of the book’s structure and suggestions on
how to read it.

Part I is an overview—many topics may be a review of ideas the reader
is already familiar with.

Version 1.1 Jan 24, 2003

xii

Preface

Version 1.1 Jan 24, 2003

Chapter 1 lays the foundations for the development, definition, analysis
and implementation of algorithms. Simple sort algorithms (selection sort and
merge sort) are used as the primary examples. (Other algorithms including
insertion sort and quick sort are treated in the problems.) The implemen-
tations in C used in this chapter illustrate the general coding and testing
standards we use throughout the book. Most of this chapter should be a
review for readers.

Chapter 2 is a review of recursive programming techniques.

Chapter 3 puts recursion to important practical use by developing basic
translators and interpreters for simple formal languages defined by the BNF
meta-language.

Chapter 4 defines various forms of asymptotic notation useful in compar-
ing the performance of different algorithms. Various examples are given as
well as some basic techniques for solving recurrences.

Chapter 5 introduces the concept of Abstract Data Type and how it can
be implemented in C. This chapter is mainly concerned with programming
techniques. We also take the idea of ADT and combine it with some concepts
from Object-Oriented design and programming. These techniques are used
extensively in the projects.

Part IT forms the core of the book. The topics include:

Chapter 6 introduces fundamental linear data structures including stacks,
queues and priority queues including several examples of how these structures
are used and how they can be implemented.

Chapter 7 introduces the most important non-linear data structure in
computer programming—{rees.

Chapter 8 looks at balanced binary search trees (BSTs) including Red-
Black and AVL trees.

Chapter 9 introduces hash tables, often the best way to organize data for
rapid searching. We also relate these ideas to hardware organizations such
as cache memory and look-aside buffers used in virtual memory systems.

Chapter 10 examines basic graph data structures.

Chapter 11 gives a rapid overview of topics in the theory of computation
such as Turing Machines, the “Halting Problem”, NP-complete problems,
etc. This chapter is not currently part of the ELE428 syllabus.

Chapter 12 is a short summary of classic approaches to algorithm design.
Some topics are: dynamic programming, heuristic methods, etc. This chapter
is not currently part of the ELE428 syllabus.

Chapter 13 is an overview of techniques for implementing algorithms in

xiii

hardware that allows readers to combine their understanding of algorithms
and data structures with their skills in digital system design. Some of the
topics include: basic sequential implementation and pipelining, cache mem-
ory system as a form of hashing, sorting networks, FF'T networks, and general
strategies.

Part III contains projects that electrical and computer engineering stu-
dents may find interesting. The projects use many of the basic data structures
and algorithms described in the book and apply them to larger problems.

Chapter 14 contains the design and implementation of a general purpose
event-driven simulator.

Chapter 15 contains the design and implementation of a package of useful
modules for analyzing and synthesizing basic Boolean combinational logic
circuits.

Finally, the Appendices contain auxiliary information.

Appendix A explains the coding and organizational standards recom-
mended for students as well as how this book itself was organized.

Appendix B is a review of elementary data structure and pointer use (in-
cluding memory allocation and manipulation) for the C programming lan-
guage.

Appendix C is a review of basic organizational strategies for modules
making up a software product.

Appendix D gives the answers to most of the problems.

Appendix E gives the complete source code for all the programs discussed
in the book.

There is also an annotated Bibliography, an Index and a Colophon (de-
scribing the software tools I used in writing the book).

Philosophy

Just the FAQs, ma’am
—Sgt. Dayfry on NETdrag

The philosophy of the book can be explained as answers to “Frequently Asked
Questions” given below. (These are also questions I frequently ask myself.)
Why use C—a dinosaur language?
C is a simple language that is appropriate for analyzing and implementing
basic algorithms. And, far from being a dinosaur, it is the programming

Version 1.1 Jan 24, 2003

Author’s note: This
Appendix will not be
part of the final book.
It is included in the
draft version for easy
reference. (Of course,
all the code will always
be available electroni-
cally.)

xiv

Preface

Version 1.1 Jan 24, 2003

language of choice in one of the most popular products that has hit the
market in recent years—the Palm Pilot personal digital assistant. ...Oh,
and by the way, have you heard of Linuz. ..

Why use English instead of pseudo-code (or Smalltalk or lisp or ...) to
describe algorithms?

I use English because it emphasizes the basic structure of an algorithm
without reference to any particular programming language and avoids the
danger of chasing the latest “trendy” language. A competent programmer
in any language should be able to express what they are doing in English
and be able to convert a clear description of any algorithm to their favorite
programming language.

What does the word “engineering” mean in “Engineering Algorithms and
Data Structures”?

As a trivial example, I occasionally use j, rather than i, to represent
/=1 and I use the terms “nodes” and “arcs” in graph theory rather than
the words “vertices” and “edges” usually found in mathematical treatments.

More seriously, I have tried to take examples from engineering (especially
digital systems) to illustrate general principles. In particular, the projects
are designed with engineering applications and concepts in mind.

What are your favorite books on data structures, algorithms and program-
ming? Why did you write another one?

My favorite books on data structures and algorithms are Introduction to
Algorithms[THC90] by Cormen, Leiserson, and Rivest and Donald Knuth’s
three volume opus The Art of Computer Programming[Knu97a]. They are
more advanced and mathematical than this book (especially Knuth).

In one sense, my book is a simplified version of these classics. I hope,
however, that it is not too “dumbed down”. Indeed, I hope that I have
covered enough basics in this book so that interested readers could approach
these more advanced texts on their own.

For ideas on programming philosophy and practice, I like The Muythi-
cal Man-Month[FP95] by Brooks, The Practice of Programming[KP99] by
Kernighan and Pike and Programming Pearls[Ben99] by Jon Bentley. I also
enjoy The Design of Everyday Things[Nor90] by Donald Norman for insights
on how to design things in general and software in particular that is usable.

For C Programming, my preferred references are The C Programming
Language|KR88|] by Kernighan and Ritchie and C, A Reference Manual[HJ91]
by Harbison and Steele.

What is your favorite programming language?

XV

Right now (and for the past 3-4 years), it is Java...but things change. ..
How did you choose the examples for the book?

Most of the examples are either classics or have relevance to other branches
of computer/electrical engineering at roughly the same level as is addressed
in this book (i.e. second or third year).

Classic examples (such as the Towers of Hanoi problem or ways to count
change) are important not because anyone will ever have to write a pro-
gram to perform these things, but because there is a wealth of literature
about them and most students in a computer/electrical engineering/science
program have encountered these classic problems during their studies. This
creates a common vocabulary amongst practicing programmers, analysts and
engineers that can be exploited to communicate ideas succinctly.

Why did you choose TgX (BTEX) to write the book?

Because I am old(-fashioned). I am used to this environment and find
that it produces high-quality typeset hardcopy (especially for math) and it
is usable as a front-end to an HTML translator to produce web pages that I
have some control over.

Notes on the problems

There is an extensive set of problems and I have written solutions for all' of
them. Most of the solutions can be found in Appendix D. However, some
solutions have not been published; they are only available to your professors.

Some of the problems explore concepts in greater depth than is given in
the text and the answers are more complete. There is no indication (cur-
rently) about which problems are simple drills or exercises and which have
longer answers that readers may benefit from studying. (All you can do
for now is look at the answers in Appendix D and note which ones seem
particularly long.)

There is also a private (not distributed) bank of questions that we can
use for quiz and and exam purposes.

I This is not entirely true...but I am working on it. I hope to eliminate this footnote
before the end of term (April 2000)

Version 1.1 Jan 24, 2003

xvi

Preface

Version 1.1 Jan 24, 2003

Notes on the source code

The complete source code for all examples and problems is available on-line.
The source code integrated with the text is derived from working code, but
is not always identical. For example, error-detection (checking return values
for sanity, etc.) is often removed so that the basic algorithm stands out.
Other changes include different or more comments and eliminating the use
of the eprintf library functions.

I also suggest that readers at least skim the coding standards (Appendix A)
before serious examination of the source code.

Typographical conventions

We use this font for C source code or other things whose precise meaning is
directly expressed as a well-defined sequence of characters (including things
you might type or see on a dumb terminal). (For example, most of the
times this font is used, the contents would not change if the entire book were
translated into another language.)

Another convention used is to. ..

isolate details (that may be of interest to only some readers) without
breaking the linear flow of the text...Readers who feel comfortable
with the ideas expressed previously can simply skip the details de-
scribed here. . .

The offset text above is an example. (It is set in smaller type and is
indented.) In a sense, it is “like a footnote”?2. It is really more like a “sidebar”
in a magazine article.

The book is written using the tried and true method of linear exposition—
a form that has been used since writing was invented. The Web may change
this, but it is hard to imagine precisely “how”. Nonetheless, it is obvious
that a web version of this book offers many more options. ...

2But footnotes provide succinct clarification that can usually be skipped by most read-
ers.

xvii

Acknowledgments

The students in ELE 428 have had to endure a text book that is “under
construction”. I am am thankful for their patience and comments. I have
also relied heavily on their attention when teaching the course to point out
errors in draft versions of the text and areas where more explanation or
examples would be useful.

Thanks to Luis Fernandes, Sophie Quigley, Jason Naughton, Cenk Bilgen,
Tamer Rabie and Reza Sedagha for their helpful comments.

And, of course, to W and C.

Version 1.1 Jan 24, 2003

xviii Preface

Version 1.1 Jan 24, 2003

Part 1

Fundamentals

Version 1.1 Jan 24, 2003

Chapter 1

Algorithms

Algorithms and data structures are the heart and soul of understanding, for-
mulating, analyzing and implementing computer programs to solve problems.
This chapter gives a whirlwind tour of algorithms—the “heart” of programs.

People can solve problems, but that does not mean that they can express
what they did as an algorithm.

As a simple example, most people can be given a a small number (say,
less than 10) playing cards and re-arrange them so that they are in sorted
order. Indeed, they can probably do so with about as many or even fewer
movements than the best algorithms to perform the same task. Despite
humans’ virtuosity, they may be flummoxed when asked to describe what
they did in sufficiently general terms to apply the method to arbitrarily large
collections of cards; the steps also have to be described in sufficient detail so
that an “unintelligent” robot could carry them out. If you can describe your
method for sorting cards in a general way using only simple operations then
you have formulated an algorithm.

In this chapter, we describe the nature of algorithms. We use a simple
example—the problem of “sorting cards” —to explore different algorithms for
solving the same problem and comparing their effectiveness.

We also examine how the algorithms can be implemented and tested using
the C programming language.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

4 Algorithms

1.1 What is an algorithm?

A book called “Engineering Algorithms and Data Structures” surely requires
that the ideas “algorithm” and “data structure” be defined. Both concepts,
as well as their abstract underpinnings and some concrete implementations,
will be given clear descriptions in due course. We start, however, with an
intuitive definition of an algorithm.

An algorithm is:

A systematic method for solving a problem.

This deceptively simple definition requires additional clarification: what
is a “solution”, what is a “problem”, and what is a “systematic method”?
Auxiliary questions include “Should an algorithm be given a name?” and
“How should it be described?” And, of course, there is the question of how
“good” it is.

For the moment, we will assume that the concepts of “problem” and
“solution” have intuitive meanings. Let’s narrow our focus to the question:
“What is a systematic method?”

All algorithms in this book will be described as Step-By-Step procedures:
you always start at Step 1 and then normally continue to Step 2, then Step 3
and so on. Each step is described in English. At least one step must contain
the word STOP (to tell us when—you guessed it—we should stop performing
the algorithm because the solution has been found). A step is also permitted
to change the default sequence; for example, although “Step 5”7 is normally
followed by “Step 6”, “Step 5” may say “Go back to Step 2” to modify the
usual sequence. Indeed, we may precede an action like “go to Step ¢’ with a
conditional such as “If your mother’s middle name is ‘Ledgerwood’, then go
to Step 2.” (If the condition is false, the next step is performed.)

As a trivial example, consider the algorithm to calculate the sum of an
arbitrary collection of numbers:

CalculateTotal Algorithm

Calculate and output the total of n numbers (the input)

Step 1: Set total < 0.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

1.1 What is an algorithm?

Step 2: If there are no more numbers to read, output total (the answer) and
STOP.

Step 3: Read the next input number and add it to total.

Step 4: Go back to Step 2.

This example shows some other features of algorithms as presented in
this book. Algorithms have a name (in this case, CalculateTotal) and a brief
description. The description also names some parameters that reflect the size
of the problem. Here the problem’s size is defined by the single parameter
n: how many numbers are in the collection. Algorithms perform operations
on their inputs (here, the “collection of numbers”) and produce some result
as their output (here, the total). The steps are numbered sequentially and
well-defined.

Donald Knuth—arguably the most influential computer scientist since
the advent of computers—describes five criteria that algorithms must
meet[Knu97b, p. 4-6] which we paraphrase as:

Finiteness: An algorithm must terminate in finite time.
Definiteness: Each step must be precisely defined.
Input: There are zero or more inputs.

Output: There are one or more outputs.

Effectiveness: Each step in the algorithm must be sufficiently basic that
an ordinary human can perform it in finite time using operations that

are “well understood” by most humans.

In many cases, a stricter definition of effectiveness will be used: a step
is elementary if there is an upper bound on the time required to do it that
is independent of the size parameters of the problem; otherwise, it is non-
elementary.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

6 Algorithms

1.2 A simple sort algorithm (Selection Sort)

Suppose you have a bunch of cards with numbers written on them. You want

to sort them. More specifically, you have to remove cards from the unsorted

pile and create a new sorted pile with the the smallest one at the bottom.
A simple method for doing this is:

SelectionSort Algorithm

Sort n cards

Step 1: If there are no cards to sort, then STOP.

Step 2: Otherwise, find the smallest card, remove it and place it on top of
the sorted card pile.

Step 3: Go back to step 1.

How hard is it to sort n cards using this algorithm?

We use the word “hard” here to mean the number of elementary steps
that must be performed before the process stops. In this case, the number
of steps is dependent on the number of cards to be sorted. For example, if
there are no cards, we still have to perform Step 1. If there is one card, we
have to perform Step 1, Step 2, Step 3 and Step 1 again for a total of 4 steps.
In general, the total number of steps to sort n cards is 3n + 1.

Alas, there is a problem. The three steps in the algorithm are not all
elementary. Steps 1 and 3 are elementary, but Step 2 (“find the minimum”)
is not: the time required to perform it depends on the number of cards
involved.

We could express Step 2 (“find the minimum”) as a sequence of elemen-
tary operations—i.e. as an algorithm; indeed, we leave this as an exercise.

Clearly, to find the minimum in n cards, you must examine each one. (If
you don’t look at them all, there is always the possibility that one of the
unexamined cards is smaller than all of the previous ones.)

We can informally describe the process of sorting 5 cards in terms of “how
many cards we have to look at” as follows:

1. Look at 5 cards and put the smallest one on the table.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

1.2 A simple sort algorithm (Selection Sort)

2. Look at 4 cards and put the smallest one on the table.
3. Look at 3 cards and put the smallest one on the table.
4. Look at 2 cards and put the smallest one on the table.
5. Look at 1 card and put it on the table.

6. STOP.

We need to look at 5+4+3+2+1=15 cards
In general, we have:

Number of cards to look at = »_ i=n(n+1)/2=n*/2+n/2

0<i<n

(1.1)

and this is the total number of elementary “look-at” steps that are needed

to perform all the Step 2s.
So we can say:

1
Mslook—at + 7183

Total number of steps = (n +1)S; + 5

where S; and S3 represent Steps 1 and 3 respectively.
Letting:

Ty = time for Step 1

T, = time for look-at Step
T; = time for Step 3
T(n) = time to do algorithm for n cards
we obtain:
n(n+1)
or:

T(n) = (Tu/2)n* + (1 + T»/2+ T3)n+ Ty = can® + cin+ ¢

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

(1.2)

8 Algorithms

Irrespective of the values of ¢y, 1, and ¢y, the quadratic term (con?) will
dominate for sufficiently large n. Indeed, the general form of the most rapidly
growing term in T'(n) (here, the quadratic term) is all we need to know about
an algorithm’s performance for large problem sizes. In the case of Selection
Sort, the preceding analysis produces our jewel:

‘Selection sort is a quadratic algorithm

Note that this characterization ignores the specific values of the constants
¢y, ¢1 and cy. Nonetheless, we can still calculate reasonably accurate numbers
about the behavior of the algorithm given only its quadratic nature and a
single performance time.

For example, suppose that the algorithm is encoded into some program-
ming language and executed on some machine with an input of 100,000 cards.
We measure the time to perform the sort as 10 seconds. How long will the
same implementation of the algorithm take to sort 200,000 cards (twice as
many)?

Assuming a problem size of 100,000 is “sufficiently large” to use the
quadratic approximation, doubling the size of the problem quadruples the
amount of time; hence, it will take about 40 seconds to sort 200,000 cards.

Let’s replay that reasoning a bit more slowly. If the algorithm is quadratic,
the time to perform the algorithm for input size n is:

T(n) =cen* +cn+cy (where ¢y, ¢; and ¢ are constants)

But for “large” values of n, the fastest growing term dominates and
T(n) = con?. Since we know that 7'(100000) = 10, we can calculate c; as ¢y &
10/(10%)2 = 107°. Hence, T'(200000) ~ 1072x 2000002 = 107 x4x 100 = 40.

Calculating the value of c; was unnecessary, however, since we could
simply reason: T'(2n) = c3(2n)* = 4 x ¢un® = 4T(n). In short, (as stated
previously) doubling the size of a quadratic algorithm quadruples the time.

Had the algorithm been /linear, it would take 20 seconds to solve the
larger problem; had it been cubic, it would take 80 seconds; and, had it been
logarithmic, it would take 10.6 seconds to sort 200,000 cards.

The statement about the logarithmic performance may benefit from more
detailed examination as outlined below:

T(n) = klogn

Version 1.1 (2003-03-11) (chapter version: 2002-01-07)

1.3 A better sorting algorithm (Merge Sort)

10 = klog100000 (the known case)
=k = 10/log,,10° =10/5 = 2

Hence:

T7(200000) = 2log;,200000
= 2(log; 100000 + log;, 2)
= 2(5+0.3)
= 10.6

Some readers may wonder why we used base-10 logarithms instead of
natural logs or base-2 logs or something else. After all, the statement
of the problem did not specify the base of the logarithms. In fact, you
would get the same result no matter what base was used; base-10 logs
just made life simpler. Problem 1.11 (and its answer) explores this.

In our future analyses of various sorting algorithms, we will evaluate
their performance in terms of the number of compare, move, and exchange
operations they perform to sort n cards. Indeed, it is usually the case that
the number of comparisons alone gives a good estimate of the relative effec-
tiveness of different sort algorithms. (We will justify this simplification in
Chapter 4.)

1.3 A better sorting algorithm (Merge Sort)

In this section we will describe a superior sort algorithm—MergeSort—which
is not too difficult to understand. We will begin with a related algorithm—
merging; next we describe the merge sort algorithm; finally, we will analyze
its performance and prove that it is much better than selection sort.

1.3.1 Merge

First, we examine the problem of merging two sorted decks and then how this
technique can be used to implement the Merge Sort algorithm. The “merge”
problem can be described as follows.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

10 Algorithms

Suppose we have two piles of sorted cards. How do we create a single pile
that is sorted?
The basic algorithm is:

Merge Algorithm

Merge two sorted piles into a single sorted pile of n cards

Step 1: If both piles are empty, STOP.

Step 2: 1f the left pile is empty, place the entire right pile face down on top
of the sorted pile and STOP.

Step 3: Otherwise, if the right pile is empty, place the entire left pile face
down on top of the sorted pile and STOP.

Step 4: Otherwise, look at the top of each pile, choose the biggest, and place
it face down on top of the sorted pile.

Step 5: Go back to Step 1.

In even simpler terms, you just repeat Step 4 (“pick the biggest from the
tops of the two piles”). In the worst case, you have to do n comparisons.
Hence, the merge algorithm is linear (i.e. the total number of elementary
steps to perform the algorithm is of the form ¢1n + ¢g.)

1.3.2 Combining Selection Sort and Merging

Suppose we wish to sort a pile of 16 cards. Using Selection Sort would require
16 x 15/2 = 120 comparisons'. However, if we divide the pile into two equal
piles of 8 cards each, we can sort each pile independently with 8 x 7/2 = 28
comparisons. Since we have to do this twice, we need 56 comparisons in all
to get two sorted piles of 8 cards each.

We can then merge the two sorted piles into a single one with, at worst,
an additional 16 comparisons. The total number of comparisons, then, is
284+ 28 +16 = 72 which is quite a bit better than than the 120 required with
the pure Selection Sort algorithm. We can express this idea as the following
algorithm.

!Note that the number of comparisons is 3 n(n — 1)/2 which differs from the number
of “look-at” steps because finding the minimum of n items requires n — 1 comparisons,
not n “look-ats”.

Version 1.1 (2003-03-1].) (Chapter version: 2002-01-07)

1.3 A better sorting algorithm (Merge Sort) 11

MergeSelSort Algorithm

Sort n cards, where for simplicity n is even

Step 1: Split the deck into 2 piles (of equal size).
Step 2: Sort the left pile using SelectionSort.
Step 3: Sort the right pile using SelectionSort.
Step 4: Merge both piles into the final pile.

It is debatable whether this is a better algorithm. While it is true that
fewer comparisons are required, it is also true that the algorithm is more
complex. Furthermore, it is still a quadratic algorithm (one of the problems
asks you to prove this); at best, the values of some of the constants ¢y, ¢; or
co may be smaller.

1.3.3 The Merge Sort algorithm

This basic idea can be applied over and over again. Thus, instead of using Author’s note: A dia-
Selection Sort for each pile of 8 cards, we could split each into 2 piles of 4 gram would be useful
cards and so on. here.

MergeSort Algorithm

Sort n cards

Step 1: If there are no cards or only 1 card, STOP.

Step 2: Otherwise, split the deck into 2 piles (of about equal size).
Step 3: Solve the problem again using only the first pile.

Step 4: Solve the problem again using only the second pile.

Step 5: Merge both piles into the final pile.

We can express the idea as simply “Split the deck in 2; sort each sub-deck;
merge the results”.

Note that the easiest way to implement this algorithm in a program-
ming language is to use recursion. You have probably already learned about
recursion; we will also review this important concept in Chapter 2.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

12

Algorithms

1.3.4 The analysis of “merge sort”

How can we determine the time required to perform this algorithm?
We start with the basic equation:

Time to sort n = Time to split deck
+ Time to sort left pile (size = n/2)
+ Time to sort right pile (size = n/2)
+ Time to merge piles (total size =n/2 +n/2 = n)

We can simplify this equation with the following conventions and assump-
tions:

e Let T'(n) represent the time to sort n cards.
o Let Ty be the time to split a deck.

e Let Kin—+ Kj be the time to merge n cards (using our previous insight
that merging is a linear algorithm).

We obtain:

T(n) =Ty + T(n/2) + T(n/2) + Kin + Ky (1.5)

We now make some broad simplifications to this equation. First, we will
assume that T,y = 0 and Ky = 0; second, we will set K; = 1. These
assumptions will make our lives easier, but are they valid? Our goal is to
determine the most rapidly growing term in 7'(n) and, intuitively, it seems
reasonable to set constants to either zero (when we think they will not be sig-
nificant in the most rapidly growing term) or one (when we think they will).
Chapter 4 grounds these simplifying assumptions on a firm mathematical
basis.

With these simplifications, we obtain:

T(n)=2T(n/2)+n (1.6)

This kind of equation is called a recurrence—i.e. an equation that ex-
presses its value in terms of its values for smaller arguments. The value of

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

1.3 A better sorting algorithm (Merge Sort)

13

one or more base cases must also be given?; recurrences can be then solved
by hand in a “bottom-up” manner for small values. For example, suppose
that we are given T'(1) = 0 for the above recurrence. We can then calculate
T(2) directly from the recurrence as: T(2) = 27(2/2) + 2 = 2. Table 1.1
below calculates T'(n) for n = 2¢,i =1,2,3,4,5,6.

n | T(n/2) 2T (n/2) +n
2 0 2x0+2=2
4 2 2x2+4=28
8 8 2x8+8=24
16 24 2x24+16 =064
32 64 | 2x64+32=160
64 160 | 2 x 160 + 64 = 384

Table 1.1: 2T'(n/2) + n for selected values

We would like to obtain a closed form solution for T'(n). Table 1.2 com-
pares T'(n) with the simple functions lgn, n and n?. (Note that we use “lg”
to indicate logarithms of base 2 (i.e. log,), “In” for natural logs, “log,,” for
logs of base 10 and “log” for logarithms of undefined base.)

We see plainly that 7'(n) grows faster than lgn or n, but more slowly than
n?. Hence it grows at some rate between linear and quadratic. Perhaps it
grows as n'*®, although if you calculate this function it will become apparent
that T'(n) grows more slowly® than n'-.

If you examine the table closely, however, you may note that multiplying
column 1 (Ign) with column 2 (n) produces column 3 (7°(n)). Even if you
add more rows to the table, you will find that, in general, T'(n) = nlgn.

How do we prove that T'(n) = nlgn?

We use mathematical induction.

To use mathematical induction, we must show that the statement we wish
to prove is true for one or more base cases and then show that if it is true
for smaller numbers, it is also true for larger numbers. For example, if the
statement f(n) = g(n) is known to be true for n = 0 (the base case) and if

2There is some similarity between recurrences and differential equations. In both cases,
an exact, closed form solution cannot be found unless there are B(Cs. For differential
equations, a BC' is a boundary condition; for recurrences, it is a base case.

3A problem in Chapter 4 asks you to prove that nlgn grows slower than n'*¢, € > 0.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

14

Algorithms

lgn| n|T(n)| n?
1] 2 2 4
2] 4 8 16
3| 8 24 64
4116 64 | 256
5132| 160 | 1024
6|64 384 | 4096

Table 1.2: T'(n) compared with other functions

we can prove that if it is true for n = k, it can be shown that it is also true

for n = k + 1, then it must be true for all n.

In the present case, we are told that 7'(1) = 0 and our table shows that

the general formula also holds for n = 2 (our base case).

Let us assume that 7'(n) = nlgn and prove that this implies T'(2n) =

2nlg2n.
We know that:

T(2n) =2T(n) + 2n

But, since T'(n) = nlgn (our hypothesis), we have:

T(2n) =2nlgn+ 2n

or:

T(2n) =2n(lgn + 1)

But, since lg2 = 1, we can write:

T(2n) =2n(lgn +1g2)

And, finally, since logx + logy = log zy; we can write:

T(2n) = 2nlg2n

This completes the proof that the recurrence T'(n) = 27 (n/2) + n where
T(1) = 0 is solved in closed form with the formula T'(n) = nlgn.*

40K... We only really proved the formula for n’s that are exact powers of 2. Even
more precisely, we assumed n was of the form 2¢ and did mathematical induction on 3.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

1.4 Implementation

15

1.4 Implementation

The previous section concentrated on the description and analysis of sim-
ple algorithms without reference to their implementation in any particular
programming language or how the data they operate on is represented in a
computer. This section deals with these ideas in general and how they relate
to the C programming language in particular.

The sorting algorithms we have discussed have been phrased as sorting “a
pile of cards”. This metaphor allows you to perform the algorithm manually
(or as a thought experiment) so that you can get a good intuitive feel for
the algorithm. But it is not an appropriate metaphor for writing a computer
program.

Our “pile of cards” is a concrete instance of a more abstract concept: “a
collection of things”. Collections are most commonly and easily implemented
in programming languages as either arrays or lists. The C programming
language, like many others, directly supports arrays and this is the way we
implement our collection.

Furthermore, we need some specific kind of object to sort. We choose to
sort ints. (It would be nice to be able to sort any kind of data with a single
sort routine, but we defer a discussion on the ways to do this until Chapter 5.)
We can make the algorithm somewhat more general, however, by specifying
that it can sort any sub-array (from index first to last inclusively) of the
array. The Selection Sort algorithm to sort a sub-array of ints is:

SelectionSortArray Algorithm

Sort a sub-array of n elements from first to last inclusively

Step 1: If the sub-array to be sorted contains no elements (i.e. if the first
index is > the last index), STOP.

Step 2: Otherwise, interchange array element array[first] with the small-
est value in the sub-array array[first+1]..array[last].

Step 3: Set first < first + 1.

Step 4: Go back to Step 1

Version 1.1 (2003-03-11) (chapter version: 2002-01-07)

16 Algorithms

Before writing the C code, note that an algorithm whose last step goes
back to a conditional step is semantically equivalent to a while block, except
that the test in the while statement is the opposite of the one in the if
statement.

Let’s explore this “semantic equivalence” more closely. A generic al-
gorithm can be:

Step i: If foo is TRUE, STOP.
Step t+... Other steps.
Step k: Go back to Step 1.

The mechanical translation of this kind of step-by-step sequence to
pseudo C is (where we assume that STOP means return:

step_i: if (/* "foo" is TRUE%*/)
return;

/* ... other steps ... *x/
step_k: goto step_i;

This is then converted to a while loop as follows:

while (/* "foo" is FALSE */)

{

/* ... other steps ... */
}
return;

The C implementation is trivial to write:

void mySort(int array[], unsigned int first, unsigned int last)
{
int i;
/* Step 1: Is there nothing to sort? */
while (first < last)
/* Step 2: Swap... */
for(i = first+1l; i <= last; i++) {
/* Find smallest one in rest of array */

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

1.4 Implementation

17

if (array[first] > array[i])) {
/Step 2..continued...swap them */
int tmp;
tmp = array[first]
array[first] = arrayl[il;
array[i] = tmp;

}
first++;
}
return;

1.4.1 A test harness for implementation

We will now re-write the C implementation of the selection sort algorithm
using a “test harness” environment that will allow us to measure and compare
the effectiveness of different sorting algorithms.

We first note (as stated previously) that all sorting algorithms (except
those which do not use pair-wise comparisons, such as radix sort) involve the
use of comparisons between two elements and possibly the interchange of two
elements or the copying of an element to some auxiliary structure.

If we analyze Selection Sort, for example, we see that the number of
comparisons required is always:

> i=n(n—-1)/2

1<k<n-—1

The algorithm performs an interchange of elements (a swap operation)
only when a comparison finds a smaller number. Consequently, the number
of swap operations can be no larger than the number of comparisons. The
worst case (i.e. number of swaps = number of comparisons) occurs when the
input is in reverse sorted order. The best case, no swaps at all, occurs when
the input is already sorted.

This theoretical analysis is summarized in Table 1.3.

While this analysis is, in fact, correct, it would be useful to actually
confirm it with a C implementation of the algorithm that tracks how often
each of the operations are performed and reports the results. This would
allow us to confirm our theory with practice.

We adopt the convention that we will not directly compare two elements;
rather, we will invoke a function myCompare(int el, int e2) to compare

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

18 Algorithms

Operation How often Notes

compares n(n—1)/2 Independent of input order.

swaps >0, <n(n—1)/2 Best: input sorted; worst: reversed
copies 0 Copy operation never used.

Table 1.3: Analysis of selection sort

two elements. Similarly, we will interchange elements with mySwap() and
copy them with myCopy ().

In particular, we will assume a module® called metrics exists with the
following Application Programming Interface (API):

int myCompare(int i, int j): Compares its arguments, ¢ and j, returning:
<0 ifi<y
return value =<¢ 0 ife=j
>0 ifi>j
The function keeps track of how many times it is invoked.
void mySwap(int * ipl, int * ip2): Swaps the integers pointed to by its
two arguments.
The function keeps track of how many times it is invoked.
void myCopy(const int * from, int * to): Copies the integer pointed to
by its first argument to the location indicated by the second argument.
The function keeps track of how many times it is invoked.

unsigned int getNumCompares(): Returns the number of times
myCompare () was invoked.

unsigned int getNumSwaps(): Returns the number of times mySwap()
was invoked.

unsigned int getNumCopies(): Returns the number of times myCopy ()
was invoked.

SWe use the word module here to mean a single object file that contains several related
functions that have a well-defined interface.

Version 1.1 (2003-03-1].) (Chapter version: 2002-01-07)

1.4 Implementation

19

Using this API®, we can re-write the selection sort C implementation as:

void mySort(int arrayl], unsigned int first, unsigned int last)

{

int i;
/* Step 1: Is there nothing to sort? */
while (first < last) {
/* Step 2: Swap... */
for(i = first+1l; i <= last; i++)
if (myCompare (array[first], array[i]l) > 0)
mySwap(&array[first], &arrayl[il);
first++;
}

return;

(The complete source code is given in Appendix E or in the file

src/algorithms/selectionSort.c. Note that to use the metrics module,
the header file metrics.h must be included in the source code and the object
file metrics.o must be linked with the application.)

We can now write a main “driver” program to exercise the algorithm and

print statistics as follows:

#include '"metrics.h"
#define MAX_SIZE 1000000
int main(int argc, char * argvl[])

{

int i, a[MAX_SIZE];

/* Read ints from stdin into an array */
for(i = 0; (scanf("%d", &alil) != EOF) && (i<MAX_SIZE); i++)

H

/* sort the array */
mySort(a, 0, i-1);

6You do not need to know how these functions work in order to use them. Should you

be interested, however, they can be found in the files metrics.c and metrics.h in the
directory src/algorithms.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

20

Algorithms

/* Print stats */
fprintf(stderr, "Comparisons: %d\n", getNumCompares());

3

(The complete source code is given in Appendix E or in the file
src/algorithms/sortDriver.c.)

We can then create an executable file such as selSort by linking the
object codes for sortDriver.o (which provides “main”), selectionSort.o
(which provides an implementation of “mySort”) and metrics.o (which pro-
vides the copy, compare and swap functions) together.

This approach has the additional advantage that we can use the same
main routine with different implementations of the mySort function. For
example, if we implemented the Merge Sort algorithm in a file mergeSort.c,
then we could create an executable “mergeSort” by linking mergeSort.o,
sortDriver.o and metrics.o.

1.5 Further reading

Knuth[Knu97b, p. 7-9] gives a more mathematically precise definition of
an algorithm using set and language theory. This more formal definition
is important in understanding more advanced concepts in algorithm theory
such as NP-complete problems.

Corman et al.[THC90, p. 24| use pseudo-code rather than step-by-step
English descriptions to describe algorithms.

Kernighan and Pike[KP99, p. 33| give an excellent and succinct explana-
tion and implementation of quicksort.

The idea for a sort test harness was borrowed from The Java Programming
Language| GA9T).

1.6 Problems

1.1 Formulate the “find minimum” algorithm required in the selection sort
algorithm.

1.2 Suppose there is a collection of cards and each card has a single integer
printed on it. Describe a method for determining if the collection contains

Version 1.1 (2003-03-11) (chapter version: 2002-01-07)

1.6 Problems

21

any duplicate cards. What is the complexity of your algorithm as a function
of n, the total number of cards in the collection. (Try to find a simple nlogn
algorithm.)

1.3 Given a sorted collection of 1023 numbered cards, what is the smallest
number of cards you have to look at to determine if a certain number is in
the collection or not.

Describe a general algorithm to determine if a particular item is in a
sorted collection of n objects. (You may assume that the number of cards
is of the form 2' — 1.) What is the complexity as a function of n of your
algorithm?

1.4 In our analysis of the running time of merge sort, we assumed 7'(1) = 0
and the time to merge n cards was n.

1. Suppose T(1) = 1. Calculate the first few values of T(2) where i =
0,1,2,3,.... Guess the closed form solution for T'(n) and prove it.

2. Repeat the above problem assuming 7°(1) = 0 (the original assumption)
but that the time to merge n cards is 2n. (i.e. the recurrence is now
T(n) =2T(n/2) + 2n).

3. Repeat again assuming that 7'(1) = a and T'(n) = 2T (n/2) + bn.

1.5 Define an algorithm called CalculateAverage that outputs the average
of a collection of n numbers.

1.6 Insertion Sort is informally described (for a pile of cards) as: consider
the deck to be divided into an initial sorted part (at the beginning this “sorted
part” is empty) followed by an unsorted part. Take each of the cards in the
unsorted part in turn and insert them into the sorted part at the proper
position.

Express this as an algorithm using piles of cards.

Express it as an algorithm for sorting a sub-array of ints.

Implement it in C. How many comparisons, swaps and copies are required
in the worst and best cases?

1.7 Bubble Sort is informally described as going through an array one pair
of elements at a time. (Note that the pairs overlap. For example, if the first
pair is “element 1”7 and “element 2”, then the next pair is “element 2” and

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

22

Algorithms

“element 3”.) Whenever the pair is unsorted, their positions are switched.
You keep on going through the array in this way until the whole thing is
sorted.

Express this as an algorithm using piles of cards.

Express it as an algorithm for sorting a sub-array of ints.

Implement it in C. Analyze its worst and best case complexity (i.e. num-
ber of swaps, copies, and compares).

1.8 How many steps are required to determine the total of n items using
the CalculateTotal algorithm? If Step ¢ takes a constant time, 73, to perform,
derive an equation for the time required to do the algorithm for n inputs.
Characterize the complexity of the algorithm (e.g. quadratic, cubic, linear,
logarithmic, or ...)

1.9 Suppose an algorithm takes 5 seconds when the input size is 20,000.
How long does it take if the input size is 100,000 under each of the following
conditions:

e The algorithm is linear. e The algorithm is nlogn.

e The algorithm is logarithmic o The algorithm is quadratic.

e The algorithm takes constant
e The algorithm is cubic. time.

1.10 You will need some equipment for this problem: a deck of playing cards
(52 cards, no Jokers) and a stopwatch. Shuffle the deck, take some cards from
it, and time how long it takes to sort them using different methods.

You may use any sort criteria you wish, but I suggest you treat all &
cards > Q cards > { cards > & cards. For example, sorting the cards
4, 70, 28, 30 would result in 2d, 70, 30, 4é.

In particular, try the following:

e Select 8 cards at random and sort them using whatever method comes
“naturally” to you. (You are allowed to look at all the cards at once
and use your innate “parallel processing” abilities if you wish.) How
long does it take? (You may wish to try it a few times and take the
average.)

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

1.6 Problems

23

e Select 8 cards at random and sort them by mechanically following the
SelectionSort algorithm. (In this case, you are only allowed to look at
one or two cards at a time. Pretend you are a robot.) How long does
it take?

e Do it again (as a “robot”) using the MergeSort algorithm. How long
does it take.

e Repeat all of the above for 16 and 32 cards. Does you experiment
confirm the mathematical analysis of the complexity of the two algo-
rithms?

1.11 The text states that the base of logarithms is irrelevant when talking
about an algorithm being of logarithmic complexity(page 9). Explain why.

1.12 Formulate the selection sort algorithm for a computer implementation
that uses lists instead of arrays.

1.13 Knuth describes an algorithm for calculating the date of Easter”
for any year after 1582 (A.D.) as follows®.

Easter Algorithm

Determine date of Faster for the year Y

Step 1: Set G + (Y mod 19) + 1.

Step 2: Set C «+ |Y/100] + 1.

Step 3: Set X < [3C/4| —12, Z «+ [(8C +5)/25] — 5.
Step 4: Set D + |5Y /4| — X — 10.

“Knuth has stated that there “are many indications that the sole important application
of arithmetic in Europe during the Middle Ages was the calculation of [the Easter date]”.

A delightful article in The Sciences[Hay99] describes the astounding mechanical inven-
tiveness of the Strasbourg Clock creators who implemented this algorithm and others with
gears and springs hundreds of years ago. The huge clock—over 5 stories high—does not
suffer from the Y2k bug. (A minor modification will be required after the year A.D. 9999,
but it will only cost a few cents not trillions of dollars!)

8The notation |z]| means the biggest integer < z.

Version 1.1 (2003-03-11) (Chapter version: 2002-01-07)

24

Algorithms

Step 5: Set E «+ (11G+20+ Z — X) mod 30. If £ = 25 and G > 11,
or if £ = 24, then increase F by 1.

Step 6: Set N «+— 44 — E. If N < 21, then set N < N + 30.
Step 7: Set N <~ N+7—((D+ N) mod 7).

Step 8: If N > 31, the date is (N — 31) April; otherwise the date is N
March. STOP.

a) Are any of the steps non-elementary?

b) Can the algorithm in its entirety be considered to be an “elementary”
step?

¢) Implement it in C.

d) Is there any software you use regularly that implements this algorithm?
If yes, and if the source code is available, look at it for other date
examples.

e) What’s so special about the year 15827

f) Do you understand why the algorithm works? Does it matter?
1.14 Prove that the MergeSelSort algorithm (page 10) is quadratic.

1.15 Suppose you want to modify an array of integers so that all of the
elements in the array from index 0 to index n — 1 are shifted upwards by
one and that the original value in array[n] is placed in array[0] For exam-
ple, if the array were [3][7]9]2]... and n were 3, the array would become:

1. Formulate an algorithm to do this using only copy operations and im-
plement using the myCopy function in the metrics module.

2. Formulate an algorithm to do this using only swap operations and
implement using the mySwap function in the metrics module.

3. What is the complexity of each implementation? Which one would be
faster?

Version 1.1 (2003-03-1].) (Chapter version: 2002-01-07)

1.6 Problems

25

4. What ANSI C standard library function would solve the problem most
efficiently?

1.16 Examine the source code for the metrics module (metrics.c and
metrics.h).

1. Explain the use of the “main” function in metrics.c. Why does it not
conflict with the “main” function in sortDriver.c?

2. How could the module (and its API) be modified so that attempts to
swap or compare elements that were not within the array bounds could
be detected?

1.17 Modify the implementation of mySort on page 16 to sort double pre-
cision numbers instead of integers. (Note: do not use the metrics module.)

1.18 Modify the implementation of mySort on page 16 to sort strings in-
stead of integers. (Note: do not use the metrics module.)

1.19 Describe an algorithm to merge 3 piles of sorted cards into a single
pile. What is the complexity of the algorithm?

1.20 Consider an algorithm similar to merge sort except that the pile is
split in three, each sub-pile sorted, and then the sorted piles merged.

1. Formulate this idea as an algorithm.
2. Describe a recurrence for the time to sort n cards (7'(n)).

3. Simplify the recurrence using methods similar to the ones used in the
text for merge sort. Assume that 7'(1) = 0 and calculate T'(n) for
n=1,3,9,27. Guess and prove a closed form solution.

1.21 One of the oldest known algorithms (c. 500 B.C.) is Euclid’s Algorithm
for determining the largest common factor of two integers. The method can
be informally described as “if the smaller number is a factor of the bigger
one, the answer is the smaller number; otherwise, divide the small one into
the bigger one and note the remainder. Then replace the big one by the small
one and the old smaller one with the remainder. Solve the problem again.”

Version 1.1 (2003-03-11) (chapter version: 2002-01-07)

26 Algorithms

For example, the greatest common divisor (ged) of 1769 and 551 is 29.
(Specifically, 1769 = 61 x 29 and 551 = 19 x 29.) The sequence of steps in
obtaining this result are:

1769 = 551 = 3 (remainder = 116)
551 + 116 = 4 (remainder = 87)
116 + 87 = 1 (remainder = 29)
87+29 = 3 (remainder = 0)

Hence, ged(1729,551) 29

Express Euclid’s method as an algorithm.
Implement it in C.

1.22 Suppose a program takes 1 microsecond to solve a problem of size
n = 1. (i.e. T(1) = 1usec) Suppose that, in general, T(n + 1) is 1 % more
than T'(n).

1. Find a closed form equation for 7'(n).

2. How long would it take to solve the problem for n = 1007 What about
n = 30007

Version 1.1 (2003-03-11) (chapter version: 2002-01-07)

Chapter 2

Recursion

Recursion is an important concept in computer science and we will define
what it means in this chapter. Many algorithms are best expressed recur-
sively and many of the data structures we will examine later in this book are
also defined recursively. Programming languages themselves—the “stuft” of
algorithm implementations—are also described recursively using BNF nota-
tion (which is discussed in Chapter 3).

2.1 What is recursion?

We call something recursive if it is defined in terms of itself. To avoid an
infinite regress, the definition must include one or more base cases that are
directly defined; the recursive part of the definition must split the definition
into simpler instances.

We have already seen this concept used in recurrences, the kind of equa-
tion (like T'(n) = 2T (n/2) +n) that we developed and solved in the previous
chapter.

Recursive algorithms often follow the general “Divide and Conquer”
method: the problem to be solved is split (divided) into simpler problems
which are then solved (conquered) using the same method. In order to work,
the division and re-division of the problem must (eventually) result in one or
more base cases that can be solved directly.

“Divide and conquer” recursive algorithms often follow the general pat-
tern:

First: If the problem is simple enough to solve directly, then solve it and

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

28 Recursion

STOP.
Second: Otherwise, split the problem into one or more simpler problems.
Third: Solve each of the sub-problems using this method.

Finally: If necessary, combine the solutions of the sub-problems into the
solution for the original problem.

One aspect that is often encountered in recursive algorithms is the absence
of any explicit loops.

2.2 Simple example: Addition

Suppose we wish to teach a child how to add two numbers. We assume that
the child has learned how to count both forwards and backwards.

Even more specifically, we will ask the child to add two non-negative
numbers and we will ensure that the first number—which will be written on
a pink card—is no bigger than the second number which will be on a blue
card. For example, we can ask the kid to add “5 (pink) and 6 (blue)” or
“123(pink) and 200(blue)”, but not to add “7 (pink) and 6 (blue)”.

The algorithm is:

AddPinkBlue Algorithm

Add a pink number to a blue number and return answer

Step 1: If the pink number is ZERO, the answer is the blue number;STOP.

Step 2: Otherwise, count backwards once from the pink number. Erase the
old number on the pink card and write in the new one.

Step 3: Count forwards once from the blue number. Replace the number on
the blue card with this one.

Step 4: Solve the new problem using this method.

Using only the C language “if” construct and the primitive increment
and decrement operators (i.e. “count forwards” and “count backwards”), we
can implement the algorithm in C as follows:

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

2.3 How does recursion work

29

unsigned int add(unsigned int pink, unsigned int blue)
{
/* Step 1: is pink number ZERQ? */
if (pink == 0)
return blue;

/* Step 2: replace pink number by counting backwards */
pink—-—;

/* Step 3: replace blue number by counting forwards */
blue++;

/* Step 4: Solve the new problem using "this" algorithm */
return add(pink, blue);

2.3 How does recursion work

The “recursiveness” of the previous algorithm is encapsulated with “Step 4”:
the algorithm does not say “go back to Step 17; rather, it says “solve the
problem again” using the new inputs.

(We will discuss the relative merits of replacing “Step 4” with the non-
recursive “Go back to Step 1”7 shortly. For the moment we will continue to
use the recursive “Step 4”—solve the problem again.)

Let’s consider the problem from the point of view of children solving it.
Suppose, for example, that we give Jane a pink card with “3” written on it
and a blue card with “5” on it.

Jane follows Steps 1-3 of the algorithm creating new pink and blue cards
with the values “2” and “6” on them. Then she gets to “Step 4”7 At this
point, she has a new problem to solve—add a “pink 2” card to a “blue 6”
card. This new problem can be solved by following the same rules that Jane
herself has just followed.

Jane, however, has a (gullible) friend, Dick. Jane says, “Hey, Dick, I've
got a blue number and a pink number—follow the rules and tell me the
answer.”. Dick is a complacent fellow; he takes the inputs (the values of the
blue and pink cards), follows the directions, and produces new pink and blue
cards just before he gets to “Step 4”.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

30

Recursion

At this point Dick has a new problem to solve: having reduced
“pink/blue” from “2/6” to ‘1/7”, he asks someone else, Sally, to solve the
new problem.

Sally is given a pink card with a “1” and a blue card with “7” on it. She
follows steps 1—3, producing new cards with a “0” and “8” on them.

She gives the new cards to Spot. Spot looks at the pink card, sees that
it has a zero on, and so says the answer is “8” and stops.

Sally hears Spot give the answer “8” and says, “Great, the answer is 8.”
Similarly, Dick hears Sally’s answer and repeats it to Jane (pretending that
he figured it out all by himself.) So, eventually, Jane is informed of the right
answer.

The central aspect of this tale is that Dick, Jane, Sally and Spot all
followed exactly the same rules (i.e. the used the same algorithm), but
they applied the rules to different data (cards). The other insight is that
Jane did not need any friends to solve the original problem; after transforming
the problem from adding “3 and 5” to that of adding “2 and 6”, she could
simply have solved the new problem again herself.

Let us now consider how a recursive function works in a programming
language like C. We need to think of the function as describing the rules for
manipulating data; the rules exist on their own independently of the data
that is manipulated. In order for the data to exist independently, the data
(or, more correctly, the computer memory for the data) must be created anew
each time the function is invoked. In C, the parameters passed to a function
and all variables local to the function do occupy separate memory locations
each time the function is invoked!.

For example, consider the recursive call in the add function given previ-
ously:

unsigned int add(unsigned int pink, unsigned int blue)
{
/* ... */

return add(pink, blue); /* Recursive call */

Suppose that add(2, 3) is invoked; by the time it gets to the recursive
call, the first invocation of add will have changed the values of “pink” and

!Note that the rules, which are unchanging, could be placed in ROM (Read Only
Memory); the memory area for the data would have to be RAM (Random Access Memory
that can be read and written to).

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

2.4 Tail recursion

31

“blue” to “1” and “4” respectively. Before it can return, it makes the re-
cursive call add(1, 4). This second invocation of add will now apply the
algorithm to its data; indeed, it will modify its value of “pink” and “blue”
to “0” and “5” before making yet another recursive call. It is essential to
understand, however, that when the second invocation modifies its “pink”
and “blue” data, it has absolutely no effect on the “pink: and “blue” data
of other invocations of add including the first invocation that has not yet
terminated.

2.4 Tail recursion

Some programmers eschew recursion, believing that iterative or looping al-
gorithms are inherently more efficient. While there is some validity to this
argument—recursive calls do require allocating additional memory for the
passed parameters and local variables—it is also true that many modern
compilers automatically eliminate some common forms of recursion and the
associated overhead.

One form of recursion that can be eliminated automatically, called tasl
recursion, occurs when the last statement of a recursive function invokes
itself. The add routine described above provides an example of a tail-recursive
function.

The rule for eliminating tail recursion is very simple: replace the last
recursive call with a “goto” to the beginning of the algorithm.

For example, the AddPinkBlue algorithm is tail-recursive since the last
step is “Solve the new problem using this method.” We can easily convert
the algorithm to a non-recursive version as follows:

AddPinkBlueNonRecursive Algorithm

Add a pink number to a blue number and return answer

Step 1: If the pink number is ZERO, the answer is the blue number; STOP.

Step 2: Otherwise, count backwards once from the pink number. Erase the
old number on the pink card and write in the new one.

Step 3: Count forwards once from the blue number. Replace the number on
the blue card with this one.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

32 Recursion

Step 4: Go back to Step 1.

Note that this now results in an algorithm with a loop; the recursive
version had no loops.

Let’s see how this works with the tail-recursive add function in C. First,
we re-write the function in more compact fashion:

unsigned int add(unsigned int pink, unsigned int blue)

{
if (pink == 0) return blue;
pink--; Dblue++;
/* The last step is a recursive call...
hence this is TAIL RECURSION */
return add(pink, blue);
}

We can now mechanically replace the last recursive call with a “goto”:

unsigned int add(unsigned int pink, unsigned int blue)

{
start:
if (pink == 0) return blue;
pink--; Dblue++;
/* Replace the last step with a goto */
goto start;
}

Knowing that an “if statement” followed by “other statements” followed
by a “goto” back to the “if statement” is semantically equivalent to a “while
statement” (although the condition tested in the “while” statement is the
exact opposite of the one originally in the “if” statement), we can write:

unsigned int add(unsigned int pink, unsigned int blue)

{
while (pink != 0) {
pink——;
blue+t++;
}
return blue;
}

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

2.5 Example: Fibonacci numbers

33

Finally, we can optimize away the explicit comparison as follows:

unsigned int add(unsigned int pink, unsigned int blue)
{

while (pink--)

blue++;

return blue;

By the way, the following is simpler still.

unsigned int add(unsigned int pink, unsigned int blue)

{

return pink+blue;

}

...but it is cheating. The idea, after all, was to express the concept of
addition using only the concepts of counting backwards or forwards
by one and without using the “add” operator!

2.5 Example: Fibonacci numbers

Fibonacci numbers are defined by the following recurrence:

Fib(n) = 1 ifn=1orn=2
| Fib(n—1)+ Fib(n —2) otherwise

The series F'ib(1)Fib(2), Fib(3) ... is called the Fibonacci series; its first
few values are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...

We can easily write a recursive program to calculate the nth Fibonacci
number with a straight forward transformation of the recurrence into a C
program:

int fib(int n)

{
if((n==1) || (n==2))
return 1;
return fib(n-1) + fib(n-2);
}

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

34 Recursion

One can get a feel for how the recursion works by drawing a recursion
tree that shows how the function invokes other instances of itself as shown

in Figure 2.1.

Figure 2.1: Recursion tree for Fib(5)

What is the complexity of this function?

First, note that each node in the recursion tree represents invoking the
Fibonacci algorithm. But the time required to perform the algorithm is some
constant plus the time for the recursive calls. However, all the recursive calls
are in the recursion tree; consequently, the time required in each node is
simply the constant overhead.

These observations lead us to conclude that the time required to solve
the recurrence is proportional to the number of nodes in the recursion tree.

How many nodes are in the tree?

We can draw the recursion trees for small values of n and count the nodes.
We obtain:

We note that the number of nodes for the next Fibonacci number will
involve all of the nodes for the previous two Fibonacci recursion trees plus
an additional root node for the new number. In short, letting N(n) be the
number of nodes in the recursion tree, we obtain the recurrence:

N(n) = 1 ifn=1orn=2
n= N(n—1)+ N(n—2)+1 otherwise

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

2.5 Example: Fibonacci numbers

35

n number of nodes

SO W N~
= O otWw = =

This is similar to the recurrence that defines the Fibonacci numbers.
Indeed, the two are closely related and it looks like:

N(n) = 2Fib(n) — 1

This can be proved by mathematical induction.

The base cases, n = 1 and n = 2 can be proven directly. The induction
hypothesis is N(n) = 2Fib(n) — 1.

We have by definition:

Nn+1)=N(n)+Nn-1)+1
Using our hypothesis, we obtain:
N(n+1) = 2Fib(n)—14+2Fib(n—1)—1+1 = 2(Fib(n)+2Fib(n—1))—1 = 2Fib(n+1)—1
It is also possible to show that?:
Fib(n) = (6" = ¢")/v/5
or, even more simply,
Fib(n) = closest integer to ¢"/V/5
where

¢=(1+V5)/2=1.61803... and ¢ = (1 — v/5)/2 = —0.61803...

2We will prove this in Chapter 4

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

36 Recursion

Consequently, the complexity of the recursive £ib function is exponential!
You can get an intuitive understanding for this sad state of affairs when you
realize that the recursive implementation involves the repeated calculation
of the same Fibonacci number.

A non-recursive version can be written a simple fashion with only linear
complexity. The basic idea behind a linear algorithm, is expressed as follows®
(for the case n > 2):

Fibonacciliinear Algorithm

Calculate the nth Fibonacci number with linear complexity

Step 1: Set 1 <— 3. Set fiby < fiby < 1.
Step 2: Calculate f’LbZ — fibi_l + fibi_g
Step 3: If i = n, the answer is fib,. STOP.

Step 4: Set 1 < 1+ 1. Go back to Step 2.

We can obtain even more efficient implementation of logarithmic com-
plexity by using the equation:

Fib(n) = closest integer to ¢"/v/5

2.6 Example: Towers of Hanoi

The Towers of Hanoi problem involves three pegs made of pure diamond
(according to myth) and a number of differently-sized golden disks. Initially,
all the disks are neatly stacked, ordered by size with the largest at the bottom,
on one of the pegs as shown in Figure 2.2.

The problem is to move the disks one at a time so they are all stacked in
the same order on another peg. The only rules are that you must never have
a larger disk on top of a smaller one and you can only move one disk at a
time between any of the towers. Figure 2.3 below shows the steps involved
for moving three disks.

3This is a trivial example of a technique known as dynamic programming.

Version 1.1 (2003-03-1].) (Chapter version: 2003-01-24)

2.6 Example: Towers of Hanoi

=

=

Figure 2.2: Towers of Hanoi Initial Configuration with n = 5

L

mml

=

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

Figure 2.3: Towers of Hanoi Solution for n = 3

38 Recursion

Suppose there were 10 disks, what sequence of moves is required to move
them from peg 1 to peg 27 Adam says he knows how. But, in fact, Adam
has no idea how to do it. He has a friend Betty, however, who claims to be
able to solve the problem for 9 disks. Adam asks Betty to move 9 disks from
peg 1 to the spare peg 3. Adam now has the simple task of moving the last
disk from peg 1 to peg 2. He then asks Betty to move the 9 disks from peg
3 to peg 2 and the job is done.

When Betty said she knew how to solve the problem for 9 disks, she had
in mind co-opting the services of someone who knew how to move 8 disks.
Similarly, the person moving 8 disks would divide the problem up into moving
7 disks and 1 disk. In short, to move any number, n of disks, you need only
know how to divide the problem and find someone who can move n —1 disks.

The important thing to recognize is that everyone in the chain is following
the identical set of instructions which can be summarized as:

1. If there is only one disk to move, then move it and this solves the
problem.

2. Otherwise, find someone else to move all but the bottom disk to the
spare peg. (This person, of course, must respect the rules.)

3. Then move the bottom disk to the destination peg.

4. Get the other person to move all the disks on the spare peg to the
destination peg. The problem is solved.

The only difference is that each person works on different data. What is
the spare peg for one is the destination peg for another and so on. It is this
situation of identical instructions (which include instructions to ask someone
else to follow the same instructions) but different data that is the heart of
recursion.

The “conceptual leap” required to formulate a good recursive algorithm
involves properly dividing the problem into simpler sub-problems.

In short, the conceptual leap involved realizing that moving n disks can
be done by solving the smaller problem of moving n — 1 disks twice and
moving a single disk.

We can now express the basic algorithm:

TowersOfHanoi Algorithm

Version 1.1 (2003-03-1].) (Chapter version: 2003-01-24)

2.6 Example: Towers of Hanoi

39

Solve the Towers of Hanoi problem for n disks

Step 1: If the number of disks to move is 0 (zero), then STOP.
Step 2: Otherwise, move n—1 disks to the spare tower using “this” algorithm.
Step 3: Move a single disk to the destination.

Step 4: Move n—1 disks from the spare tower to the destination using “this”
algorithm.

This algorithm can be easily expressed in C. The only slightly tricky
part is figuring out how we can identify the “spare” tower. We assume that
the left, middle and right towers are identified by the numbers 1, 2 and 3
respectively. We know that at any given time, exactly one of the towers is
the “source”, another is the “destination” and the other one is the “spare”
tower. So we must have spare + destination + spare =142+ 3 = 6.
Hence, if we know two towers, we can calculate the identifying number of the
third. The C code is given below:

/%%
* "towers" solves the Towers of Hanoi problem and writes
* the solution to <stdout> as 2°n -1 lines in the form:
* <from> <to>
* where:
* <from> is the ID of a tower to pick up a disk from
* <to> 1is the ID of where to drop the disk to
* @param n the number of disks to move
* @param from the tower ID number to move from
* @param to the tower ID number of the destination
*/
void towers(int n, int from, int to)
/*

* The standard recursive '"divide and conquer" method
* is used to solve the problem. Specifically:

* 1) If the number of disks to move is 0O, STOP.

* 2) Otherwise, move n-1 disks to the spare tower.
* 3) Move a single disk to the destination.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

40 Recursion

* 4) Move n-1 disks from the spare to destination
*/
{
if(n > 0) {
/* Note: "spare", "from" and "to" are distinct and
* chosen from 1 or 2 or 3. Hence, we must have
* the invariant:
* spare + from + to
*/
int spare = 6 - from - to;
--n;
towers(n, from, spare);
printf("%d %d\n", from, to);
towers(n, spare, to);

1+2+3=6

How do we calculate the complexity of the algorithm? Let us call M(n)
the number of moves to solve the problem for n disks.
Clearly, we have the recurrence:

Mn)=Mmn—-1)+14+Mn—-1)=2Mn—-1)+1

There are many ways to solve this recurrence and some are suggested in
the exercises. One way is to use a “clever” substitution, i.e. Let:

Un)=M(n)+1
S0 we obtain:
Un)—1=2Un-1)—1)+1=20n-1)-1
or, simply,
Un)=2UMn—-1)=202U(n —2)) =2(2(2U(n — 3) = 2"U(0)
Assuming U(0) = 1, we have:
Mn)=Umn)—1=2"-1

In other words, the Towers of Hanoi algorithm is of exponential complexity.
Unlike the case of the exponentially complex recursive solution to calculating
Fibonacci numbers, there is no clever non-recursive solution to the Towers
of Hanoi problem that does any better. It can be proven that the optimal
number of moves to solve the problem for n disks is 2" — 1.

Version 1.1 (2003-03-11) (chapter version: 2003-01-24)

2.7 Example: Counting ways to make change 41

2.7 Example: Counting ways to make change

How do I love thee? Let me count the ways.

—Elizabeth Barrett Browning

Our last example of recursive algorithms involves calculating the total num-
ber of ways to make change using different kinds of coins.

Let us first give some simple examples of what we mean by the problem.
Suppose we have pennies, nickels and dimes; how many ways can be make
change of 22 cents. Let’s enumerate the ways:

22 Pennies

17 Pennies and 1 Nickel

12 Pennies and 2 Nickels

7 Pennies and 3 Nickels

2 Pennies and 4 Nickels

12 Pennies and 1 Dime

2 Pennies and 2 Dimes

7 Pennies and 1 Nickel and 1 Dime
2 Pennies and 2 Nickels and 1 Dime

O© 00 IO O i W N -

Figure 2.4: Recursion tree for changing 22 cents

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

42 Recursion

The recursive solution to this problem requires the insight that solving
the problem for some amount using Pennies, Nickels and Dimes can be split
into two smaller problems:

1. Solve the same problem using one less type of coin (e.g. solve it using
only Pennies and Nickels).

2. Solve the same problem using Pennies, Nickels and Dimes where we
know for certain that a Dime is involved. We know this for certain
if the amount to make change for is at least as big as 10 cents. Con-
sequently, we can subtract 10 from the amount and solve the problem
(which is now simpler because the amount is smaller) recursively. Of
course, if after subtracting the value of the coin, we have a negative
amount, we know that the coin cannot be used in the solution.

3. The answer to the original problem is the sum of the answers to the
two sub-problems.

4. We escape from the recursion in three cases:

e If the amount is negative, there is no way to make change; return
0.

e If the number of coin types is only 1 (e.g. if only Pennies are
allowed), there is exactly 1 way to make change.

e If the amount to change is exactly zero, there is only 1 way to
make change.

Figure 2.4 shows the recursion tree for calculating the number of ways to
make change for 22 cents. In this figure, the amount is indicated at the top
of the oval and the types of coins to use are indicated with the circled letters
“P” (pennies), “N” (nickels) and “D” (dimes). Recursive calls are indicated
with lines going to two lower ovals. Calls that result in a return value of 1
are shown in gray ovals.

By examining the recursion tree, we can see that the same value is calcu-
lated more than once; for example, counting the ways to make change for 12
cents using Pennies and Nickels is done twice as indicated by the sub-trees
surrounded by a dotted line.*

4This suggests that there is a computationally more efficient way to do this calculation.
This kind of situation is commonly solved with a technique called dynamic programming
which we will cover in Chapter 12.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

2.7 Example: Counting ways to make change

43

These ideas are all expressed in the following C program.

#include <stdio.h>
#include <stdlib.h>

/*** Typedefs *xx/
typedef enum{Penny = 1,
Nickel = 5,
Dime = 10,
Quarter = 25,
HalfDollar = 50}
Coin;

/*xx Globals **x/

Coin typesOfCoins[] = {Penny,
Nickel,
Dime,
Quarter,
HalfDollar};

/**x Function prototypes ***/
int nWaysToMakeChange (int amount, int nCoinTypes);

int main(int argc, char * argv[])
{
if ((argc != 2) || (atoi(argv[1]) < 0)) {
fprintf (stderr, "Usage: %s amount(cents)\n", argv[0]);
exit(1);
}
printf ("%d\n", nWaysToMakeChange(atoi(argv[1]),

sizeof (types0fCoins)/sizeof (int)));

exit (0);
}

int nWaysToMakeChange(int amount, int nCoinTypes)
{
if ((amount == 0) || (nCoinTypes == 1))
return 1;

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

44

Recursion

if (amount < 0)
return O;
return nWaysToMakeChange (amount, nCoinTypes-1)
+ nWaysToMakeChange (amount -
types0fCoins [nCoinTypes-1], nCoinTypes);

2.8 Problems

2.1 Modify nWaysToMakeChange so that it prints out the actual way to
make change for each of the ways that it discovers.

2.2 The algorithm for adding two numbers stated that the “pink” number
should be no bigger than the “blue” number. Will the algorithm still work
if this rule is broken? If it does still work, what advantage, if any, is there in
this rule?

2.3 What will happen if the “pink” input to the add algorithm is a negative
number? Fix the algorithm so that it will work in this case.

2.4 According to one version of the “Towers of Hanoi” myth, the universe
will dissolve after a tower of 64 disks has been moved. Is there anything
to worry about if the task started right after the Big Bang and moves are
performed at the rate of one per second?” Suppose the monks are replaced
by a computer that can perform a move in 1 millisecond. Is there anything
to worry about? Is there anything to worry about under any circumstances?
Explain.

2.5 One of the oldest known algorithms (c. 500 B.C.) is Euclid’s Algorithm
for determining the largest common factor of two integers. The method can
be informally described as “if the smaller number is a factor of the bigger
one, the answer is the smaller number; otherwise, divide the small one into
the bigger one and note the remainder. Then replace the big one by the small
one and the old smaller one with the remainder. Solve the problem again.”

For example, the greatest common divisor (ged) of 1769 and 551 is 29.

(Specifically, 1769 = 61 x 29 and 551 = 19 x 29.)

Express Euclid’s method as a recursive algorithm.

Version 1.1 (2003-03-1].) (Chapter version: 2003-01-24)

2.8 Problems

45

Try to determine the worst-case complexity of Euclid’s algorithm as a
function of the largest number. (Hint: Fibonacci numbers.)
Implement it in C.

2.6 The extended version of Euclid’s algorithm not only determines
gcd(m,n), it also determines values a and b such that

am + bn = d = ged(m, n)
For example, given m = 1769 and n = 551, we would obtain:
5 x 1769 — 16 x 551 = 29

Can you figure out a way to do this? (This problem is for mathematically-
inclined readers.)

2.7 Write a non-recursive version of £ib that is of linear complexity.

2.8 Write a non-recursive version of fib that is of logarithmic complex-
ity. (Hint: The easiest way to do it is to use the approximation Fib(n) =
closest integer to ¢™/+/5. This version needs floating point arithmetic.)

A version using only integer arithmetic is also possible. (Hint: consider
the powers of the matrix: (11))

0 1

2.9 Modify the “towers” program so that the user can specify the towers
with the words “left”, “middle” and “right” instead of the numerical iden-
tifiers 1, 2 and 3. Furthermore, the output of the program should produce
things like “Move a disk from the left tower to the middle one.” instead of
“1 2.77

2.10 Solve the recurrence M(n) = 2M (n—1)+1 by assuming that M (0) = 0,
calculating M (n) for n = 1,2,3,4,5, developing a “guess” for the closed form
solution and proving that the guess is correct by mathematical induction.

2.11 Define an algorithm that reverses its input (assumed to be “a pile of
cards”). Express both recursive and non-recursive algorithms.

Re-formulate the algorithms for an array of integers and implement them
in C.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

46 Recursion

2.12 Define an algorithm to print a number in any base between 2 and 36.
For bases of 10 or less use the digits 0...9; for larger bases, use the letters of
the alphabet A...Z for the digits whose value is greater than 9.

For example, 123, = 11110115(binary) = 7B = 3Us; .

2.13 Ackermann’s function is defined as:

2 ifi=1
Ack(i,) = { Ack(i—1,2) ifj=1,i>1
Ack(i — 1, Ack(i,j — 1)) otherwise

Calculate Ack(2,2) by hand using the definition. If you are very ambi-
tious, try calculating Ack(3,3). (This function is highly recursive!)
Implement it in C.

2.14 Modify the recursive version of C “pink/blue” algorithm (the add
function on page 28) so that the arguments and results of each recursive
invocation are printed to stdout just before the return statements.

2.15 Factorial n (n!) can be defined recursively as follows:

1 ifn=0
fact(n) = { n X fact(n — 1) ifn >0

Translate the definition mechanically into a recursive function.
Is the function tail recursive?

2.16 Consider the following definition of a function:

foo(m,n) = m ifn =0
) foo(m+myn—1) ifn>0
Express this function in more traditional form.
Implement the function “mechanically” as a translation of the recurrence
into a recursive function.

2.17 Express a defition for the mul function of two non-negative integers m
and n whose value is m x n. Use a recurrence-like definition as was done for
the factorial and “foo” functions in the previous problems. Use only addition
or subtraction in the definition.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

2.8 Problems

47

2.18 Show that the number of additions required in executing the recursive
version of calculating the nth Fibonacci number is F'(n) — 1 where F(n) is
the nth Fibonacci number.

2.19 Show that the number of nodes in the recursion tree for calculating
the nth Fibonacci number using the recursive algorithm is 2F(n) — 1 where
F(n) is the nth Fibonacci number.

2.20 Consider the following recurrence:

Gib(n) = c ifn=1orn=2
"7\ Gib(n— 1)+ Gib(n —2) + k otherwise

Clearly, this becomes the Fibonacci recurrence in the special case where
c=1and k=0.
Find a closed-form solution for Gib(n) in terms of F'ib(n), ¢ and k.

2.21 Compile and run the linear and recursive C programs to calculate
Fibonacci(n). Try each one for n = 20, 25, 30, 35, 40, 45 (for example). Com-
pare the time to run (to tenth second accuracy for each version. What are
your conclusions?

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

48 Recursion

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

Chapter 3

Parsing

3.1 What is formal language theory?

We usually think of the word “language” in terms of human languages such as
English or French, but we also talk of the C or Pascal programming languages.
We will use the term natural language for the strategy that evolved for com-
munication in human society and formal language for the more strictly de-
fined languages that computers can “understand”.

Our concern is with formal languages. In additional to full-blown pro-
gramming languages, other examples of formal languages include:

e Simple arithmetic expressions.

e Different ways of specifying dates (such as “Feb. 19, 1999”, “February
19, 1999”7, “le 19 fevrier”, “2/19/1999”, “today”, “next Friday”, “last
Friday”, etc.)

e The implicit language supported by your calculator or VCR. (The “lan-
guage” consists of the valid sequences of key presses that result in a
useful action.)

Not only is all software written in some formal language, many software
products also accept as input some kind of formal language.

Formal languages, unlike natural languages, have a well-defined syntax
or grammar that is unambiguous and is based on a relatively small number
of elementary building blocks.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

50 Parsing

An essential feature of languages is that their general from can be suc-
cinctly defined with mathematical precision. Once this is done, you can write
software to “understand” them and produce some result. Typically, software
is written to produce an immediate, understandable result—this is called
interpretation—or to translate the original language into some other formal
language—this is called translation or compilation.

3.1.1 Some terms

In the following sections, we will use certain terms with fairly precise defini-
tions. Some of the important terms and their definitions follow.

Natural language: What all humans use for ordinary communication from
about the age of 2. These languages cannot be understood using
the simple methods that work for formal languages' (Note: in ad-
dition to oral languages like French, sign languages are also natural
languages[Pin94].)

Formal language: A sequence of a finite set of symbols that has an unam-
biguous meaning to a machine.

Grammar: The rules for joining basic symbols into more complex gram-
matical entities, for joining these complex components into even more
complex ones, and so on....(ad infinitum).

Parse: Applying the rules of grammar to an input sentence of a language
(natural or formal) and dividing the original sentence into its compo-
nent parts (and so on recursively). Formal languages can be parsed
uniquely; natural languages can often be parsed in multiple ways.

Interpret: Read some sentences from a language and return some result
corresponding to its meaning.

Translate (or compile): Translate the language into another language with-
out changing the meaning (i.e. the semantics). Any formal language
can be translated into another equally powerful formal language in an
unambiguous way; natural languages cannot be translated in this way.

LA classic example: What does the sentence “Time flies like an arrow.” mean? Find
three equally valid meanings. Formal languages, on the other hand, only allow one meaning
for any grammatically correct sentence.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.2 Backus-Naur Form

51

When the target language of the translation is designed to be inter-
preted (yet again) by a machine, we usually call the translator a “com-
piler”.

Meta language: A formal language specifically designed to describe the
grammar of any other formal language.

BNF: Backus-Naur Form (BNF) is an example of a meta language.

3.2 Backus-Naur Form

Big fleas have little fleas

That on their bodies bite em
And little fleas have littler fleas
And so ad infinitum

—Jonathon Swift

The grammar for a language describes how syntactical units are defined
in terms of other syntactical units or the primitive elements of the language.
In English, for example, syntactical units include things like “nouns”, “ad-
jectives”, “paragraphs”, “noun phrases”, “sentences”, “objects”, “subjects’,
“verbs”, etc. The simplest syntactical units in English are words. From a
grammatical point of view, you need only know that a word is a “noun”, “ad-
jective”, “adverb”, etc. in order to parse a sentence into its component parts.
The elementary components, like words, that cannot be further subdivided
are called “terminal symbols”.

To summarize:

Terminal symbol: An element of a language that cannot be further sub-
divided. For example, words in English or numbers in arithmetic ex-
pressions are terminal symbols.

Non-terminal symbol: An element that can be sub-divided (parsed) into
simpler components. These simpler components may be terminals or
themselves non-terminals. For example, a sentence is a non-terminal
in English.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

52 Parsing

3.2.1 Example: Noun phrases in English

We will use the English syntactical unit “noun phrase” to illustrate how BNF
is used. A noun phrase is something like “the black cat” or “a hungry dog”.
From these examples, we can formulate the grammatical rule that a noun
phrase is a sequence of an article, an adjective and a noun.

In BNF, we give each non-terminal syntactical unit a unique name and
enclose it in angle braces. For example, suitable names for “noun phrase”,
“noun”, “article” and “adjective” could be <noun_phrase>, <noun>, <article>
and <adjective>. We can then formulate our rule for the syntax or grammar
of a noun phrase as:

<noun_phrase> ::= <article> <adjective> <noun>

When reading a BNF definition, read the symbol ::= as meaning “is
defined as”. The above definition reads as “a noun phrase is defined as an
article followed by an adjective followed by a noun.

We still have to define what an “article”, an “adjective” and a “noun”
are. In English, an article is either the word “the” or the word “a”. We can
describe this in BNF with:

<article> ::= ’the’
|)a;

In this case, the vertical bar symbol (|) indicates alternate valid syntax
for the unit being defined. Furthermore, each valid alternative in this case
a basic English word, i.e. a “terminal symbol”. In BNF, terminal symbols
are enclosed in single quote marks instead of angle brackets. Thus we would
read the above BNF statement as “an article is defined as either the literal
word “the” or the literal word “a”.

The complete BNF for noun phases is given here (for a limited vocabu-

lary):
<noun_phrase> ::= <article> <adjective> <noun>
<article> ::= ’the’
| ’3?
<adjective> ::= ’hungry’
| ’black’
| ’white’
| ’cute’
<noun> ::= ’cat’ | ’dog’

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.2 Backus-Naur Form

53

We can use this grammar to generate syntactically correct noun phrases or
to verify that a given noun phrase is grammatically correct. For example, by
substituting different terminals into the rules we can generate noun phrases
like “the white dog”, “a hungry cat”, and so forth. However, we cannot
generate “the mangy dog” since “mangy” is not one of allowed adjectives;
similarly, “the dog cat” cannot be produced because “dog” is not an adjective.

More importantly, we cannot generate noun phases like “the dog” or “the
hungry black cat” because our rule requires exactly one adjective. One way
to fix this deficiency would be to define:

<noun_phrase> ::= <article> <adjective> <noun>
| <article> <noun>
| <article> <adjective> <adjective> <noun>

There is, however, a better way. BNF allows parts of a definition to be
enclosed in curly braces ({ and }) to indicate that the enclosed element(s)
can be repeated zero or more times. Thus, we could define:

<noun_phrase> ::= <article> { <adjective> } <noun>

We are now allowed to use as many or as few adjectives as we wish.

3.2.2 Example: Arithmetic expressions

Arithmetic expressions that permit adding, subtracting, multiplying, divid-
ing, negating and grouping provide a simple, well-known example of a formal
language. We want to show how the grammar of such a formal language can
be completely described in the BNF meta-language, and how this description
can be used to implement an interpreter or compiler in C (another formal
language).

First, we give some examples of valid arithmetic expressions:

1

2+1

PI*2x7.2

(((2.0+1.1)/2+5.123)+25%1.5)+123.456) +2) *(6+2)) *(2.1 + 5i)

Let us first consider a very simple subset of arithmetic expressions—those
involving only numbers and addition. Some examples of valid expressions are:

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

54 Parsing

3

4.67

2+2

3+4+6

7+8+3+9
12+22+890+13.7+79

Some invalid expressions are:

4+
++67+
78 9

We note that all valid expressions begin with a number; some invalid
expressions begin with a number too, so this is not sufficient to identify an
expression as valid or not.

For valid expressions, the first number is either followed by nothing or
is followed by a ‘4+’ operator and another number. In the latter case, the
second number is either the end of the expression or is itself followed by a
'+’ operator and yet another number. In general, we can say that a valid
expression starts with a number and is followed by zero or more repetitions
of the combination “4 number”. Thus we obtain:

<expr> ::= <num> { ’+’ <num> }

We can note that from a grammatical point of view, any expression that
uses the addition operator will also be grammatically correct if the subtrac-
tion operator is substituted for any of the add operators. Using this insight,
we can allow for adding and subtracting with the following simple BNF:

<expr> ::= <num> { <addop> <num> }
<addop> ::= '+’ | =’

We now wish to incorporate multiplication (and division); thus we would
like our grammar to accept or generate expressions such as “3 + 4x7” or
“3%6%12 - 81%19”.

A simple, but incorrect, solution to this new situation would be:

<expr> ::= <num> { <op> <num> }
<op> ::=’+7 | =7 | %2 | 7/

Version 1.1 (2003-03-11) (chapter version: 2003-01-24)

3.2 Backus-Naur Form

55

The problem here is that anything based on this kind of BNF would
consider the expressions “1+2*3” and “2*3+1” to be quite different. In
particular, a calculator based on the erroneous BNF above would determine
that “1+2*3” was “9” and “2*3+1” was “7”. The underlying problem is
that the add operator has a lower precedence than the multiply operator.
Consequently, things joined together with an additive operator have to be
treated differently from those joined by a multiplicative operator.

In general, the syntactical units to the left and right of the “+” operator
are no longer simple numbers. (For example, “4*7 is not a simple number, it
is a more complex syntactical unit.) We invent a new syntactical unit called
“term” which is on either side of an <addop> as in the following BNF":

<expr> ::= <term> { <addop> <term> }

With our current definition, a “term” must be either a simple number
or the product of 2 or more numbers. Calling the items that are multiplied
together “factors” and allowing for either multiplication or division of the
factors, we obtain:

<expr> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <num>

<addop> ::= ’+’ | -’

<mulop> ::= ’x’ | ?’/°

Now we need to include the left and right parenthesis in or grammar so
that expressions like 2.3+5%(10 + 3) are accepted. Note that if we try to
parse this, we end up determining that:

e 5%x(10 + 3) must be a term.

e 5 is a factor and can only multiply other factors; hence (10 +3) must
parse as a factor. Alas, only <num> syntactical units are currently valid
factors.

e We note that what is inside the parenthesis—10 + 3—is a valid expres-
sion. We conclude that a factor can either be a number, as before, or
a left parenthesis followed by an expression followed by a right paren-
thesis.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

56

Parsing

The following BNF describes general arithmetic expressions that include
everything we want ezcept for negation.

<expr> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <num>

|)(; <expr>));
<addop> ::= '+’ | =’
<mulop> ::= ’x’ | 7/’

The BNF is now recursive: <expr> is defined as one or more <term>s
which is defined as one or more <factor>s which are either pure numbers or
an <expr> enclosed in parenthesis.

We can include negation with the following BNF:

<expr> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <num>

| >’ <expr> ’)’

| ’-’> <expr>
<addop> ::= ’+’ | =’
<mulop> ::= ’%’ | ’/’

The only syntactical unit we have not yet defined is <num>. If we are
only interested in ordinary numbers such as the ints and floats supported
by a language such as C, we can omit the formal definition and let built-in
language facilities (such as the C standard library scanf function) deal with
the parsing of numbers.

On the other hand, some of the sample arithmetic expressions giving at
the beginning of this section do not correspond to C types. The irrational
number PI is one example and the complex number 2.1 + 5i is another. If
we wanted to support things like complex numbers in our arithmetic expres-
sion language, we would have to define BNF for them. (We leave this as an
exercise.)

3.2.3 Parse trees

One common way to visualize how a language is parsed is to draw a “parse
tree” of valid inputs to the language. The Figures 3.1 and 3.2 give some
sample parse trees for arithmetic expressions.

Version 1.1 (2003-03-1].) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter

57

<expr >

s>

<nune <nun® <nun®

Figure 3.1: Parse tree for 5 + 67

3.3 Implementing a parser/interpreter

The previous sections showed how the BNF description of a grammar is
developed. We now show you how to take the BNF description of a formal
language and implement a program to parse, interpret or translate sentences
of the language.

3.3.1 Overview of Parser Architecture

For every non-terminal syntactical element in the BNF language, we will
have a C function with the same name.
For example, if our language is described with:

<foobar> ::= <foo> <bar> { <bar> }
<foo> ::= ’a’ | b’
<bar> ::= ’¢’ | ’Q’

then we will have the functions foobar (), foo() and bar() in the C imple-
mentation.

Each function will parse the corresponding BNF unit.

The BNF definition of syntactical units allows three general constructs:

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

58 Parsing

<expr >

<ter

<fpctor> <fagt or >

<nune .
xpr> i ght _par en>

<f act or >

<nun® <

Figure 3.2: Parse tree for 6 + (1 + 2%(3+4)*5)

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter

59

Sequence: The input must be parsed as one thing, followed by another, and
so on. For example:

<thing> ::= <bloop> <bleep> <floop>
In this case, the general architecture of the thing() function will be:
thing)
{
bloop();

bleep();
floop();

Alternatives: The input must parse as one of two or more alternatives. For
example:
<colour> ::= <red> | <blue> | <green>

The general architecture of the colour () function would be:

colour()
{
if (/* it’s a red thing */)
red();
else if (/* it’s a blue thing */)
blue();
else
green() ;

Note: for simplicity, we assume that the input is always syntactically
correct. Thus, in the previous case, if the <colour> is not red or
blue, then it must be green. We will consider error detection later; the
assumption of grammatically correct input simplifies our job for the
moment.

Repetition: The input must parse as a repetition of zero or more things.
For example:

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

60 Parsing

<many> ::= { <one> }
In this case, the architecture of the many () function would be:

many ()
{
while (/* it’s a ‘‘one’’ */)
one();

Of course, the basic constructs can be combined. For example, given the
BNF for noun phrases described earlier:

<noun_phrase> ::= <article> { <adjective> } <noun>
<article> ::= ’the’
| a’
<adjective> ::= ’hungry’
| ’black’
| ’white’
| ’cute’
<noun> ::= ’cat’ | ’dog’

We can describe the overall architecture of a parser as:

nonu_phrase ()

{
article();
while (/* next thing is an adjective */) {
adjective();
}
noun() ;
}
article()
{

if (/* next thing is "the" */)
/* process "the" */

else
/* process "a" */

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter

}
adjective()
{
if (/* next thing is "hungry" */)
/* process "hungry" */
else if (/* it’s "black" */
/* process "black" */
else /* and so on for other valid adjectives */
}
noun()
{
if (/* next thing is "cat" */)
/* process "cat" */
else
/* process "dog" */
}

3.3.2 Moving on—Tokens and Actions

The overall architecture of a parser program can be clearly defined by know-
ing the BNF. We do not yet have a working program, however, as we have
not shown how one gets the basic elements from the input sentence and how
these are processed.

We use the word “action” to describe how an element is processed. All
programs that parse a formal language will have the same general architec-
tural form described above?. However, programs that translate, compile or
interpret their input will perform quite different actions as they parse their
input.

For example, suppose we want to write a program to parse arithmetic
expressions described by the BNF we developed previously. An interpreter
would parse the expression and print out a number corresponding to its value;

2This is only true for recursive descent parsers—the formal name for the kind of parsers
we discuss here. There are, however, formal languages that cannot be easily parsed with
this technique. You will have to take a more advanced course on “Compilers and Trans-
lators” to appreciate this distinction.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

62

Parsing

Author’s note: More
discussion about
the similarities and
differences between
“tokens” and “termi-
nal symbols” would
be useful...

a translator program could output the expression in Reverse Polish Notation
(RPN).

When an interpreter program encountered a <num> element, its action
would be to transform the textual encoding of the number into some machine
representation of the number itself*. On the other hand, an RPN translator
program may simply output the character as its action.

The discussion of parsers thus far has also omitted the question of how
and when the input language is read.

We consider the raw input to be a stream of characters. We do not care
where the stream is coming from—it may be coming from <stdin>, from an
array of characters, or from a URL on the Internet. Conceptually, however,
we consider the input to be a stream of tokens, not mere characters. We define
a token as any of the basic terminal symbols of the language. For example,
the tokens for the “noun phrase language” described earlier would be the
words “a”, “the”, “cat”, “dog”, “black”, “white”, “hungry” and “cute.” The
arithmetic expression language has the tokens “+7 “=7 “x7 /7 «(7)7
and “numbers”. In the case of arithmetic expressions, it is also desirable to
allow arbitrary numbers (including zero) or whitespace characters between
the tokens; the noun phrase language, of course, needs at least one space
between the words, but more than one space should be acceptable as well.

In general, the transformation of the input stream of raw characters to
a stream of tokens fed to the parser is a separate phase. This phase is
called “lexical analysis”, “tokenizing” or “scanning”. In the simple lan-
guages considered here we will encapsulate this phase into a single function—
getNextToken(void)—which will read the raw characters from the input
stream, return the next token and perform basic housekeeping operations
such as ignoring unnecessary whitespace.

There still remain two questions: what does getNextToken() return and
when should it be called?

The return data type is the simplest question; we will simply have
getNextToken() return the “token type”. The nature of the token type
will vary depending on the formal language. Sometimes it will be a string
(e.g. in a noun phrase tokenizer), sometimes it will be an int and sometimes
will will be a struct or even something else. The precise nature of the data
type will be encapsulated with a typedef such as:

3For example, a number represented as a single character might be processed with:
n=ch-0;

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter

63

typedef int token_t;

or
typedef char * token_t;

or
typedef struct { } token_t;

The final unresolved issue involves the interaction between the tokenizer
and the parser: when does the parser ask for the next token?

To see why this is not a completely trivial question, consider the general
architecture of the repetition parser:

many ()
{
while (/* it’s a ‘‘one’’ */)
one();

To escape the “while loop”, we have to encounter a syntactical unit that
does not parse as a <one>. This necessarily implies that we must gather one
or more tokens that extend beyond the end of the <many> unit.

There are at least two ways to resolve this problem:

1. Allow some mechanism to “unget” tokens—i.e. to “push them back”
onto the input stream of tokens. The decision of what to push back
and when to do it can be localized in the individual parsing functions;
some functions need never push things back while others do. Every
function is written as if the token returned by getNextToken() is the
next unexamined token.

This is arguably the most elegant solution as it avoids any global vari-
ables and unexpected interaction between parsing functions. However,
its implementation requires some sophistication in C programming and
modularization skills that may be a barrier to students with scant ex-
perience with these techniques.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

64 Parsing

2. Use a global variable—token_t token—that by convention you always
set whenever you get another token. (i.e. You use the pattern token
= getNextToken().) This technique inevitably means that there is
some interaction between the parsing functions that the programmer
using them must be aware of. Consequently, it is essential that the
public documentation of each parsing function clearly state if the global
variable token has been successfully processed or not—i.e. does the
calling function need to get the next token to continue parsing or is it
already available in the global variable.

We adopt this method.

3.3.3 Example: A Noun Phrase Word Counter

With these preliminaries, we are now able to write a parser for a language.
The precise task of the parser will be to implement an interpreter: specifi-
cally, the program will read an alleged noun phrase from <stdin> and print
“Good: <n> words” when the input phrase is a grammatically correct noun
phrase and where <n> is a count of the total number of words in the phrase.
If the input phrase is ungrammatical, the message “Bad” will be printed.

Note that this apparently trivial program is quite different form a simple
word count program (like the UNIX wc -w command); the ordinary wc -w
will happily report that the phrase “dog white the” has 3 words in it, but
our parser program will say that this phrase is Bad. Of course, when the
phrase is grammatically correct, both programs will give the same numerical
answer.

We will assume that a tokenizer exists with the public interface previously
described. Specifically:

typedef char * token_t;
token_t token;
token_t getNextToken(void);

and the public documentation for getNextToken() is:

/** getNextToken() reads the next word from stdin and

* returns a pointer to it. Whitespace (spaces and tabs)
* are ignored. If the end of file is encountered, an

* empty string is returned. The end-of-line indicator
* is returned as the string "\n".

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter

65

*
* Qreturn a string or "" or "\n" as described above.

*/

We now need to define what each of the language specific functions
(noun_phrase, article, adjective and noun) will return and how they will
manipulate the global token variable.

Recalling the importance of clearly specifying when tokens are retrieved,
the first step in writing C functions for each of the syntactical elements is to
write clear public documentation. For example, the public documentation to
the noun_phrase () function is:

/** noun_phrase() parses a noun phrase defined by the BNF:

* <pre>

* <noun_phrase> ::= <article> { <adjective> } <noun>

*x </pre>

*

* ENTRY CONDITIONS: The next unprocessed token must be
* already available in the token

* global variable.

* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.

* @return The number of words in the noun phrase

* (must be at least 2) or a negative number

* if a parse error is detected.

*/

With this documentation (and similar documentation indicating the re-
sponsibilities for getting the next token for other functions), we can now
easily write the noun phrase() function—assuming that the input is gram-
matically correct—as follows:

int noun_phrase(void)
{
int nWords;
nWords = article();
while(adjective())
nWords++;
noun() ;
return nWords+1;

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

66 Parsing

If you look at the complete source code, you will see that the implementa-
tion differs from this simplified version. In particular, grammatically correct
input is not assumed. When the input is ungrammatical, a negative value is
returned.

The assumption that the input is grammatically correct simplifies our
life considerably. For example, the public documentation for the article ()
function states:

/*x article() parses an article as defined by:

*x <pre>

*<article> ::= ’the’ | ’a’

*x </pre>

* ENTRY CONDITIONS: The next unprocessed token must be already
* available in the token global variable.

* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.

* @return 1 if the token is an article; otherwise O.

*/

Under the assumption of grammatically correct input, the implementa-
tion of the article () can be simplified to simply getting the next token and
unconditionally returning 1 as follows:

int article(void)

{
token = getNextToken() ;
return 1;

Indeed, this kind of “stub function” was used during the development of
the program.

The main() function

The discussion so far has implicitly assumed that the parser functions
are simply given a sequence of tokens from the lexical analyzer (i.e. the
getNextToken() function) that parse as a <noun_phrase>. However, we
also need a driver—a “main” function—to get things going. Furthermore,
the specifications for the program mandate that it can handle zero or more
noun phrases, each on a line by itself, and that empty lines be ignored.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter 67

We can express these constraints for our driver program with the following
(informal) BNF:

<line> ::= ’\n’ | <noun_phrase> \n
<a_bunch_of_lines> ::= { <1line> } EOQOF

Frankly, however, I did not go through this BNF stage; I simply wrote
the main() function using common C idioms as follows:

int main()
{
int nWords;
/* while NOT end-of-file */
while(strcmp(token = getNextToken(), "")) {
if (!strcmp(token, "\n")) /* Ignore empty lines */
continue;
if ((nWords = noun_phrase()) > 1)
printf ("Good: %d words\n", nWords);
else {
printf ("Bad\n");
/* Skip rest of line */
while(strcmp(token, "\n") != 0)
token = getNextToken();
}
}
exit (0);
}

3.3.4 Example: A Simple Calculator

The BNF for simple arithmetic expressions can also be converted into a
working C program following the same general principles we applied for the
noun phrase parser.

For example, the BNF:

<expr> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <num>

| ;(: <expr> ;):

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

68 Parsing

140 |)
1% | ;/;

<addop> ::
<mulop> ::

has the overall architecture:

expr ()
{
term() ;
while (/* next thing is <addop> */)
term() ;
}
term()
{
factor();
while (/* next thing is <mulop> */)
factor();
}
factor ()
{

if (/* next thing is a number */)
/* process number */
else {
/* next thing must be ’(’, read it */
expr () ;
/* next thing must be ’)’, read it */

Unlike the noun phrase parser, this architecture is recursive. This is
not direct recursion—the type we discussed in Chapter 2 where a function
directly calls itself—rather it is indirect recursion. In this case there is a
circular chain of function calls that can result in the same functions being
invoked again before the first invocation has returned. Here, expr calls term
which calls factor which may again call expr...

To implement a calculator based on this general parser architecture, we
need to define the actions and tokens.

Version 1.1 (2003-03-1].) (Chapter version: 2003-01-24)

3.3 Implementing a parser/interpreter

We will use a very simple token type: the tokens will simply be single
characters (the only valid ones are “0123456789-+%/()”*) and the tokenizer
will skip whitespace. The implementation is:

typedef int token_t;

token_t getNextToken(void)
{
int ch;
/* Skip spaces and tabs */
while (((ch = getchar()) ==’ ’) || (ch == ’\t’))

b

return ch;

The actions for the non-terminals <expr>, <term> and <factor> will be
to return the numerical value of the corresponding syntactical unit.

For example, when we implement expr, the action associated with parsing
the initial <term> should be to remember its return value (which we call
value.) If there is nothing more to the expression (i.e. if the <term> is not
followed by any <addop> <term> pairs, we simply return this value.

If, on the other hand, the initial term is followed by an <addop> <term>
pair, we should parse the second term, get its value and either add it or
subtract it from the first term depending on whether the <addop> was a ‘+’
or a ‘.

For example, if the expression to parse is “3+4”, the first term evaluates
to “3” and is followed by a <addop> <term> pair. We remember that we
have to perform an addition, then parse the <term> following the ‘4’ (i.e.
the “4”) returning the value 4 which we add to the “3” to obtain the final
value for the <expr>. Of course, had the first term been followed by a —
instead of a 4+, we would have subtracted the value of the second term from
the first.

The C code to implement the interpreter for an <expr> is:

int expr(void)

{

4The end-of-file indicator—EOQOF—is also a valid token. Because of this, the tokens
must be of type int, not char.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

70 Parsing

int value, valueRight;
token_t opToken;

value = term();

while((opToken = token) == ’+’ || opToken == ’-’) {
token = getNextToken();
valueRight = term();

if (opToken == ’+7)
value = value + valueRight;
else
value = value - valueRight;
}
return value;

The code to interpret a <term> is similar to that for an <expr> except
that we multiply or divide in the while loop instead of adding or subtracting.

The code to interpret a factor is quite different, however, since it involves
alternatives and is where numbers themselves are interpreted. Recall that
tokens are single characters and, hence, the only numbers that can be entered
into the interpreter are the ten single digit numbers encoded by the characters
‘0—9’. These are encodings for numbers (usually in ASCII), not numbers
themselves. To convert the encoding for a single-digit number to the actual
value of the number, we subtract the encoding for the character ‘0’ from it.
(We subtract ‘0’ rather than 0x30 or 48 because it is better written code and
is not dependent on the ASCII encoding scheme.)

The C code to interpret a <factor> is:

int factor(void)
{

int value;

if (isdigit(token)) {

value = token - ’0’;
token = getNextToken();
return value;

} else {
assert(token == ’(’);

Version 1.1 (2003-03-11) (chapter version: 2003-01-24)

3.4 Problems

71

token = getNextToken();
value = expr();
assert(token == ’)’);
token = getNextToken() ;

}

return value;

}
Finally, the main driver routine is:

int main()
{
int value;
while ((token = getNextToken()) != EOF) {
if (token == ’\n’)
continue;
value = expr();
printf ("%d\n", value);
}
exit (0);

(The complete source code is given in Appendix E or in the file
src/parsing/calc.c.)

3.4 Problems

3.1 Does the software on your calculator implement an interpreter or a
translator?

3.2 Is the process of converting C source code to object code for a specific
machine best described as “interpretation”, “translation” or “compilation”?

3.3 The BNF grammar for C in Appendix A of Kernighan and Ritchie
defines an “if statement” as follows:

<if_statement> ::= ’if’ ’(’ <expression> ’)’ <statement>

Using this as a model, define the syntax for a “while statement”.

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

72

Parsing

3.4 Add the exponentiation operator (denoted with a =) to the arithmetic
expression BNF. For example, valid expressions would now include things
like 27 (1+3)*5 which would evaluate to 80.

3.5 Describe the BNF for complex numbers. Include two alternate input
formats: one for rectangular notation and the other for polar notation. You
may assume that ordinary floating point numbers have already been defined
as <num> syntactical units.

3.6 Describe the BNF for unsigned floating point numbers as understood
by C’s scanf function in terms of a sequence of characters. (Ignore the
restrictions to size or precision.)

3.7 Assume that C’s “if” and “while” statements have already been defined
as outlined previously.

1. Define the BNF syntax for an “assignment statement”. Assume that
the units <id> and <expression> which describe respectively the syn-
tax of valid variable names and arithmetic expressions have already
been defined.

2. What else do you have to add to the grammar so that C language
constructs such as:

if(...)
foo = bar + 2;

and
if(...) {
foo = bar + 2;
while (...) {
while(...)
n=n-1;
P=p - 2
}
}
are valid?

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

3.4 Problems

73

3.8 Name at least 15 tokens in the C programming language. The tokens
can be keywords, operators, or separators.

3.9 Which programming language do you know with the least number of
tokens?the most number of tokens?

3.10 The nounPhraseWordCounter program correctly identifies “the black
cat” as a valid noun phrase consisting of 3 words, but it produces a parse
error message for the phrase “The black cat.” Why? Which function should
you modify to fix this problem for the general case of ignoring the case of
the first letter in a word? Modify the function.

3.11 Suppose that it is determined that 90% of valid noun phrases begin
with the word “the” (10% begin with “a”). Suppose also that only 20% of
all input sentences have a valid initial word.

1. Is there anything you can do to the source code so that valid sentences
are detected more quickly?
2. Is there anything you can do to the source code so that invalid sentences

are detected more quickly?

3.12 Suppose that all sentences are valid and that the frequency of adjec-
tives is “white”: 40%, “cute”: 30%, “hungry”: 20% and “black”: 10%. Can
you make the program more efficient on average knowing these probabilities.
Explain.

3.13 Identify some bugs in the nounPhraseWordCounter program. (I am
aware of at least two...)

3.14 How would you modify calc.c so that floating point numbers (like
1.23E-5) could be used instead of single digit integers. Implement it in C.

3.15 Draw parse trees for each of the following arithmetic expressions:
1. ———(1+2) 3. (1+2)%3

2. 142%3 4. 142+ (3= —(4+45))

3.16 Modify the implementation of the simple calculator to include the
unary minus operator.

3.17 Define BNF so that sentences like “The hungry white dog chased the
cute black cat.” could be recognized. (Hint: you will need to include a few
examples of verbs.)

Version 1.1 (2003-03-11) (Chapter version: 2003-01-24)

74 Parsing

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-11)

Chapter 4

Complexity

We saw in Chapter 1 that algorithms can be classified as linear, quadratic,
logarithmic, etc. depending on the time they take as a function of a number
denoting the size of the problem. We showed, for example, that the selection
sort algorithm was quadratic and that merge sort was of nlgn complexity.
We also played “fast and loose” with our analysis, using simplifications such
as “ignore the time for this operation”, assume another operation takes pre-
cisely 1 time unit, did some “hand waving” to obtain manageable equations
which we then solved to prove our statements.

In this chapter, we will put these ideas on a firm mathematical foundation,
introduce some new notation, examine some ways to solve recurrences and
give several examples.

4.1 Basic Concepts

The basic concepts behind complexity characterization of algorithms can be
illustrated with reference to the following virtual algorithm:

Example Algorithm

An undefined virtual algorithm

Step 1: Do this step in time k. (The step is only done once.

Step 2: This step takes ko time. (This step is done n times.)

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

76

Complexity

Step 3: This step takes k3 time. (This step is done n? times.)

Step 4: This step takes k4 time. (This step is done n® times.)

No details are specified about what the algorithm does; nonetheless, we
can conclude some general characteristics about it:

T(n) = k4n3 + k3n2 + kg’n + kl

where: T'(n) is the time to perform the algorithm for problem size n.

Since T'(n) is a cubic equation, we summarize the time complexity of
the algorithm by saying that it is cubic. In this chapter, we will examine
various mathematical notations so that this English description is expressed
mathematically as T'(n) = @(n?).

4.1.1 Average-, Worst- or Best-case Analysis

When analyzing the number of times each step is performed in an algorithm
for problem size n, different results will often be obtained depending on
whether the best-, worst- or average-case is considered.

The most conservative type of analysis is the worst-case situation. We
can then guarantee the performance no matter what the input is.

Average-case performance is also useful; indeed, it is sometimes even
more useful than worst-case analysis. However, average-case performance
metrics do not provide the absolute guarantee given by worst-case analysis.
Average-case analysis can also be more difficult than worst-case analysis.

In short, algorithms are usually compared for the worst case. Generally
speaking, an algorithm that performs with logarithmic complexity in the
worst case is preferable to one that is linear. In this book, we will almost
always be concerned with worst-case analysis.

But all rules have exceptions. For example, in the worst case the merge-
sort algorithm has complexity nlogn while the more widely used Quicksort
algorithm has n? worst-case complexity. Quicksort, however, has average
nlogn complexity and the worst-case situation is highly unlikely (especially
if the input is randomized.) Quicksort also has lower memory requirements
and almost always is faster than merge-sort.

Besides worst- and average-case metrics, best-case analysis can also be
done. However, there is scant justification for best-case analysis, except when
it is compared with worst- or average-case analysis. Furthermore, it is easy

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

4.1 Basic Concepts

77

to abuse best-case analysis by modifying an algorithm to treat special “best-
case” inputs in some unusual optimized way.! Despite these caveats, best-
case analysis (without fudging the algorithm) is sometimes a useful technique
to flesh-out some special characteristics of algorithm performance and to
compare them with what is encountered in the average and worst cases.

4.1.2 Time and Space complexity

In almost all cases, we will analyze the time performance of algorithms whose
size can be characterized with a single parameter, n.

However, there are occasions when this does not apply.

For example, we can verify that a simple algorithm to add up n numbers
can be done in a time proportional to n. This is only true, however, if the
computer performing the algorithm can add two numbers in some constant
time. For modern computers, this will be true for integers less than about 4
billion.

Suppose, however, that the integers may be arbitrarily large; perhaps
some of the numbers are hundreds or thousands of digits long. In this case,
the computer hardware cannot add the numbers directly in a single clock
cycle. Rather, software (another algorithm) is required to perform arithmetic
on such huge numbers.

It can be shown that the time required to add huge numbers is pro-
portional to the number of digits, p, involved. The number of additions is
proportional to n and the time per addition is proportional to p. Conse-
quently, the total time is a function of two size parameters, n and p, and the
time required for the algorithm would be proportional to np.

Finally, although algorithm complexity usually means a measure of the
time required to do the algorithm, it is sometimes useful to calculate the
amount of memory required to solve a problem of size n. This is called the
space-complezity of the algorithm. In this book, any discussion of space-
complexity will explicitly use this term; otherwise, the term complezity will
implicitly mean time-complexity.

I There have been reports that some unscrupulous software companies whose products
are often compared using standardized benchmarks have modified their algorithms to
detect well-known benchmark inputs and generate the desired result in a specialized way.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

78 Complexity

4.2 O() notation: asymptotic upper bound

Suppose that T(n) is an equation for the running time of some algorithm
where n is the size of the problem. We say that T'(n) = O(g(n)) to mean
that the time required to complete the algorithm is no worse than some
multiple of g(n) for sufficiently large problems (as measured by n.)

Example

We can say that T'(n) = 2n? + 5n = O(n?) because:

2n? 4+ 5n < 10 x n?

for all n > 1000.
In this example, we have chosen to multiply g(n) = n? by 10 and define
“sufficiently large” as greater than 1000.

4.2.1 Formal definition of O()

The formal definition of f(n) = O(g(n)) is the set of functions, g(n) such
that

f(n) < kg(n),Yn > ng
where k£ and ng are constants. Note that the specific values of the constants
k and ny depend on the g(n) function chosen from the set. This formal
definition can then be used to prove that a function has some O() property.

Example Show that 3n? + n is O(n?).

Choose g(n) = 4n? and find a value ny such that f(n) > g(n) for all
n > ng. We have:

4n* > 3n’+n
dn > 3n+1
n—3n > 1
n > 1

Clearly, ny = 1. If you were to choose k = 2 (i.e. g(n) = 2n?) you would
be unable to find any value for ny. (If you are unconvinced of this, try it and
see why.)

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

4.2 O() notation: asymptotic upper bound 79

Example Show that 3n? + n is O(n?).

Choose g(n) = 2n® and find a value ny such that f(n) > g(n) for all
n > ng. We have:

on® > 3ni+n
2n? > 3n+1
m?—3n > 1

Choose ng = 2, so we have n > ny = 2 = n? > 2n. Substituting in the
above inequalities, we obtain:

2x2n—3n > 1
n > 1

which is obviously true for n > ng = 2

4.2.2 Remarks about O() notation

The examples illustrate some curious characteristics of O() notation. For
example, given T'(n) = 2n3 + 5n? + 10, all of the following statements are
valid:

o T(n) = O(73n%)

o T(n) = 0(2n)

o T(n) = 0(2n® + 5n?)
o T(n) = O(n?)

Although these are all mathematically correct, it is usually silly to use
anything but the simplest O(g(n)) expression where g(n) is the slowest grow-
ing possible function. In this case, the best characterization of T'(n) is O(n?).

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

80 Complexity

It may also seem curious that we can say (quite correctly) that T'(n) =
O(n?) and T'(n) = O(n®). Both are valid because O() notation establishes an
upper bound on the growth of the function; clearly, it a function is bounded
such that it is smaller than kn® for some constant, k, then it will also be
bound by some function k;n8.

The reader may well ask why anyone in their right mind would ever
characterize 2n3 + 5n% as O(n®). Certainly, if you wanted to increase the
popularity of an algorithm, you would be well-advised to make the valid
claim that it is O(n?) instead of saying it is O(n®). (The situation is similar
to trying to promote someone who is 7’17 tall for a basketball team by saying
either “He’s more than seven feet” vs. the equally true, “He’s more than three
feet high.”)

Why then, you may ask, would anyone ever not use the most attractive
possible O() notation? Ouly rarely...One situation that does occur is when
the theoretical analysis of an algorithm’s complexity is mathematically very
difficult. Sometimes, the analysis can be simplified by using assumptions
that guarantee performance that is no better (and may be worse) but that
make the mathematics manageable. In the end, you may be able to prove
that the algorithm is, say, O(n?) but there remains the possibility that its
behavior is even better.

4.2.3 Tips for determining O() complexity

The O() complexity of many functions can be determined by inspection in
many cases. (Furthermore, the tips shown here also apply to 2() and ©()
notations which we will be examined shortly.)

First, the following general properties of O() notation can be proved:

1. If g(n) = O(G(n)) and f(n) = O(F(n)), then:
f(n)+g(n) = O(F(n))+0(G(n)) = O(F(n)+G(n)) = O(max(F(n),G(n)))
2. If g(n) = O(kG(n)) (where k is a constant), then g(n) = O(G(n)).

Using these facts, it is simple to show that

T(n) = 2n®+5n”+10
0(2n® + 5n® 4 10)

Version 1.1 (2003-03-11) (chapter version: 2003-03-11)

4.3 2() and ©() notations

81

= 0(2n*) + 0(5n%) + 0(10)
= 0(n®)+ 0(n®) + 0(1)
0(n?)

Usually these formal steps are skipped: simply identify the fastest growing
term, ignore constant multipliers and you get O() notation.

Indeed, for the case of a function that is the sum of terms that are “simple”
(involving, for example, only polynomials, logarithms and exponentials), this
straightforward method also yields 2() and @() complexity?

4.3 2() and ©() notations

Characterizing a function with O() notation establishes a loose upper asymp-
totic bound on its growth for large n.
Two other notations are also widely used:

2(): establishes a loose lower asymptotic bound.
©(): establishes a tight asymptotic bound.

£2() notation is the opposite of O() notation: when we say a function,
f(n) has 2(g(n)) complexity, we mean that f(n) grows at least as fast (and
possibly faster) than g(n) for large n.
The formal definition of f(n) = £2(g(n)) is the set of functions, g(n) such
that
f(n) > kg(n),Yn > ng

where k£ and ngy are constants.
As stated earlier, the simple method for determining O() complexity is
also true for £2() notation. Thus:

T(n) = 2n°+5n°+10
= 02(2n®+5n° +10)
= 2(2n®) + 2(5n%) + 2(10)
= 2(n®) + 2(n*) + n(1)
= 02(n®)

2We examine ©() and £2() complexity shortly.

2
n
n

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

82

Complexity

On seeing this, the reader is excused if they wonder “What is all this
silliness!”
Before answering, note also that the general rule we used previously, i.e.:

f(n)+9(n) = O(F(n))+0(G(n)) = O(F(n)+G(n)) = O(max(F(n),G(n)))

is also valid for £2()-notation:

f(n)+g(n) = 2(F(n))+02(G(n)) = 2(F(n)+G(n) = 2(max(F(n), G(n)))

But, in addition, the following rule is also valid:

f(n) +g(n) = 2(F(n)) + 2(G(n)) = 2(min(F(n), G(n)))

That is, we can simplify £2() expressions by ignoring all but the slowest
growing term.

Indeed, recall that in the case of O() notation when f(n) = O(g(n))
is established, then it is also true that f(n) = O(¢'(n)) where ¢'(n) is any
function that grows as fast or faster then g(n). The analogous statement
for 2() notation is that once f(n) = £2(g(n)) is established, then it is also
true that f(n) = 2(g"(n)) where ¢g"(n) is any function that grows as slow or
slower then g(n).

One curious consequence of this is that essentially all functions (except
for f(n) =0!) is £2(1).

The reader may still wonder what use this notation has; bear with me a
little bit more and some useful applications will be given.

4.3.1 ©() notation

©() notation is the most useful way to characterize the growth rate of a
function because it set tight bounds rather than the loose upper (or lower)
bounds given by O() (or {2().) Basically, it provides a function that when
multiplied by one constant gives the lower bound and when another multiplier
is used (on the same function, an upper bound is set. In short, @() combines
the features of £2() and O().

The formal definition of @(f(n)) is the set of functions, g(n) and three
constants, ki, ke and ng, such that

k1g(n) < f(n) < keg(n),¥n > ny

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

4.4 Remarks on 60(), O() and {2() notations 83

Once again, when we need to determine the ©() complexity of a function
that is the sum of “simple” terms, we can simply choose the fastest growing
term and set any constant multipliers to unity to obtain the @() complexity.

4.4 Remarks on ©O(), O() and {2() notations

4.4.1 Basic properties

The following basic properties apply to asymptotic notations.

Transitivity: All notations are transitive. For example:

if f(n) = O(g(n)) and g(n) = O(h(n)) = O(h(n))

Reflexivity: All notations are reflexive. Thus:

f(n) = O(f(n))
f(n) = 2(f(n))
f(n) = 0(f(n))

Symmetry: Only ©() notation is symmetric, i.e.:
f(n) = 6(g(n)) if and only if g(n) = O(f(n))

Ordering analogies: It is often useful to think of the relationship between
the asymptotic notations as analogous to the ordering relationships
(less than, equals, greater than) between ordinary numbers. For exam-
ple:

or f(n) = 0(g(n)) & f Xg
or f(n) =2(g(n)) = f=yg
or f(n) = 6(g(n)) & f =g

O() “means”

2() “means”

& 1Y Ik

O() “means”

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

84

Complexity

Transpose symmetry: The following transpose symmetry relationships ap-
ply (and are easily seen by using the above analogies.)

f(n) = 0(g(n)) & g(n) = 2(f(n))
f(n) = 0(g(n)) & f(n) = £(g(n)) and f(n) = O(g(n))

4.4.2 When to use O(), () and 6()

In general, the preferred analysis is worst-case ©(). However, there are sit-
uations where this is difficult or when average-case analysis is preferable.

Example: n!

Consider, for example, the problem of determining @(n!). Without ad-
ditional knowledge of mathematics (such as Stirling’s approximation), this
can be daunting. However, finding simple expressions for O(n!) and 2(n!)
are quite easy.

First, to obtain O(n!), note that:

nl = nxn—-1)x(n—-2)---2x1
< XN X--- X7

~
ntimes

= ’]’Ln

Clearly, then:
n!= 0(n")

Similarly, we can obtain £2(n!) as follows:

nl = nxn—-1)x(Mn—-2)---2x1
> 2X2X---X2

ntimes

= 2"

Hence,

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-11)

4.4 Remarks on 60(), O() and {2() notations

85

nl = (2"

(Indeed, n! = 2(k™) for any k where n > 2k.)
However, it can also be shown that:

n! = O(n") but n! # 2(n")
n! = 2(2") but n! # 0(2")

Hence, this analysis does not provide a ©() expression for n! although it
does tell us that it does grow faster than any exponential (k™) but not as
fast as n".

One way to obtain a tight asymptotic bound is to use Stirling’s approzi-

mation: - (g)” (1+6(1/n))

or,

n n—I—Ln
vV 2nm (E) <nl <Vonrw <Q> ?
e

e

Using the first version, we can obtain:

i-a(ua(2)

Example: logn!

Unlike the factorial function itself, it is possible to obtain a tight asymp-
totic bound for the logarithm of a factorial—log n!—without recourse to Stir-
ling’s approximation as follows:

log (n/2)"? < logn! < logn"
(n/2)(logn —log2) < logn! < nlogn
knlogn < logn! < nlogn

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

86

Complexity

Hence:
logn! = @(nlogn)

This is a significant result of practical importance. In particular, this
result can be used to prove that no sorting algorithm that relies on pairwise
comparisons of elements can have better than ©(nlogn) complexity.

Any sort algorithm for n objects must choose which of the n! possible
permutations of the objects is the one in which all the elements are in sorted
order. An algorithm based on pairwise comparisons must ultimately descend
a decision tree until it encounters the correct permutation. Because logn! =
©(nlogn) the best height for such a decision tree is also @ (nlogn) and since
the “best height” corresponds to the “best algorithm”, no sort algorithm of
this type can do better than ©(nlogn).

4.5 Analysis of non-recursive algorithms

The simplest kind of algorithm to analyze contains no loops and only ele-
mentary steps. (Conditional goto steps are allowed, however, so long as they
cannot result in a loop.) In this case, the running time is always @(1) (and
O(1) and £2(1)).

This is easy to prove in general. If there are no loops, each step S; is
performed at most once. Since each step is elementary, we can assign an
upper bound on the time to perform it, 7;. Consequently, we have:

T(n)= > T, =some constant
each step

This represents the absolute worst case. Suppose, for example, that Step 1
is always performed (in time 77) and then either Step 2 or Step 3 is performed.
The real worst case is then:

T(’I’L) = T1 + maX(TQ, T3)

If the probabilities of doing Steps 2 and 3 were py and p3 respectively, the
average time would be:

T(n) =T + poTs + psTs

The 8-step algorithm for calculating the date for Easter (Problem 1.11)
is an example of an algorithm of complexity ©(1). When the algorithm is

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-11)

4.5 Analysis of non-recursive algorithms 87

written in C and compiled to machine language for a SPARC processor, there
are about 130 machine instructions used to implement the algorithm. As-
suming that each machine instruction takes about 5 nanoseconds to execute,
the algorithm should be executed in a little less than 1 microsecond. When
the execution time was measured, it was 0.87 microseconds.

4.5.1 Simple loops

We can perform an exact analysis on a simple loops of the type shown below:

i=0; /* Statement 1: 1 time */
while(i < n) { /* Statement 2: n+1 times */
foo(); /* Statement 3: n times */
i++; /* Statement 4: n times */
} /* Loop end ==> implicit GoTo loop start: n times */

Letting 7} be the time to perform “statement ¢” a single time, we can
write the equation:

T(TL) = Tl + (Tl + 1)T2 + nT3 -+ ’I’LT4 =cn—+c = 9(7’1,)

where ¢; =Ty + T35+ T, and co =T + 15
Let us look at a more general example of a simple loop:

for(i = cl; 1 < n; 1 = i+c2) /* Assume cl < n and c2 > 0 */
foo(); /% Assume foo() takes constant time */

How often is the function foo() invoked?
We can see that ¢ takes on the values ¢, ¢1 + ¢, ¢1 + 2¢9, 1 + 3¢5, . . . until
(but not including) ¢; + Ncg > n. The number of times that foo () is called

1S:

[(n = c1)/c2] = O(n)

In other words, a loop does not have to do n iterations to be classified as
©(n). If the number of iterations is any constant fraction of problem size n,
it is ©(n).

Loops within loops are also easy to analyze. Consider first:

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

88 Complexity

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
foo();

Clearly, foo() will be invoked n? times, so this form of loop is ©(n?).
Now consider a more interesting case:

for(i = 0; i < n; i++)
for(j = i; j < n; j++)
foo();

Here the inner loop executes n times, then n — 1, then n — 2 and so on;
the last time it executes only once. Hence it does not execute some fixed
fraction of n times. While it appears, intuitively, that the complexity of this
double loop is @ (n?), how do we prove it?

A simple way to prove this is to note that on average the inner loop
iterates about n/2 times. Since the outer loop is performed n times, foo ()
is invoked about n?/2 times. This is not a rigorous proof, however.

A more precise analysis shows that foo() is invoked >7i = n(n + 1)/2
times which is clearly ©(n?).

As a final simple example, consider:

for(i = 0; i < n; i++)
fooN(i);

The function foolN(n) is known to have @(n) complexity. What is the
complexity of the loop?

Once again, the intuitive answer—which also happens to be correct—is
©(n?). How do we prove this?

We see that fooN() is invoked n times with the arguments 0, 1, 2...n—1.
Since the time to perform a function of ©@(n) complexity can be expressed
as c1n + cg, the total time spent in the fooN() function is:

T(n) = co4+c + co+2e1+¢co +-+ (n—1)e; + ¢
n
= TLCo+Clzi
i—1
ncy + cin(n —1)/2

_ ro2 ! !
= cyn” +cn+¢

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-11)

4.6 Analysis of recursive algorithms

Clearly then it is of ©(n?) complexity.
Not every simple for loop is ©(n) complexity, however. For example,
consider:

for(f = cl; £ < n; £ = 2xf)
foo(); /* Assumed to be of constant time */

How often is foo () invoked?

In this case, the loop is performed first with f = ¢, then with f = 2¢y,
next with f = 4¢; and so on...until f = 2¥¢; > n. Hence the number of
times the loop iterates is 1g(n/c;) and is of @(logn) complexity.

4.6 Analysis of recursive algorithms

We have already analyzed some recursive algorithms. In Chapter 1 we an-
alyzed merge sort and determined that its running time could be expressed
with the recurrence T'(n) = 27'(n/2) + n. Then, in Chapter 2 we analyzed
the Towers of Hanoi algorithm and found that its time was expressed with
the recurrence M(n) = 2M(n —1) + 1.

Each of these recurrences was solved in closed form (for merge sort we
obtained 7'(n) = nlgn and for Towers M(n) = 2™ — 1). The methods we
used were somewhat ad hoc; we now look at some other methods.

4.6.1 Solving recurrences

The unrolling or expansion method of solving a recurrence involves repeating

plugging in the recurrence for lower values until a pattern emerges. It is

usually a good idea to confirm the pattern using mathematical induction.
For example:

T(2) = 2T(n/2)+n
= 2(2T(n/4)+n/2) +n=4T(n/4) + 2n
4(2T(n/8) + n/4) + 2n = 8T (n/8) + 3n
8(2T(n/16) + n/8) + 3n = 16T (n/16) + 4n

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

90 Complexity

Assuming that n = 2V and that T'(n/2") = T(1) = 0, we can see that
T(n) = Nn=nlgn.

Recurrence trees

A variation on the unrolling method uses a visual representation as shown in
Figure 4.1 where the recurrence 7'(n) = 27(n/2) + n is shown as a diagram
and separated into its recursive and non-recursive portions. In this case,
to calculate T'(n), T'(n/2) is calculated twice (the recursive part) and the
non-recursive part, n, is added to the final result.

=
)
3

S
N
=
N
NIS

N3

+E=2=n

Recursie Part * Non-Recursive Part

Figure 4.1: Recurrence tree pattern for 7'(n) = 2T (n/2) +n

The power of this visual technique can be appreciated by looking at the
recurrence tree for 7°(8) (where T'(0) = 0) as shown in Figure 4.2. It is
apparent that the contribution of each row in the tree (i.e. the non-recursive
additions) is 8 for all rows except the bottom row where we have the base
case of T(0) = 0. Furthermore, the number of rows is 1 + 1g8 = 4. Hence
the value of T'(8) is 4 (number of rows) x 8 (contribution per row) = 32.

With a little thought, it is apparent that, in general, the contribution of
each row in the recurrence tree for T'(n) is n and the number of rows in the
tree is 1 + lgn. Consequently, 7'(n) = n(lgn + 1) = nlg2n in general.

Just in case the previous paragraph needs more than “a little thought”,
Figure 4.3 shows the general behavior. Once the general pattern is clear—in
this case, the fundamental thing to note is that the non-recursive contribution
of each row is n (except for the 7'(0) row)—the next tricky thing to determine
is an expression for the number of rows. In this case, it is lgn + 1 (not lgn).
It is easy to get this wrong (and I have done so at the blackboard in class. . .).
If you draw draw a specific recurrence tree (eg. 7'(8)) as well as the general

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-11)

4.6 Analysis of recursive algorithms 91

7(8) s
T{@) TT4) 4+4=2x4=38
T(2) T(2) %) 2) L 2424242=4x2=8
(1) (1) (1) T(1) (1) (1) (1) (1) 1414 +1=8x1=8

r{0) 7(0) 7{0) T(0) T(0) T(®) T(0) T(0) T{0) T(0) 7{(0) T(0) T(0) T(0) 7T(0) T(0) 16x0=0

Recursive Part - Non-Recursive Part

Figure 4.2: Recurrence tree for T'(n) = 27 (n/2) + n where n = 8

tree for T'(n), you can confirm your general conclusions with reference to
both trees.

Row 0 T(n) Cn

Row 1 T ax (B =n
7/\ 7,(;,/\1. E4><(%)=n

o 2) €3) 3] &)

o

©o000 0 ©0o0o0o0 ©co0o0o0o0 ©co0o0o0o0

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) 1414 ---+l=nxl=n

o

Row lgn
N NN N P S :
T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) T(0) 2nT(0) =0

Recursive Part . Non-Recursive Part

Summary: Number of rows =lgn+1=1g2n
Contribution per row = n
Total: T(n) = nlg2n

Figure 4.3: Recurrence tree for T'(n) = 27 (n/2) + n—general case

Now that we have analyzed the recurrence 7'(n) = 27'(n/2) + n in many
different ways (starting in Chapter 2), let’s see how we can apply this recur-
rence visualization technique to other problems.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

92 Complexity

Solving T(n) = 3T(n/2) +n
As our first example, consider the recurrence:

0 ifn=20
T(n) = { 3T (n/2) =n otherwise

Before trying to obtain a closed-form solution to this recurrence, let’s
calculate by hand the first few values by directly using the recurrence. We
do this only for values of n that are exact powers of 2 (i.e. n = 2¢) so that
we can always divide by 2 and get an exact integer result. The manually
calculated values are shown in Table 4.1.

lgn | n|T(n)=3T(n/2)+n
0 0

0] 1 3T(0)+1=1

1] 2 3T(1)+2=5

2| 4 3T(2)+4=19
38 3T(4)+8=65
116 3T(8)+16=211

5] 32 3T(16)+32=665

Table 4.1: 3T (n/2) + n for selected values assuming 7°(0) = 0

The method suggested in Chapter 2 to solve recurrences—i.e “Guess the
closed-form solution and prove it by mathematical induction” —does not seem
appropriate here. How do we “guess” the answer? Few people could look at
the sequence 0, 1, 5, 19, 65, 211, 655 ...and “see” the “obvious” pattern in
the blink of an eye!

However, we can often discover the pattern and solve the problem using
the recurrence tree visualization technique.

First, let’s draw the recurrence tree for a specific instance of the problem:
T(8). Figure 4.4 shows the result.

When we look at the tree, we notice:

e The contribution of each row is not a simple constant. Row 0 con-
tributes 8, row 1 contributes 12, row 2 contributes 18. ..

e Nonetheless, we can see that the number of contributing rows is 4.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

4.6 Analysis of recursive algorithms 93

Row 0 T(8) S 1x8=8
Row 1 T(4) (4) (4) ©C3x4=12
Row 2) (2) (2)) (2) (2)) (2) (2) 9x2=18

Row aTﬂhmT&m %T(l) T@(UT@(U T/U%T(l) T@(UT@(D %T(m T27x 1 =27

Recursive Part .
| Non-Recursive Part

Summary: Row 0 contribution: 8
Row 1 contribution: 12
Row 2 contribution: 18
Row 8 contribution: 27
Total: 8 + 12 + 18 + 27 = 65 = T(8)

Figure 4.4: Recurrence tree for T'(n) = 37 (n/2) + n where n =8

Now we draw the recurrence tree (partially) for the general problem:
T(8). Figure 4.5 shows the result.

Row 0 T(n) S lxm=n
Row 1 T(n/2) (n/2) (n/2) -3 x F=8xn

: o= (32 xn
Row 2 774) (n/4) (n/4) 774) (n/4) (n/4) 774) (n/4) (na) - 9X g =(E)x

8% x (n/2%) = n(3/2)¢

Row i

Recursive Part .
. Non-Recursive Part

Summary: Row 0 contribution: n
Row 1 contribution: 3 X (n/2)

Row 2 contribution: 32 x (n/22)

Row i contribution: 3 X (n/2%)

Row Ign contribution: 3len (’rl./2lg)= 3lan
Total: 8 + 12 + 18 + 27 = 65 = T'(8)

Figure 4.5: Recurrence tree for T'(n) = 3T (n/2) + n

We can now see some general characteristics of the recurrence tree:

e As before, the contribution of each row is not a constant. The number
of nodes in the recurrence tree is multiplied by 3 for each deeper row.

e In general, the number of nodes in Row i is 3°.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

94 Complexity

e The contribution of each node in any particular row is the same. How-
ever, this contribution is not the same for each row; indeed, it is halved
each time we go to a deeper row.

e In general, then, we have:

Row; contribution per node = n/2’
Row; number of nodes = 3'
-
Row; total contribution = n/2' x 3' = (i)zn

e Finally we note that the total number of rows is Ign + 1.

Consequently, we can obtain the value for 7'(n) by adding up the total
contributions of each row:

Tn) =Y (5)in
=0
This is a simple geometric series. Recall (from high school algebra) that:
ko P |
l+z+2*+--+2F=> 2" =
i=0 -1

In this case, then, we obtain:
(3/2)sm+1 1
(3/2) -1

Is this the right answer? Yes...if no mistakes have been made.
We can do a quick check by using the closed form equation to calculate
T(32), where 1g32 = 5. We obtain:

T(n)=n = 2n((3/2)'8" Tt — 1) = 3lentl _ olgntl

36 _ 26
26
Fortunately, this gives the same answer as the manually calculated one
based directly on the recurrence as shown in Table 4.1.

This is good circumstantial evidence that the equation is correct. If you
are unconvinced, you can always prove it using mathematical induction.

2 x 32(3%/2% — 1) = 2%() =3%—2°=1729 — 64 =665

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

4.6 Analysis of recursive algorithms

95

A Simple Example

We have now illustrated the recurrence tree visualization technique for two
cases. In both cases, the number of nodes in any row increased as the recur-
rence tree became deeper. We now turn our attention to simpler recurrences
where the number of nodes at each level is constant.

First, recall the simple example of recursion—add (pink,blue) —discussed
in Chapter 2. The pink-blue algorithm expressed the idea of addition using
only simple counting operations. Specifically, the only operations used were
“increment /decrement by one”. The algorithm could have been expressed as
the following recurrence:

blue if pink =0

add(pink, blue) = { add(pink — 1,blue +1) otherwise

We already know, of course, that the closed-form solution to add(pink,
blue) is simply pink+blue.
We want to consider, however, a variation on the recurrence:

blue if pink =0

foo(pink, blue) = { foo(pink — 1,blue + 1) + 1 otherwise

What is the closed-form expression for foo(pink, blue)?

Perhaps you can just “see” the answer as “obvious”. But let’s pretend
that you can’t and use the recursion tree visualization technique to solve this
problem.

First, however, we build a table manually for some simple instances of the
function foo(). Table 4.2 is an example. (Note that the table was filled in so
that no row required only increment and decrement operations on numbers
or previously calculated values.)

Even though you might now be tempted to guess the closed-form expres-
sion for foo(pink,blue), let us soldier on and draw a recurrence tree for a
specific instance. We choose to do this for foo(6,9) as shown in Figure 4.6.

We note that the contribution of each row is 1 except for the last row
where the contribution is 15. There are 7 rows in all. Thus the value of
foo(6,9) is 6 + 15 = 21.

At this point, the overall pattern can be discerned even without draw-
ing a generalized recurrence tree. There will be pink 4+ 1 rows numbered
0---pink. All of the rows numbered 0---pink — 1 contribute 1 while row
pink contributes pink + blue.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

96 Complexity

pink | blue Derivation | foo(pink, blue)
0 X foo(0,z) =x x
1 0 foo(1,0) = foo(0,1) +1 =2 2
1| 1| foo(L,1)=fo0(0,2)+1=2+1=3 3
1 2 | foo(1,2) = foo(0,3)+1=3+1=4 4
2 1| foo(2, 1):f00(1,2)+1—4—|—1—5 5

Table 4.2: foo(pink, blue) for selected values

Row 0 foo(6, 9) 1
Row 1 foo(%, 10) 1
Row 2 foo(4, 11) 1
Row 3 foo(3, 12) 1
|
Row 4 foo(2, 13) 1
Row & fOO(L 14) 1
Row 6 fOO((IJ, 15) 15

Recursive part Non-recursive part

Figure 4.6: Tree for foo(pink,blue) = foo(pink — 1,blue + 1) + 1 where
pink = 6, blue =9

Consequently, we have:

foo(pink, blue) = pink x 1 + (pink + blue) = 2xpink+blue
pink rows each contributes 1 last row contributes pink-+blue

4.6.2 Generating functions (z-transforms)

One very general way for solving recurrences is to use generating functions.
The generating function of a sequence f; is defined as:

= Zfizi

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-11)

4.6 Analysis of recursive algorithms 97

(Engineers use a very similar concept—the z-transform—which assumes
that the sequence is “signal values” sampled at equal time intervals. For these
sequences, the z-transform is defined as Z(f) = ¥, fiz~*. Although very
similar, there are syntactical and semantic differences between generating
functions and z-transforms, however.)

For the Fibonacci series, the generating function is:

F2)=2+2°4+222+32* +52° + 825 + 132" + ...

Evaluating z + zF'(z) + 2%F(z), we obtain:

z = z
2F(z) = 2242242 +32°+52°+8"+132° + ...
2F(z) = B+t +25 435 +527 +88 41327+ ...
=2+ 2F(2)+2°F(2) = 2z+22+22°+32" +52° +82° +132" + ...
= F(2)
Consequently:
z
F = —
(2) 1—2z—22
. z
(1—02)(1 - ¢2)
1 (1 1)
Vi\l—¢z 1- ggz
where:

¢=(1+V5)/2=1.61803... and ¢ = (1 — v/5)/2 = —0.61803. ..
Hence: o 1
F(z) = ;O %(aﬁz - ¢")

But, by definition, the ith term in the infinite series is the ith Fibonacci
number. Hence:

Fib(i) = —(¢' — ¢')

Sl

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

98 Complexity

Since ngS < 1, we also have:

Pib(i) = LmJ

Consequently, the Fibonacci series grows exponentially.

4.7 Problems

4.1 The following functions represent the running times (in some convenient
unit of time) of different algorithms as a function of problem size n.

1.
n*+n+5
2.
200n + 6
3.
lgn!

1. Determine the © complexity of each function and rank them from
fastest to slowest for asymptotically large values of n. (Indicate a tie if
more than one function has the same © complexity.)

2. Rank the functions from fastest to slowest if the value of n is 100.

3. What is the smallest value of n such that the ranking of the actual
running times corresponds to the ranking using © complexity?

4.2 An algorithm requires T'(n) = 2.6n3 + 1gn'® 4+ 123.456. Which of the
following statements are true:

1. T(n) is O(nb). 3. T(n) is ©(n®). 5. T(n) is 2(n?).

2. T(n) is £2(n"). 4. T(n) is O(n®). 6. T(n)is O(n?).

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

4.7 Problems

7. T(n) is O(n?). 8. T(n) is 2(n?). 9. T(n) is O(n?).
4.3 Show that for any positive integer k:

> i* = O(nFt)

1<i<n

4.4 Show that
log (K1n! + Pi(n)) = O(nlogn)

where K is an arbitrary constant and Py(n) is an arbitrary polynomial
of degree k£ and k£ is some positive integer.

4.5 For the following type of loop:

float f;
for(f = cl; f < n; f *= ¢2)
foo() /* constant time */

Determine the necessary conditions so that the loop will execute a finite
number of times.
Develop an exact expression for the number of times the loop iterates.

What is its ©() complexity?
4.6 In Chapter 1 (page 12) we derived:
T(n) =Ty +T(n/2) + T(n/2) + Kin + K, (4.1)
This was simplified by setting Tsp; = 0, Ko = 0 and K; = 1 to obtain:

T(n)=2T(n/2)+n (4.2)

With these simplifications, we showed that T'(n) = nlgn (with 7'(1) = 0).
Prove that the original equation rewitten as T'(n) = 27 (n/2) 4+ an + b where
T(1) =cis O(nlogn).

le.:

T(n) = c iftn=1
" T 2T (n/2) + an+ b otherwise

4.7 Prove that nlogn grows more slowly than n!*¢ where € > 0.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-11)

100 Complexity

Version 1.0 April 8, 2004

Chapter 5

Abstract Data Types

Everything should be made as simple as possible, but not simpler.

—Albert Einstein

Let’s look under the hood.

—Anonymous

This chapter examines the concept of Abstract Data Types (ADT) and
how these concepts can be implemented in a procedural language like C.

5.1 What is an ADT?

A simple definition of an ADT is:

A data type and an associated set of operations (defined as the
type’s interface) that can be performed with the type.

We say that the interface encapsulates the ADT. The documentation of
the interface is all a programmer who wants to use an ADT needs to know.
The actual inner workings of the operations or the layout of the items in the
data type should be of no concern to the application programmer using the
ADT. Indeed, it is preferable to hide the information, making it impossible
for the user to exploit implementation details; users should be forced to
manipulate the ADT only with the publicly documented interface.

In this chapter we will examine ADTs from two perspectives: the appli-
cation programmer’s (user) point of view as well as that of the implementor

Version 1.0 April 8, 2004

102

Abstract Data Types

Version 1.0 April 8, 2004

(the ADT programmer). We will look at several examples; in each case we
first examine the ADT from the user perspective and then look at how the
implementor created it.

The concepts explored here are applicable to any programming envi-
ronment from assembly language programming on “bare metal” to object-
oriented programming in languages like Java, C++ or Smalltalk. The pri-
mary implementation language used here, however, is C. This makes some
of the concepts harder to implement than they would be in Java; but it has
the advantage of demonstrating how some of the “smoke and mirror” tricks
of object-oriented languages are achieved.

The advantages of using ADTs include greater software reliability, more
flexibility and the possibility of re-using existing software more easily. For
example, in Chapter 1 (page 15), we stated “It would be nice to be able to
sort any kind of data with a single sort routine” but we did not show how to
do it then. In this chapter, we will look at ways to solve this kind of problem.

5.2 A Simple “Bag” ADT specification

When you shop at a grocery store, you place each item, one at a time, into
your bag. Upon returning home, you then remove each item, one at a time,
from the bag. If you understand this simple analogy, you understand what
we mean by a “bag” in this chapter. It should be noted, however, that the
contents of this kind of bag are unordered; i.e. the order that the items are
placed in the bag is not necessarily related to the order in which they are
removed. We will also idealize our conceptual or abstract bag in one more
way—we assume that it has unlimited capacity.

A bag is defined mathematically as an unordered collection of elements.
The only operations we can perform on a bag is to add an item or remove
an item®.

The basic operations that can be performed on a Bag are:

add Add something to a bag.

remove Take an item out of a (non-empty) bag.

!In mathematics, other set operations such as union and intersection or finding an item
in a bag are often considered as well. We do not consider these operations, however.

5.3 Basic implementations of an “integer bag”

103

In addition, we need an operation to create an empty bag in the first
place. As a convenience, we also add an operation that tells us how many
items are in a bag:

new Create a new empty bag.

getSize Determine how many items are in a bag.

There may also be another operation required—destroy—for getting rid
of a bag once we have finished with it. In everyday life, we are usually
responsible for getting rid of things we no longer need by “throwing them
in the garbage.” Sometimes, however, we can be much more irresponsible:
when we vacate a hotel room, for example, we can leave things scattered
all over. The cleaning staff will collect our garbage and (hopefully) return
important items inadvertently left behind.

Some programming languages also “provide a cleaning staff” that takes
care of our mess. Whether or not we need a destroy operation depends on the
programming environment the abstract notion of Bag is implemented in. In
C or C++, such an operation is usually required; in Java or lisp, it is usually
not required (bags are picked up and thrown away automatically when they
are no longer needed by the “garbage collector”.)

5.3 Basic implementations of an “integer bag”

We now look at how to implement the basic idea of a Bag in C. For simplicity,
we first consider a specialized version of a Bag that contains only integers.

A Bag is clearly a collection of things, and collections are usually imple-
mented as either arrays or lists. We will start by using a linked list imple-
mentation since this is the easiest way to create a bag that that has virtually
unlimited capacity and does not use more memory than is required.?

Later, we will use a type of array, but not the simple arrays that are di-
rectly supported in the C language. (The problem with these arrays is that
their size is fixed at compile time which leads to bag sizes that either ridicu-
lously large or ones that are too small to be considered as having “unlimited
size”.)

2The memory requirements are ©(n), more precisely 2n + 2 “units” of memory where
each “unit” is the space required for an int, usually 4 bytes.

Version 1.0 April 8, 2004

104 Abstract Data Types

5.3.1 Linked list implementation of IntBag

The first concrete implementation of the abstract concept of Bag restricts
the items in the Bag to ints only and uses a linked list to maintain them.
To remind us of these restrictions and specializations, we call this kind of
Bag a IntLLBag.

One of the hallmarks of a modularized design is that a programmer should
be able to use an ADT given only the API (Application Programming Inter-
face) documentation; there should be no need to have access to the source
code or use any special knowledge about the implementation.

To use the IntLLBag ADT, the application programmer is told to include
the file IntLLBag.h (containing function prototypes and typedefs) and link
the object file IntLLBag.o with their application. The API for the IntLLBag
is:

IntLLBag newIntLLBag(void) Returns a newly created IntLLBag or NULL
if one cannot be created.

void addIntLLBag(IntLLBag b, int i) Adds the integer 7 to the speci-
fied bag b.

int removeIntLLBag(IntLLBag b) Removes an integer (and returns it)
from the specified bag b. The program exits if the bag is empty. Note
that the order of removal is not specified.

unsigned int getSizeIntLLBag(IntLLBag b) Returns the number of items
in bag b.

void destroyIntLLBag(IntLLBag b) Destroys a previously created IntLL-
Bag, releasing all its resources.

With this knowledge, a simple program using an IntLLBag can be written:

#include "IntLLBag.h"
int main(int argc, char * argv([])

{
IntLLBag b;

Version 1.0 April 8, 2004

5.3 Basic implementations of an “integer bag”

105

b = newIntLLBag();

addIntLLBag(b, 3);
addIntLLBag(b, 1);
addIntLLBag(b, 4);
addIntLLBag(b, 1);

while(getSizeIntLLBag (b))
printf ("Removed: %d\n", removeIntLLBag(b));
exit (0);

With the implementation we are about to discuss, the numbers will be
removed in the opposite order they were added (i.e. they will be removed
in the order 1, 4, 1, 3.) It is essential to understand, however, that the
application programmer must not rely on this behavior. Indeed, the API
specifically warns the programmer about this.

The reason this is so important is that it allows the implementation of
the ADT to be radically changed (so long as it still conforms the API) and
the second implementation to be used interchangeably with the first. This is
an example of encapsulation .

(If the application programmer really needs an ADT where the order of
removal is well-defined—e.g. first in, first out—they should choose an ADT
that guarantees this kind of behavior.)

IntLLBag implementation

We now look “under the hood” at the source code to implement the IntLLBag
abstract data type. We want to write the code so that the implementation is
well encapsulated, corresponds to the public API and hides all details about
the implementation from the user of the ADT. To achieve these aims in a
language like C requires some coding conventions that are not often used in
more elementary programming.

The application programmer must, of course, have access to the public
header file IntLLBag.h. Amongst other things, this header must define the
IntLLBag data type, and it must do so in such a way that implementation
details are hidden (i.e. information hiding.) This trick is accomplished by
using an “opaque” or generic data type as follows (taken from IntLLBag.h):

Version 1.0 April 8, 2004

106

Abstract Data Types

Version 1.0 April 8, 2004

typedef void * IntLLBag;

The application programmer might guess that the “real” data type is a
pointer to a data structure, but they should avoid such speculation. The
application programmer does not need to know the inner workings.

The remainder of the header file contains function prototypes and docu-
mentation for the various operations than can be performed with an IntLLBag.
For example:

/** Add an integer to an IntLLBag.

*

* @param b The Bag that will be added to.
* @param i The integer to add.

*/
void addIntLLBag(IntLLBag b, int i);

So far we have not really looked under the hood, since the header file,
although written by the ADT implementor, is not hidden from the appli-
cation programmer. Let’s now look at the actual implementation source
code—IntLLBag.c which us hidden from the user.

Towards the beginning of the source code is the following data structure
definition:

typedef struct _LList _LList, *_LListPtr;
struct _LList {

int data;

_LListPtr next;
};

This defines the basic data structure for nodes on a linked list. Each
item on the list contains integer data (after all, it is a bag of integers) and
a pointer to the next item on the list. Note that the name of the data
type (_LList) begins with ‘’ (the underscore character); this programming
convention indicates that the data type is private to the implementation
and the user (the application programmer) should have no knowledge of
these private data structures. This means, for example, that such data types
would not appear as arguments or return values from any of the publicly
documented functions. Using the ‘’ convention serves as a reminder to the

5.3 Basic implementations of an “integer bag” 107

ADT implementor that application programmers should never be exposed
to these private data structures and that the implementor can fiddle with
them in any way they like (so long as the interface documentation is not
compromised.)

The next private data type specifies how an IntLLBag is actually laid out:

typedef struct _IntLLBag _IntLLBag, *_IntLLBagPtr;
struct _IntLLBag {

_LListPtr head;

int size;

};

The basic structure consists of a pointer to the first item on the linked
list (when there is nothing in the list, this is a NULL pointer). The second
field keeps track of the size of the list. (The fact that this field exists is an
implementation detail and, indeed, is not necessary. For example, when a
count of the number of items on the list is required, we could simply start
at the head and follow the next pointers until we hit a NULL pointer. By
keeping track of how many pointers we follow, the size can be determined.
This is quite inefficient—it is a @(n) method. By keeping track of the size
in a separate field, determining the size becomes a ©(1) operation.)

Before looking at the actual source code, Figure 5.1 shows how the private
data structures are linked to implement a bag containing two integers. The
application programmer, of course, is unaware of what is going on to the
right of the vertical dashed line. (They know that b is a generic pointer.)

_IntLLBagPtr cast

_ head: @ - data: 1 data: 3

size: 2 next: ® > next: &——

_IntLLBag _LList _LList
Public interface view

Private implementation view

Figure 5.1: Data structures after adding “3” and “1” to empty Bag

Version 1.0 April 8, 2004

108

Abstract Data Types

Version 1.0 April 8, 2004

Once we have defined these private data structures, the coding for the
functions is relatively straight forward. First, we look at the code to cre-
ate a new IntLLBag: the memory for the private structure is allocated and
initialized as shown below.

IntLLBag newIntLLBag(void)
{
_IntLLBagPtr b;
b = malloc(sizeof (_IntLLBag));
if (b == NULL)
return NULL;
b->head = (_LListPtr) NULL;
b->size = 0;
return (IntLLBag) b;

To add an integer to a bag, we allocate memory for a node on the list,
insert it at the beginning of the list (so it is now the head of the list) and set
its data field the value of the integer being added, and increment the size
field of the private Bag data structure to reflect the fact that there is now
one more item in the bag.

The code is shown below:

void addIntLLBag(IntLLBag b, int i)
{

_LListPtr item;

_IntLLBagPtr _b = (_IntLLBagPtr) b;

item = malloc(sizeof (_LList));
item->data = i;

item->next = _b->head;
_b->size++;

_b->head = item;
return;

Note the line:

_IntLLBagPtr _b = (_IntLLBagPtr) b;

5.3 Basic implementations of an “integer bag”

109

This cast is essential because the IntLLBag b parameter that is passed
is an opaque data structure that the compiler does not “know” has fields
called “size” and “head”. We do not really need the private local variable _b
and could have achieved the same result with explicit casts of parameter b
as follows:

((IntLLBagPtr)b)->size++;

This is somewhat uglier code, however: it is more tedious and harder to
read and write. Furthermore, a good compiler will probably “optimize away”
the local variable _b.

We next look at the code for removing an item from a bag. First, we
check that the bag has at least one item in it; if it is empty, we unceremoni-
ously exit. (This extreme measure would almost certainly be inappropriate
in production quality code; these examples, however, are meant only to be
illustrative of programming techniques for ADTs.) Assuming there is some-
thing to remove, we unlink it from the list (and we take the first one in
the list), reset the “head” field and decrement the size. We then extract
the integer value form the unlinked node, which will be returned. Before
returning, however, and wvery importantly, the memory used by the node’s
data structure is released. If we don’t do this, a memory leak will be created.
(This is clearly the responsibility of the ADT implementation; after all, the
application programmer is not even aware of these private data structures
and certainly has no way of releasing the memory resources consumed by
them.)

The code is shown below:

int removeIntLLBag(IntLLBag b)
{
int r;
_LListPtr item;
_IntLLBagPtr _b = (_IntLLBagPtr) b;

if (_b->size <= 0) {
eprintf ("Fatal error, removing from empty bag\n");
}

_b->size--;

Version 1.0 April 8, 2004

110

Abstract Data Types

Version 1.0 April 8, 2004

item = _b->head;

r = item—>data;
_b->head = item->next;
free(item);

return r;

To destroy an IntLLBag, we remove all the items until the bag is empty
and then release the memory for the _IntLLBag data structure. The code is:

void destroyIntLLBag(IntLLBag b)

{
_IntLLBagPtr _b = (_IntLLBagPtr) b;

while(_b->size > 0) {
removeIntLLBag(b) ;

}

free(_b);

return;

Note that the implementation of destroyIntLLBag invokes the public
interface function removeIntLLBag so this part of the destruction procedure
could have been done by the application programmer. However, freeing the
memory for the private data structure should only be done by the ADT
implementation code.

Finally, the implementation of the getSizeIntLLBag() function is trivial:

unsigned int getSizeIntLLBag(IntLLBag b)

{
return ((_IntLLBagPtr)b)->size;

5.3.2 Resizeable array implementation of an Integer
Bag

We now look at a different implementation of a Bag of integers using a
resizeable array technique instead of a linked list. As noted previously, we

5.3 Basic implementations of an “integer bag”

111

cannot use an ordinary C array because its size is fixed at compile time and
we do not know in advance how big to make the array so that it appears to
have “unlimited size” to the application programmer.

(One of the problems at the end of the chapter does suggest a way that
fixed size arrays could be used if the application programmer could specify
at bag creation time the maximum size that a specific bag will ever have to
be.)

In this section we show how resizeable arrays can be achieved in C and use
this technique to implement the Bag ADT. Resizeable arrays are sometimes
called Vectors, so we will call this implementation a IntVBag.

From the application programmer’s point of view, the interface to the
IntVBag is identical to that for the IntLLBag (except, of course, that every
occurrence of “IntLLBag” becomes “IntVBag”.) Indeed, the simple test
program shown on page 104 could be rewritten to use an IntVBag simply by
replacing each occurrence of “LL” with “V” in the source code.

The public header file—IntVBag.h—is very similar to IntLLBag.h. Func-
tion prototypes are given and an opaque data type is defined for the appli-
cation programmer:

typedef void * IntVBag;

As in the case of the linked list implementation, we start the IntVBag.c
source code file with a private data type that will contain the bag:

typedef struct _IntVBag _IntVBag,* _IntVBagPtr;
struct _IntVBag {

int * data;

int size;

int maxSize;

};

As in the case for the linked list implementation, the size field keeps
track of the number of integers in the bag. The field maxSize indicates how
much memory is currently allocated for the integers in the bag. The data
field is a pointer to allocated memory for the data in the bag. It is declared
as a pointer to an integer, but the implementation will often use it as the
name of an array. Suppose, for example, that data pointed to a chunk of
memory that was big enough to hold 8 integers. In that case, the value of

Version 1.0 April 8, 2004

112

Abstract Data Types

Version 1.0 April 8, 2004

maxSize would be 8 and and reference to datal[i] where i was between 0
and 7 (inclusively) would be legal.

Once again, Before looking at the actual source code, Figure 5.2 shows
how the private data structures are linked to implement a bag containing
three integers.

_IntVBagPtr cast

e s [t 4]
|

size: 3

maxSi ze: 4

Public interface view _I nt VBag

Private implementation view

Figure 5.2: Data structures after adding 3, 1 and 4 to empty IntVBag

Creating a new empty bag is straight forward:

IntVBag newIntVBag(void)

{
_IntVBagPtr b;

b = malloc(sizeof (_IntVBag));
if (b == NULL)
return NULL;
b->size = 0;
b->maxSize = 0;
b->data = NULL;
return (IntVBag) b;

The first interesting code is addIntVBag.

First consider a simple case: suppose that maxSize is 8 (and hence that
there is memory allocated for 8 integers) and that there are currently only 4
integers in the bag. We can access any of these with b->data[i] where i is
0, 1, 2, or 3. Since there are 4 unused slots in the resizeable array, we can
simply add the new integer at b->data[4] and increment the size field.

5.3 Basic implementations of an “integer bag”

113

The more interesting case occurs when there is not enough room in the
memory chunk referred to by data to hold another integer. This case occurs
when maxSize==size, but in two slightly different ways: either data points
“nowhere” (i.e. maxSize = 0) or some memory has already been allocated
but is full (i.e. maxSize>0). In the former case, we are adding the first
integer to a newly created bag; we allocate enough memory to hold exactly
one integer, copy it there and increment maxSize and size. Otherwise, we
expand the size of the memory chunk containing the integers by a factor of
two.

This is done using the ANSI standard library function realloc(). The
function prototype (from <stdlib.h>) is:

void *realloc(void *ptr, size_t size);

The on-line manual for standard library C functions describes realloc ()
as:

realloc() changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes. If ptr is NULL, realloc() behaves like malloc() for the spec-
ified size. If size is zero and ptr is not a null pointer, the object
pointed to is freed.

This is a very handy memory allocation function and is often very effi-
cient. To understand why, you need a bit of knowledge about how memory
allocation works in cooperation with an operating system(OS). When mem-
ory is obtained with malloc (), there is a reasonable chance that the chunk of
memory allocated is immediately followed by another block of memory that
is not being used and is available for extending the size of the chunk initially
allocated. When this happy circumstance arises upon a call to realloc(),
the cost (in time) of increasing the size of the block is virtually nothing. The
more expensive operation of actually allocating a new (and bigger) chunk of
memory and copying the contents of the previous block to the new one occur
only “some” of the times.

The code for addIntVBag is:

void addIntVBag(IntVBag b, int i)
{

Version 1.0 April 8, 2004

114 Abstract Data Types

_IntVBagPtr _b = (_IntVBagPtr) b;

if (_b->size >= _b->maxSize) { /* Not enough room? */
if (_b->maxSize == 0) {

_b->maxSize = 1; /* Make space for 1 if now empty */
} else {
_b->maxSize *= 2; /* Otherwise, double "array" size */
}
_b->data = realloc(_b->data, _b->maxSizex*sizeof(int));
}
_b->datal[_b->size] = i;
_b->size++;
return;

}

Deleting an integer from a bag is very simple (simpler than the linked list
implementation). We simply decrement the size field of the private data
structure and return the integer that was at the end of the array. The code
is:

int removeIntVBag(IntVBag b)

{
_IntVBagPtr _b = (_IntVBagPtr) b;

if (_b->size <= 0) {
eprintf("Fatal error, removing from empty bag\n");
}

return _b->datal[--_b->size];

3

Destroying an IntVBag is also simple: release the memory for the data
and for the data structure as shown below.

void destroyIntVBag(IntVBag b)

{
_IntVBagPtr _b = (_IntVBagPtr) b;
free(_b->data);
_b->size = 0;

Version 1.0 April 8, 2004

5.4 IntBag

115

_b->data = NULL;
free(_b);
return;

}
As before, determining the size of a bag is trivial:

unsigned int getSizeIntVBag(IntVBag b)
{
_IntVBagPtr _b = (_IntVBagPtr) b;
return _b->size;

}

5.4 IntBag

The previous two implementations of “integer bags” are not really abstract
enough. In particular, the application programmer is aware of how they are
implemented by their very names. More importantly, if the programmer ini-
tially wrote an application using IntLLBags and then decides that IntVBags
would be superior in some cases, she has to manually go through her source
code and change function names like addIntLLBag to addIntVBag which is
boring, tedious and error-prone.

The interface to IntBag is identical to the ones for IntVBag and IntLLBag
except that no hint is given about the method of implementation (i.e. perhaps
it is with a resizeable array, perhaps a linked list, or perhaps something
completely different.)

The interface is:

IntBag newIntBag(void) Returns a newly created IntBag or NULL if one
cannot be created.

void addIntBag(IntBag b, int i) Adds the integer i to the specified bag
b.

int removeIntBag(IntBag b) Removes an integer (and returns it) from
the specified bag b. The program exits if the bag is empty. Note that
the order of removal is not specified.

Version 1.0 April 8, 2004

116

Abstract Data Types

Version 1.0 April 8, 2004

unsigned int getSizeIntBag(IntBag b) Returns the number of items in
bag b.

void destroyIntBag(IntBag b) Destroys a previously created IntBag, re-
leasing all its resources.

In addition to the basic interface, the application programmer can also
explicitly choose to use a vector or linked list implementation of the bag by
using the following interface:

IntBag newIntLLBag(void) Returns a newly created IntBag or NULL if
one cannot be created. The IntBag will be implemented using a linked
list.

IntBag newIntVBag(void) Returns a newly created IntBag or NULL if one
cannot be created. The IntBag will be implemented using a vector.

Irrespective of the specific type of IntBag created, the programming in-
terface is identical. Thus the application programmer need only change the
“new” function when a different implementation of a bag is desired.

The interface specification can be used by the application programmer as
follows:

#include "IntBag.h"
int main(int argc, char * argv[])
{

IntBag bl, b2;

bl = newIntBag(); b2 = newIntLLBag();

addIntBag(bl, 3); addIntBag(b2, 3);
addIntBag(bl, 1); addIntBag(b2, 1);
addIntBag(bl, 4); addIntBag(b2, 4);
addIntBag(bl, 1); addIntBag(b2, 1);

while(getSizeIntBag(bl))
printf ("Removed: %d (from bl) and %d (from b2)\n",
removeIntBag(bl), removelIntBag(b2));
exit (0);

5.4 IntBag

117

5.4.1 Under the hood of IntBag

The public header file IntBag.h is similar to the ones we have already seen.

But, there is another private header file as well—IntBagP.h—that is used
only by the implementor and is hidden from the user.

An examination of this file gives some clues about how an IntBag is
implemented as well as some coding conventions that are used by the imple-
mentor.

First, note the following near the start of the file:

#define private static
#define public

The word “static” has two meanings in C. When applied to a local vari-
able, it means the memory for the variable is allocated permanently (just
like a global variable) and that its value persists from one invocation of a
function containing it to another. However, when “static” is used to qualify
something of global scope, it means that the qualified name will occupy a
private name-space visible only within the same source code file—i.e. the
name will not be made available to the linker. In other words, this latter use
of the “static” qualifier makes function or global variable names “private”.
Because the use of static in these files corresponds to the “private” semantics
and because the word private is used in many object-oriented languages, I
have used the #define private static preprocessor directive®

For symmetry, I have also defined public as “nothing” since global scope
is the default for top-level declarations.

Next look at the following somewhat complex typedef:

typedef void * (*_method) (IntBag b, ...);

The new type that is defined here is _method and it it a pointer type,
specifically a pointer to a function. The function it points to has at least
one argument (and the first argument must be an IntBag) and it returns a
generic pointer (which can be case to any kind of data pointer or to an int).

Before looking any further at IntBag.h let us briefly look at how pointers
to functions can be used. (Readers familiar with pointers to functions in C
can skip the following.)

3As a rule, I thoroughly dislike this kind of preprocessor trickery...but every rule has
an exception.

Version 1.0 April 8, 2004

118

Abstract Data Types

Version 1.0 April 8, 2004

The “pointer to function” data type and its use can be explained with
a simple example. First, suppose we have a few functions such as:

void * foo(IntBag b) {printf("Hi\n");}
void * bar(IntBag b) {printf("Bye\n");}

The above code simply declares two functions that correspond to the
type of function data type _method can point to.

Now consider the following code:

testMethod ()
{
_method f;

IntBag b =

f = &foo;
(*£) (b) ;
f = &bar;
(*£) (b) ;

/* £ is a pointer to a function */

NULL;

/* set £ to point to the "foo" function */
/* LINE 6: same as foo(b); */

/* set f to point to the "bar" function */
/* LINE 8: same as bar(b); */

In the above program, look at lines 6 and 8. On their own, the (*£) (b)
syntax and previous declarations seem like an obscure and roundabout
way to do something simple—invoke a function. Note, however, that
both lines are identical but invoke different functions. Ultimately, it
is this ability that make function pointers so powerful and worthwhile
despite their ugly syntax.

Perhaps you can now guess why we use function pointers in the imple-
mentation of IntBag: this is how we can do different things dependent on
the nature of the bag when, for example, we add an item to a bag.

Let us continue examining the private header file IntBagP.h. The next
significant type definition is:

typedef struct _IntBag _IntBag, * _IntBagPtr;

struct _IntBag {
void * data;
union {
void * ptr;

5.4 IntBag

119

int intVal;
} state;
_method *methods;
};

The three main components of the private _IntBag data structure are
data, state and methods.

The methods field is declared as a pointer to a method data type (and
hence is a “pointer to a pointer to a function”); it will be allocated memory
and used as the name of an array of function pointers.

The data field is used to store the data—i.e. the integers—in a concrete
implementation. For example, the Vector implementation would use this
field the same way the previous version used the field of the same name in
the private structure _IntVBag. For the linked list implementation, this field
would be used as the head field in the private _IntLLBag structure.

The state field is used to keep track of information relevant to the Bag as
a whole. Note that this field is defined as a union containing either a integer
or a generic pointer. The integer version is used when this is sufficient as is
the case for the linked list implementation where only the size is maintained.
For the vector implementation, two things are required: the size and the
maximum size. In this case, the implementation will allocate a data structure
for the two fields and set the state field of the _IntBag structure as a pointer
to the implementation data structure.

The next part of the header defines constants that will be used to index
into the array of methods:

enum {
addMethod = O,
getSizeMethod,
removeMethod,
destroyMethod
3

As we have done before, we first show the general structure of the private
implementation in Figure 5.3.

We now look at the implementation of IntBag.c.

The implementor in this case has chosen to make the linked list form of
a bag the default. This is done with the following code:

Version 1.0 April 8, 2004

120 Abstract Data Types

_IntBagPtr cast K

1
I
I
] 1

I nt Bag b:) | > Jat a- ‘
1

I Either/ state.ptr: ®

. . ! or state.intVal:
Public interfaceview 1
1 nmet hods:

: \
1
I
|]

_IntBag

Array of function pointers (nethod

Private implementation view

Figure 5.3: Basic Data Structures for an IntBag

Version 1.0 April 8, 2004

5.4 IntBag 121

#include "IntBagP.h"

public IntBag newIntBag(void)

{
return (IntBag) newIntLLBag();
}

The other functions are implemented by invoking the “real” method us-
ing the pointers in the methods function pointer array. For example, the

addIntBag function is written as:

void addIntBag(IntBag b, int i)

{
_IntBagPtr _b;
_b = (_IntBagPtr) b;
_b->methods [addMethod] (b, i);
return;

}

The other functions are similar:

int removeIntBag(IntBag b)

{
_IntBagPtr _b;

_b = (_IntBagPtr) b;
return (int) _b->methods[removeMethod] (b);
}

unsigned int getSizeIntBag(IntBag b)

{
_IntBagPtr _b;

_b = (_IntBagPtr) b;

return (unsigned int) _b->methods[getSizeMethod] (b);
}

Version 1.0 April 8, 2004

122

Abstract Data Types

Version 1.0 April 8, 2004

void destroyIntBag(IntBag b)

{
_IntBagPtr _b;

_b = (_IntBagPtr) b;
(void) _b->methods[destroyMethod] (b);
return;

}

Finally, let’s look at how the linked list implementation of a integer bag is
modified to correspond to the conventions required by IntBag. (The source
code file is IntLLBag2.c.)

#include "IntBagP.h"

/* The _IntBag data structure is interpreted as follows:
* struct _IntBag {

* void * data; —-—— the '"head" of the list of ints
* union {

* void * ptr; --— NOT USED

* int intVal; —--— the "size" of the list

* } state;

* _method *methods; --- the array of functions

* operating on the list

* };

*/

typedef struct _LList _LList, *_LListPtr;
struct _LList {

int data;

_LListPtr next;
I
private void _addIntLLBag(IntBag b, int i);
private int _removeIntLLBag(IntBag b);
private int _getSizeIntLLBag(IntBag b);

private _method theseMethods[] = {

5.4 IntBag 123

(_method) &_addIntLLBag,

(_method) &_getSizeIntLLBag,

(_method) &_removeIntLLBag
3

public IntBag newIntLLBag(void)
{
_IntBagPtr b;
b = malloc(sizeof(_IntBag));
if (b == NULL)
return NULL;
b->data = NULL; /* b->data IS head of list */
b->state.intVal = 0; /* b—>state.intVal IS size */
b->methods = theseMethods;
return (IntBag) b;
}

private void _addIntLLBag(IntBag b, int i)
{

_LListPtr item;

_IntBagPtr _b = (_IntBagPtr) b;

item = malloc(sizeof (_LList));
item—>data = i;

item—>next = _b->data;
_b->state.intVal++; /* _b->state.intVal IS size */
_b->data = item; /*_b->data IS head of list */
return;
}
private int _removeIntLLBag(IntBag b)
{

int r;

_LListPtr item;
_IntBagPtr _b = (_IntBagPtr) b;

if (_b->state.intVal <= 0) { /* _b->state.intVal IS size */
eprintf ("Fatal error, removing from empty bag\n");

Version 1.0 April 8, 2004

124

Abstract Data Types

Version 1.0 April 8, 2004

}
_b—>state.intVal--; /* b->state.intVal IS size */

item = _b->data; /* _b->data IS head of list */

r = item—->data;

_b->data = item->next; /* _b->data IS head of list */
free(item);

return r;

private int _getSizeIntLLBag(IntBag b)

{
_IntBagPtr _b = (_IntBagPtr) b;

return _b->state.intVal; /* _b->state.intVal IS size */

}

Note that all of the functions except for newIntLLBag are private and
hence inaccessible (by name) outside of this source code file. However, since
newIntLLBag initializes the methods array to the addresses of the proper
functions, they can all be invoked through these function pointers.

5.5 A generic Bag

This section is under construction; not part of ELE 428 in Winter 2000.

A simple way to create a Bag that can contain any kind of data is to
speicify that the “data” is an opaque data type (i.e. a void * object).

To make things a bit more interesting, however, we will also extend the
operations supported by a Bag to allow individual elements to be examined
and modified and to add or remove an element anywhere in the Bag.

We can uniquely identify each element in the bag by associating an integer
with each one. Although the Bag need not be implemented as an array, the
user of the API can “think” of it an array (of unlimited size) with elements
number from 0 to n — 1 when there are n objects in the Bag.

5.6 Generic objects 125

5.6 Generic objects

This section is under construction; not part of ELE 428 in Winter 2000.

5.7 Remarks and Caveats

This section is under construction; not part of ELE 428 in Winter 2000.

5.8 Postscript: Using Java

This section is under construction; not part of ELE 428 in Winter 2000.

We stated previously that abstract data types are easier to implement in
an object-oriented language. In this section, we breifly look at how we could
do this in Java.

This section is meant for both readers who have some knowledge of Java
and those who do not. For readers with no previous exposure to Java, some
of the basic principles of the language are outlined and you should be able to
follow the examples. Readers who know Java may also gain a better insight
into the role of interfaces and abstract data types as well as the possible
extensions to Java that would include generic objects.

The Java implementation of the kind of bags we have discussed in this
chapter is so much easier that it is tempting to simply write the code for the
most general kind of Bag directly.

5.9 Problems

5.1 How many different sets can be made if the only two allowed elements
are the integers 1 and 27 Show all possible sets. How many different bags
can be made with the same allowed elements?

5.2 The text suggests a different implementation of integer bags using an
array whose size would be fixed at creation time. Discuss the possible merits

and pitfalls of this approach and outline an implementation.

5.3 Thge text explains how the initial linked list implementation of an in-
teger bag (IntLLBag.c) was converted into a general format (using pointers

Version 1.0 April 8, 2004

126

Abstract Data Types

Version 1.0 April 8, 2004

to functions) compatible with IntBag. The new implementation is in source
code file IntLLBag2.c. Convert IntVBag.c to IntVGag2.c that is compati-
ble with IntBag.

5.4 Suppose that a C compiler did not include realloc() in its library
but did have malloc() and free(). Implement a functional equivalent of
realloc() (within the context of the IntVBag implementation where you
have access to the maxSize field) using only malloc() and free(). Comment
on how this version is likely to compare in efficiency with the real realloc().

5.5 The text states (page 110):

However, freeing the memory for the private data structure should
only be done by the ADT implementation code.

Alec Smart chooses to ignore this advice. He reasons, “I know that the
ADT data type is a void pointer and I also know that it is really a pointer to
some memory chunk that was allocated dynamically. So I can free it myself
instead of incurring the overhead of a destroy function call.”

What do you think of Mr. Smart’s reasoning?

5.6 The definition of the operations for a Bag state that the “getSize”
operation is only a “convenience”.

How would an application programmer determine the size of an IntLL-
Bag in such a way that the bag itself remained unchanged and assuming
that there was a function to determine if the bag were empty? Implement
myGetSize(IntLLBag b).

5.7 Consider another kind of bag where the order of removal is defined in
terms of sorted order. In the case of integers, for example, the “remove”
operation would return the smallest intger in the bag.

Outline at least two different ways such an ADT could be implemented.
Commment on the ©() complexity of the “add” and “remove” operations for
each case.

5.8 Suppose we wanted to implement Sets instead of Bags. (A Bag can
contain duplicates, a Set cannot). Discuss the API interface and the imple-
mentation using a linked list (IntLLSet). Give the ©() complexities for the
add and remove operations as a function of set size n.

5.9 Problems 127

5.9 For the linked list implementation, items are added and removed at the
beginning of the list. Suppose they were added and removed at opposite
ends. What whould the ©() complexities of each of the operations be?

Version 1.0 April 8, 2004

128 Abstract Data Types

Version 1.0 April 8, 2004

Part 11

Data Structures

Version 1.0 April 8, 2004

Chapter 6

Stacks and Queues

In this chapter we examine the interfaces and implementation of three com-
mon data structures: stacks, queues and priority queues. All three of these
data structures are bags of the type discussed in Chapter 5. However, unlike
a generic bag which is an unordered collection of objects with no defined
removal order, the stack, queue and priority queue structures do define the
order.

For a stack, elements are removed in the opposite order that they were
added (this is also called a Last In First Out or LIFO data structure); for a
queue, elements are removed in the same order they were added (also called
a First In First Out or FIFO data structure); and, for a priority queue,
elements are removed according to their “priority” with the highest priority
item being removed.

For example, if the integers 2, 5, and 3 are added to a stack, a queue and
a priority queue in that order, then they will be removed in the order:

stack: 3, 5, 2;
queue: 2, 5, 3;

priority queue: 5, 3, 2 (assuming that the item’s priority is its integer
value).

These “data structures” correspond to situations in everyday life. A queue
is usually how people organize themselves when waiting in line for an ATM
machine or some other service. In this case, the person who has waited the
longest is the next one serviced.

Version 1.0 April 8, 2004

132

Stacks and Queues

Version 1.0 April 8, 2004

On the other hand, the order that patients are treated in the emergency
room of a hospital is quite different. If one patient needs treatment for a
hang nail and another arrives carrying some important bodily part that had
been cut off, it is reasonable that the person with the significant missing
“major part” (not a finger nail) would be treated before the patient with the
hang nail problem. Typically, a tirage is done to sort patients in order of
the seriousness of their injury and the “time of arrival”—i.e. the order they
were added to the queue—is not the primary consideration on when they are
treated.

A stack is commonly encountered when you place things on top of each
other to create a pile. Obviously, the first thing you put down is at the
bottom of the pile and the last thing you placed is at the top. When you
remove things from the pile, you are well advised to start at the top (to avoid
having the pile crash down).

6.1 Stacks

The stack is one of the most widely used data structures in computer engi-
neering. Indeed, it is so important that almost all modern central processing
units (CPUs) implement one or more stacks directly in hardware.

Like any Bag, a stack supports the add and remove operations. However,
“add” is usually called the “push” operation and “remove” the “pop” (or
“pull”) operation.

6.1.1 The uses of stacks

Reversing the order of items: The central characteristic of a stack is that
it reverses the order of items that were pushed onto it when they are

popped.

The algorithm for using a stack to reverse the order of things is straight
forward:

ReverseWithStack Algorithm

Output the reverse of n objects (the input)

6.1 Stacks

133

Step 1: Create an empty stack.
Step 2: Push each object in turn onto the stack.

Step 3: Pop each object in turn off the stack until the stack is empty.
(The will be popped in reverse order.)

Step 4: STOP.

Converting recursive algorithms to iterative ones: We have already seen
on page 27 the general form of many divide-and-conquer recursive algo-
rithms and have seen that some of these algorithms (tail recursive, see
page 31) can be mechanically converted to iterative implementations.
We now examine how some other recursive algorithms that are not tail-
recursive (such as towers of Hanoi or count change) can be converted
to iterative algorithms with the use of a stack.

RecursiveTolterative Algorithm

Convert a recursive algorithm to iterative form using a stack

Step 1: Create an empty stack.

Step 2: Push the parameters onto the stack.
Step 3: If the stack is empty, STOP.

Step 4: Pop the parameters off the stack.

Step 5: If the problem is simple enough to solve directly, solve it and,
if necessary, combine this solution to the total solution. Go back
to Step 3.

Step 6: Otherwise, split the problem into one or more simpler prob-
lems.

Step 7: Push the parameters for each of these simpler problems onto
the stack.

Step 8: Go back to Step 3.
Balancing: Many formal languages require that certain kinds of tokens be

balanced. For example, arithmetic expressions that allow parentheses
must be written so that there is a balancing right parenthesis for each

Version 1.0 April 8, 2004

134

Stacks and Queues

Version 1.0 April 8, 2004

left parenthesis. Thus the expression “(1+2x(1+1))” is legal, whereas
“(1+2))*2(” is illegal even though there are the same number of left
and right parentheses or any kind of balanceable token that has both
left and right versions.

A simple algorithm using a stack to verify that left and right parenthe-
ses balance is:

BalanceLeftRight Algorithm

Verify that left and right tokens balance

Step 1: Create an empty stack.

Step 2: If there are no more tokens: if the stack is empty the input is
balanced; otherwise it is not balanced. sSTOP.

Step 3: 1f it is a left token, push it onto the stack and go back to Step
2.

Step 4: Otherwise, pop the stack. If the token type is not the same as
the right token, the input is not balanced and sToP. Otherwise,
go back to Step 2.

Subroutine linkage: Many CPUs implement a stack in hardware to aid

in subroutine linkage and other common operations. At the machine
language level, a CPU maintains a register called the Program Counter
or Instruction Pointer (PC) containing the address of the next machine
instruction to execute. Most instructions simply perform their opera-
tions and increment the PC to the next instruction in sequence. But
some instructions modify the default sequence. There are both condi-
tional and unconditional “goto” instructions which directly modify the
value of the PC.

Our concern here is with the “goto subroutine” (often called jsr) and
“return from subroutine” (rts) instructions. The operations performed
by these instructions are:

jsr: 1. Push the value of the PC onto the hardware maintained CPU
stack. (Note the the PC will contain the address of the in-
struction that immediately follows the jsr.)

6.1 Stacks 135

2. Modify the PC to the argument specified in the jsr instruc-
tion.

rts Pop the top of the hardware stack into the PC.

Consider, for example, the following outline of function calls:

main()
{
foo();
}
foo()
{
bar();
Eéé();
}
bar ()
{
}

The compiler would generate machine language instructions like:

main:

jsr foo
instruction A

foo:
jsr bar
instruction B

Version 1.0 April 8, 2004

136

Stacks and Queues

Version 1.0 April 8, 2004

jsr bar
instruction C

rts
bar:

rts

Initially, the PC contains the address of the first instruction of the “main”
routine and execution begins there with an empty' stack. When the instruc-
tion jsr foo instruction is executed, the address of the next instruction—
A—is pushed onto the stack and the machine then executes the first in-
struction of the foo routine. Eventually, the first jsr bar instruction is
encountered. The address of the next instruction—B—is then pushed onto
the stack and control is transferred to the first instruction of the bar routine.
At this point the top of the stack is the address of Instruction B and below
it is the address of Instruction A.

The bar routine then is executed and the last instruction performed is the
rts instruction at the end. This pops the top of the stack, which contains
the address of Instruction B and sets the PC to this address. Hence the
next instruction executed is Instruction B as desired. Note also that the
stack is now in the same state it was prior to the execution of the jsr bar
instruction—i.e. the top of the stack is the address of Instruction A.

Later in the foo routine, another jsr bar instruction is executed. This
time the address of Instruction C is pushed onto the stack (which now con-
tains C, A) and the bar routine is executed once again. As before, the bar
routine finishes by executing the rts instruction. This time, however, the top
of the stack contains the address of Instruction C which is popped and placed
in the PC. Thus execution continues at Instruction C in the foo routine and

!Usually the stack is not empty; its contents are defined by the loader/linker, the
command interpreter and the operating system. If it were really empty, returning from
main would cause unpredictable behavior.

6.1 Stacks

137

the stack again contains only the address of Instruction A. Finally, the rts
instruction at the end of foo is executed and the address of Instruction A
in the main routine is popped into the PC. Execution then continues in the
main routine.

6.1.2 The implementation of stacks

An abstract data type corresponding to the removal order defined by a stack
is not difficult to implement. Indeed, the linked list and vector implementa-
tions of IntBag do in fact remove their contents the same way a stack should.
Let us repeat once again, however, that this behavior cannot be relied on in
general.

If one did want to use the implementation of IntLLBag as an IntLLStack,
copy the source code files into similarly named files substituting “Stack” for
“Bag”. Similarly, edit the files and make the same substitution. Finally, and
most importantly, write new interface API documentation for the abstract
stack data type.

It often occurs, however, that the overhead of an ADT stack implementa-
tion is not required. It is common, for example, for an algorithm to require
only a single stack containing a well-defined data type and whose maximum
possible size is predictable at the outset. In such cases, a simple array im-
plementation of a stack may be appropriate.

The API that the stack should implement a single stack of some arbitrary
data type “DataType” is:

void push(DataType item): Pushes item onto the stack.

DataType pop(void): Pops and returns the item on top of the stack. The
behavior is undefined if the stack is empty.

int isEmptyStack(void): Returns non-zero (true) if the stack is empty;
returns 0 if there are items on the stack.

void initStack(void): Initializes an empty stack.
A simple generic implementation of this API is shown below:

typedef int StackData; /* For example */
static unsigned int top = O;

Version 1.0 April 8, 2004

138 Stacks and Queues

#tdefine STACK_SIZE 1000
static StackData stack[STACK_SIZE];

static void push(StackData p)

{
stack[top++] = p;
return;
}
static void initStack()
{
top = 0;
return;
}
static StackData pop()
{
return stack[--top];
}
static int isEmptyStack()
{
return (top == 0);
}

6.1.3 Examples

reverse The function reverse(int datal[], int n) reverses the array of
integers data; the argument n gives the size of the array.

The implementation simply uses the ReverseWithStack algorithms de-
scribed on page 6.1.1.

void reverse(int d[], int n)
{
int i;

initStack(); /* Create an empty stack */

Version 1.0 April 8, 2004

6.1 Stacks 139

/* Push each object in turn onto the stack. */
for(i = 0; i < n; i++) {
push(d[il);
}
/* Pop each object in turn off the stack
* until the stack is empty.

*/

for(i = 0; i < n; i++) {
d[i]l = popQ);

}

return;

The stack used in the reverse function is the same generic
one shown previously. (The complete source code and a main
driver routine can be found in Appendix E or in the file
src/dataStructsAndPtrs/reverse.c.)

Iterative version of Towers of Hanoi:

We can use the RecursiveTolterative algorithm (page 133) to convert
the original recursive version of the Towers of Hanoi algorithm (page 38)
to an iterative implementation using a stack.

The algorithm uses a single stack that contains the parameters to the
towers function. We first define a data type corresponding to this kind
of stack and set up the constants, static variables and array used for
implementing the stack.

typedef struct
{
int n;
int from;
int to;
} Params, StackData;

static unsigned int top = O;
#tdefine STACK_SIZE 1000

Version 1.0 April 8, 2004

140

Stacks and Queues

Version 1.0 April 8, 2004

static StackData stack[STACK_SIZE];
/* standard implementation of stack not shown */

Note that we have given the data structure two names: Params and
StackData. These two type names are aliases of each other. We use
StackData as the data type name so that we can just copy our generic
single stack implementation directly into the source code file. We use
the other name—Params—in the towers function since this name more
closely corresponds to the problem domain and the implementation of
the algorithm.

Before converting the algorithm to iterative form, we make a slight
modification to the original recursive implementation as follows:

void towers(int n, int from, int to)

{
if(n == 1)
printf("%d %d\n", from, to);
else {
int spare = 6 - from - to;
—
towers(n, from, spare);
towers(1l, from, to);
towers(n, spare, to);
}
}

In the original version, the printf statement was used in place of the
recursive call towers(1, from, to). This recursive version works just
like the original one, but the explicit special treatment for moving a
single disk makes the conversion to an iterative solution easier. (One
of the problems and its answer explores this in greater detail.)

We now apply the RecursiveTolterative algorithm to the recursive func-
tion shown above.

First, we create an empty stack and push the parameters onto it (Steps
1 and 2 of the RecursiveTolterative algorithm):

6.1 Stacks 141

void towers(int n, int from, int to)
{
Params p;
initStack();
p-n = n; p.from = from; p.to = to;
push(p) ;

The rest of the algorithm is basically a loop that continues until the
stack is empty. Inside the loop, we pop parameters off the stack and
solve base case problems if we can (i.e. if there is only one disk to move).
Otherwise, we divide the problem into three simpler subproblems and
push the parameters to each onto the stack. We have to be careful,
however, in the order we solve the sub-problems. The order in the
recursive version is:

towers(n, from, spare);
towers(1l, from, to);
towers(n, spare, to);

If we pushed towers(n, from, spare) first, it would be solved last,
but we want it solved first. Hence we have to push the arguments for
each of the sub-problems in the opposite order that the recusive calls
are made. The loop is:

while(!isEmptyStack()) {

p = popQ);
n =p.n; to = p.to; from = p.from;
if (n == 1)
printf ("%d %d\n", from, to);
else {
int spare = 6 - from - to;
--n;
p.n = n; p.from = spare; p.to = to;
push(p) ;
p.n =1; p.from = from; p.to = to;
push(p);

p.n = n; p.from = from; p.to = spare;

Version 1.0 April 8, 2004

142

Stacks and Queues

Version 1.0 April 8, 2004

push(p);
}
} /* END-LOOP while(!isEmptyStack()) { */
}

HTML checker: The HTML (Hypertext Markup Language) requires that

tags be balanced. A tag is defined with the following BNF":

<tag> ::= <startTag> | <endTag>

<startTag> ::= ’</’ <name> ’>’

<endTag> ::= ’<’ <name> ’>’

<name> ::= a sequence of alphabetic characters

For example, the following skeletal HTML fragments are grammatically
correct:

<h3> <a> </h3>
<foo> </foo0> <bar> </bar>

The following are incorrect:

<h3> <a> </h3>
<foo> </foo> </bar> <bar>

The token data type is defined as:

typedef enum {TStart, TEnd, TEOF} TagType;
typedef struct {

char * tag;

TagType type;
} Tag;

The pseudocode for the tokenizer is:

6.1 Stacks 143

Skip to ’<’ or EOF
if (next char == ’/’)
collect the following characters until ’>’
set token type to TStart and return
else
collect the chars until ’>’
set token type to TEnd and return

The implementation of a function to verify that the tags are balanced
follows directly from the BalanceLeftRight algorithm and the types
defined above. The function is called isBalancedHTML and returns
true or false depending on whether the input is balanced or not. The
C implementation is:

enum {false=0, true=1};

int isBalancedHTML(void)
{
Params p;
char * leftTag;
initStack();
while ((token = getNextToken()).type != TEQOF) {
if (token.type == TStart) {
push(token.tag) ;
} else {
leftTag = pop();
if (strcmp(leftTag, token.tag) != 0) {
return false;
}
}
}
if (isEmptyStack())
return true;
else
return false;

Version 1.0 April 8, 2004

144

Stacks and Queues

Version 1.0 April 8, 2004

6.1.4 “Peekable stacks”

A variation on the pure stack that allows only the push and pop operations is
a “peekable” stack. As with an ordinary stack, only push and pop operations
can change the size of the stack. Unlike a regular stack, however, it is possible
to examine or modify any item on the stack.

In short, the API for a peekable stack has the same operations as a regular
stack:

void push(DataType item): Pushes item onto the stack.

DataType pop(void): Pops and returns the item on top of the stack. The
behavior is undefined if the stack is empty.

int isEmptyStack(void): Returns non-zero (true) if the the stack is empty;
returns 0 if there are items on the stack.

void initStack(void): Initializes an empty stack.

The API is augmented with three additional operations to get or set items
on the stack and determine the total number of items on the stack. Stack
items are referred to by their inder. We assume that the top of the stack
is, by definition, at index=0. The item under it would have an index of 1
and so on. A negative index or an index greater than or equal to the total
number of items on the stack would be illegal.

DataType set(int index, DataType data): Set the item on the stack
index elements from the top to the data. It returns the old value that
is replaced. The number of items on the stack is not modified. The
behavior is undefined if indez is not in the valid range 0-Stack size.

unsigned int getSize(void): Returns the number of items in the stack.

DataType get(int index): Returns the value of the item index elements
from the top. For example, when used as get (0) the value of the item
on top of the stack is retrieved, but it is not popped from the stack.
The behavior is undefined if index is not in the valid range 0-Stack
size.

The peekable stack is easy to implement when there is only a single stack
of known finite size. A statically allocated array can then be used for the
stack as seen previously.

6.1 Stacks

145

6.1.5 Stack Frames

The peekable stack has an important application in the implementation of
programming languages like C that allow recursion, the passing of parame-
ters to functions and the declaration of variables local to a function. As in
the case of using a stack for subroutine linkage, we will assume here that
the stack considered here is a hardware stack directly supported by the CPU
architecture. The address of the top of these stacks is maintained in a hard-
ware register and the CPU architecture allows an “indexed addressing mode”
whereby items anywhere in the stack can be examined and modified. In par-
ticular, local variables? and passed parameters are placed on the stack. And,
as we have already seen, the stack is used to store the return address that a
function should return control to when it has finished its work.

The most common protocol to do this in C language implementations
requires that the function that invokes (the caller) another function (the
callee) respect the following conventions.

Caller conventions: To invoke a function (including a recursive call to it-
self), the calling function does:

1. Push the parameters onto the stack. (In C, the parameters are
pushed onto the stack in the opposite order to their declaration.
Thus the top of the stack at the end of this step is the first pa-
rameter to the function being called.)

2. The return address is pushed onto the stack.
3. Transfer control to the called function.

4. When control is transferred back (at which point the stack will
still have the parameters on it, but not the return address), pop
the parameters off the stack.

Callee conventions: 1. The called function pushes space for its local
variables onto the stack.

2. In implementing the function, all references to local variables or
passed parameters are performed using a “peekable” stack inter-
face.

2Except for static local variables which, although they have the same scope as ordinary
locals, are placed at a globally allocated constant location in memory

Version 1.0 April 8, 2004

146 Stacks and Queues

3. When the function has finished its work, it deallocates the space
used on the stack for local variables. (Conceptually, it pops them
but ignores their values since it has finished with them.)

4. The top of the stack is now the return address that control should
be transferred to. This address is popped and placed in the Pro-
gram Counter as before.

void bar(int x, int y)

{
int p, q;
/* do stuffx/
return;
}
void foo()
{
bar(5, 6);
}

Figure 6.1 shows what the stack would look like after bar had been in-
voked and had allocated space for its local variables p and q.

Stack top:

Local var 2
Local var 1
Return address
Parameter 1
Parameter 2

Figure 6.1: Example of a Stack Frame (without a Frame Pointer)

6.2 Queues

The most common kind of queue in everyday life is the “First-In, First-
Out” (FIFO) queue often (frustratingly) encountered when waiting for some
service. This is what we call a queue.

Version 1.0 April 8, 2004

6.2 Queues

147

The API for a queue is almost identical with a Bag API except that the
order of removal is defined. The most abstract description of the required
operations on a queue are:

add Add something to a queue.

remove Remove the item that has been in the queue the longest time.

The more detailed API for ADT queue that could contain an unlimited
number of objects is:

Queue newQueue(void): Returns a newly created Queue or NULL if one
cannot be created.

void addQueue(Queue q, Object obj): Adds obj to the specified queue
q.

Object removeQueue(Queue q): Removes an object (and returns it) from
the specified queue q. The program exits if the queue is empty. Note
that the order of removal is not specified.

unsigned int getSizeQueue(Queue q): Returns the number of items in
queue q.

void destroyQueue(Queue q): Destroys a previously created Queue, re-
leasing all its resources.

6.2.1 Implementation

The basic rule to remember when implementing a queue can be summarized
as “Add at rear, remove at front”. (Note that the API does not specify
how things are added to a queue, only how they are removed. Hence the
implementor is under no obligation to respect the “add at rear, remove at
front” aphorism, but it is the simplest way to implement a queue.)

Because we access both “ends” of the queue, a doubly-linked list offers
straight forward implementation which we outline below:

typedef struct Queue Queue, Node, *NodePtr;

struct Queue {
DataType info;

Version 1.0 April 8, 2004

148

Stacks and Queues

Version 1.0 April 8, 2004

NodePtr next;
NodePtr prev;

}
static NodePtr head = NULL, tail = NULL;

void addQ(DataType item)

{
NodePtr n;
n = malloc(sizeof Node);
n->info = item;
if (head == NULL) {
head = tail = n;
n->next = n->prev = NULL;
} else {
NodePtr p = tail->prev;
if (p == NULL) {
n->prev = tail;
} else {
n->prev = p;
}
n->next = NULL;
tail = n;
}
}
DataType removeQ(void)
{
NodePtr gone = head;
DataType item = gone->info;
head = gone->next;
free(gone) ;
return item;
}

(The implementation of a doubly-linked list can be simplified by using a
circular list.)

A single queue of known maximum size can also be implemented using
an array of fixed dimension.

6.2 Queues

149

We maintain two indices that keep track of where the front and rear
elements are in the array. These indices are called, unsurprisingly, front
and rear. We will stipulate, somewhat arbitrarily, that front will be the
index to the front element (the one that has been there the longest) in the
queue. The rear index will indicate where the next item will be added to
the queue.

Ignoring, for the moment, the finite size of the array, we can add and
remove elements from the queue as follows:

typedef int DataType; /* for example */
enum {QUE_MAX=1000, QUE_ARR_SZ=QUE_MAX+1}; /* for example */
static DataType queue[QUE_ARR_SZ];

/* incorrect skeleton---assumes infinte array size */
static DataType remove(void)
{

return queue[front++];

}

/* incorrect skeleton---assumes infinte array size */
static void add(DataType item)

{

queue [rear++] = item;
}
static int getSize(void)
{

return rear - fromnt;
}

The basic idea expressed above is correct, but we have not accounted for
the finite size of the array. As we add more things to the queue, rear will
eventually be incremented beyond the end of the array.

This is illustrated in Figure 6.2.

The solution is to reset rear to the beginning of the array when it would
“fall off the end”. We do the same thing for front. Hence, the implementa-
tion becomes:

typedef int DataType; /* for example */

Version 1.0 April 8, 2004

150 Stacks and Queues

front rear

Item-4 | Item-5

Remove an item (Item-4)

front rear
0 1 2 3 4 5 6
Item-5

Add an item (Item-6)

front rear
0 1 2 3 4 5 6

Item-5 | Item-6

Add anitem (Item-7)

rear front
0 1 2 3 4 5 6

Item-5 | Item-6 | Item-7

Add an item (Item-8)

rear front
0 1 2 3 4 5 6
Item-8 Item-5 | Item-6 | Item-7

Figure 6.2: Queue implemented as a “circular” array

Version 1.0 April 8, 2004

6.3 Priority Queues

151

enum {QUE_MAX=1000, QUE_ARR_SZ=QUE_MAX+1};
static DataType queue[QUE_ARR_SZ];

static DataType remove(void)

{
DataType item;
item = queue[front++];
if (front >= QUE_ARR_SZ)
front = 0;
return item;
}
static void add(DataType item)
{
queue [rear++] = item;
if (rear >= QUE_ARR_SZ)
rear = 0;
}
static int getSize(void)
{
int size;
size = rear - front;
if (size < 0)
size += QUE_ARR_SZ;
return size;
}

6.3 Priority Queues

Like the ordinary queue, a Priority Queue differs from a Bag in that the order
of removal is specified. In addition, however, there must be some information
in items added to a Priority Queue that allows their importance (i.e. priority)

to be compared.

We will not discuss priority queues in detail here because one of the
most elegant ways to implement them in the most general case and that

Version 1.0 April 8, 2004

/* for example */

152

Stacks and Queues

Version 1.0 April 8, 2004

allows @(logn) behavior for both adding and removing will be explored in
Chapter 7.

Nonetheless, there are simple implementations that are good enough in
some circumstances.

Simple Bag and Sort: A simple way to implement a priority queue is to
use an unordered Bag (such as a simple array) for adding elements and
sorting the whole thing to find the highest priority item for removal.
Adding an item would be a ©(1) operation. Since sorting can be done
in ©(nlgn) time, removal from this kind of priority queuue would
be @(nlgn). In some situations, this perfromance penalty might be
acceptable.

Sorted linked list: Another simple way to implement a priority queue is
to maintain a sorted bag (such as a sorted linked list). If it is a linear
structure, then both adding and removing would be ©(n) in the worst
case.

6.3.1 Delta time queue
6.4 Problems

6.1 Re-write the CountChange program without using recursion.

6.2 An expression that uses the parenthetical balancing characters(){3}[]
is checked using using the BalanceLeftRight algorithm. For each of the fol-
lowing expressions, indicate whether the algorithm will determine if it is
correctly balanced or not. If it is correctly balanced, show the stack contents
after the seventh token. If is not balanced, show the stack just before the
“pop” operation that detected the error.

L (L{GH D
2. (KD
3. (HGHIY

6.3 Define a template implementation of a peekable stack. Assume that
only a single such stack is used in a module and that its maximum size can
be determined at compile time. (Use the example of how a single stack with
compile-defined maximum size was implemented as a set of static functions.)

6.4 Problems 153

6.4 Implement an abstract priority queue for integers using a sorted doubly-
linked list implementation. Call the implementation IntDLLPriQ.

6.5 Some HTML tags do not need to be balanced (although they can be).
The paragraph tag <p> is an example.

How would you modify the BalanceLeftRight algorithm so that it would
not indicate an error in these cases?

(For example, the following sequences would be considered valid:

<foo> <p> </p> </foo>
<foo> <p> </foo>
<foo> <p> <p> </p> </foo>

but these would not be:

<foo> <p> </foo> </p>
<foo> <p> <bar> </foo>
<foo> </p> </foo>

)

Modify the C program for these cases.

6.6 Consider the following skeletal C code:

main() {
main_1: foo(5, 6);
main_2:

}

foo(int p, int q)

{

foo_1: int x, y, z;
foo_2: x = p;

}

Show what the stack frame looks like just before executing the line la-
belled foo_2.

6.7 The code to remove an item from a Queue implemented as a linked list
was written as:

Version 1.0 April 8, 2004

154 Stacks and Queues

DataType removeQ(void)

{
NodePtr gone = head;
DataType item = gone->info;
head = gone->next;
free(gone) ;
return item;

3

Why not write it as:

DataType removeQ(void)

{
NodePtr gone = head;
head = gone->next;
free(gone) ;
return gone->next;
X

6.8 Implement a Queue using a doubly-linked circular list.

6.9 Suupose a stack, queue and priority queue have each been implemented
using an array of fixed size 5 and standard implementations. All three are
initially empty. The items in the Priority Queue are ordered by their numeric
values. A sequence of add and remove commands are issued for each data
structure. For each of the operations, indicate whether an error (overflow or
underflow) occurs; for remove operations that do not cause an error, what
value is removed?

1. Sequence 1:

(a) add 5
) add 9

(c) add 4

(d) add 3
) remove
)

remove

Version 1.0 April 8, 2004

6.4 Problems

155

(g) remove

(h) remove

2. Sequence 2:

)
) remove
) add 3
(e) add 6
(f) add 8
) add 2
)
)
)

remove

6.10 Modify the simple array implementation of a Queue so that the pro-
gram exits if an underflow or overflow error occurs.

6.11 Modify the simple array implementation of a Stack so that the pro-
gram exits if an underflow or overflow error occurs.

6.12 What is the ©() complexity of the simple array implementations of
the add and remove operations for a Queue? ...for a Stack?

Version 1.0 April 8, 2004

156 Stacks and Queues

DRAFT April 8, 2004

Chapter 7

Trees

[Trees arel the most important nonlinear structures that arise in
computer algorithms.

—Donald Knuth

I think that I shall never see
A poem as lovely as a tree.

—Joyce Kilmer

The tree data structure is often used to represent any kind of information
that can be organized in a hierarchical way. We have already used trees in-
formally when we illustrated concepts like recursion, recurrences and parsing
with eponymous “recursion trees”, “recurrence trees” and “parse trees”.

In this chapter we describe how trees can be represented conceptually
(especially using various visual methods) and formally, including their repre-
sentation as data structures in programming languages. The basic concepts,
terminology and algorithms commonly used with trees is also discussed.

Much of the chapter involves binary trees, a structure very closely related
to a general tree.

7.1 What is a tree?

We begin with an intuitive description of various kinds of hierarchical infor-
mation that can be represented as a tree.

DRAFT April 8, 2004

158 Trees

A book: A book (such as the one you are reading) is divided into chapters,
the chapters are subdivided into sections, and so on. The Table of
Contents reflects this hierarchical structure. For example, a partial
description of this book’s structure is:

1 Algorithms
1.1 What is an algorithm?
1.2 A simple sort algorithm
1.3 A better sort algorithm
1.3.1 Merge
1.3.2 The Merge Sort algorithm
1.3.3 The analysis of ‘‘merge sort’’

1.4 Implementation

2 Recursion

In this case, the deeper levels of the hierarchy are represented by greater
indentation and with increasingly detailed numerical identifiers.

Pedigree trees: This kind of tree shows the ancestors of an individual. The
first example (Figure 7.1) shows your (generic) pedigree.

Dad’'s Dad Dad’'s Mom Mows Mom

My Mom
Myv
ME!

Figure 7.1: My ancestors

The second example illustrated in Figure 7.2 shows the pedigree of an
(imaginary) person “Bill”. Here, however, we have rotated the names
of the parents (and grandparents, etc.) to achieve a different visual
presentation.

Lineal family chart: The next example shows part of a family tree, but
in the “opposite direction”. In these charts, the descendants of an

DRAFT April 8, 2004

7.1 What is a tree? 159

Lizll

2
-
/)
E
E
8
3
@
S
(1]
&
(@]
8
3
a
=

Figure 7.2: Bill’s ancestors

DRAFT April 8, 2004

160 Trees

individual are shown. Figure 7.3 shows some of Noah’s descendants
(according to the account in Genesis).

Ashkenaz
Gomer < Riphath

Togarmah
Mago
adog Elishah
Japhet v Tarshish
an
§ Kittim
Dodanim
Tubal
Tiras
No Seba
Cush <)
Nimrod
Ham Phut
Sidon
Canaan <
Heth

Figure 7.3: Noah’s descendents

Organizational chart: Organizations including the military, companies,
government agencies and so forth are usually organized (at least partly)

in a hierarchical way. A typical organizational chart is shown in Fig-
ure 7.4.

Dependency diagram: Programs and projects are often organized as a
collection of source code files that generate object and executable files.

A dependency diagram shows how target files depend on other files. A
typical example is shown in Figure 7.5.

DRAFT April 8, 2004

7.1 What is a tree?

161

President and CEO

[

Project-Alpha Manager
=]

Figure 7.4: Organizational chart

& o & o

‘ VP-Infomation Technology ‘

Project-Zeta Manager

Figure 7.5: Dependency Chart

DRAFT April 8, 2004

VP-Human Resources

162

Trees

Expression tree: These trees (similar to parse trees) show how an expres-
sion is evaluated. A simple example is shown in Figure 7.6.

N
OO

Figure 7.6: Expression tree

Remarks

In all cases, there is a single node that is at the highest hierarchical level.
We call this node the root of the tree. Note that these trees are drawn in
different ways. The root was placed at the left side (Noah’s descendents),
at the right (Bill’s ancestors), at the bottom (my ancestors) or at the top
(organizational chart). In the case of the book example, a figure was not
drawn but the nodes were represented using typographical conventions that
highlighted its tree-like structure.

The choice of which way to draw or represent a tree is arbitrary. You
should use whichever visualization best corresponds to your conceptual un-
derstanding of how the information is organized. Despite this, we will adopt
a standard or canonical representation of trees most of time. In this represen-
tation, the root is placed at the top and is represented by a circle or oval with
textual information placed inside. Lower level nodes are placed below higher
ones and connected by lines. An example of this kind of representation is
shown on Figure 7.7.

It is also important to recognize that a tree structure does not always
represent all the important information about relations and interactions in
a real entity. For example, although the organizational chart of Figure 7.4
does correctly reflect the basic hierarchy, it does not show important rela-
tionships. Suppose that Spot believes he is being harassed by his manager

DRAFT April 8, 2004

7.2 Definitions and terms

163

who, Spot believes, is just “throwing him some bones”. The Human Re-
sources department deals with this kind of harassment issue, but the tree
organization—taken literally—would imply that Spot would have to com-
municate his complaint up through the hierarchy to the president who would
then forward it down the HR chain to the appropriate officer. This is clearly
absurd; in a real organization there would be other communication channels
that would allow Spot to take his complaint directly to the HR officer.

It is also important to recognize that not all things called “trees” in every-
day language correspond to the kinds of trees discussed here. For example,
a traditional “family tree” is not a tree. (One of the problems—and its
answer—explores this.)

7.2 Definitions and terms

We now give a formal definition of a tree.
A tree is defined as a collection of one or more nodes such that:

1. One of the nodes is designated as the root.

2. The remaining nodes (if any) are partitioned into collections, each of
which is itself a tree. These trees (if any) are called the sub-trees of the
node.

We often represent a tree as a diagram with the root at the top as shown
in Figure 7.7.

° Depth =0
G ° ° pepin =1
@ @ e bepin =2

0 ’ o pepin =3

Figure 7.7: A simple tree

DRAFT April 8, 2004

164

Trees

There are various terms related to trees that we will use with precise
meanings as given here.

Child: The root of each subtree of a root is called a child of the root.
Parent: Each node has precisely one parent. The root’s parent is NIL.

Edge (or Arc): A parent-child relationship. This is represented as a line
connecting two nodes in our canonical diagram of a tree.

Sibling: All nodes with the same parent are siblings.

Ancestor: A node that is the parent, the parent’s parent, on so on is an
ancestor node.

Descendant: A node’s children, their children and so on are descendant
nodes.

Path: A set of edges connecting a node with a descendant node. A path
always exists between a node and any of its descendants and the path
is unique. The number of edges in the path is called the path’s length.

Internal node: A node with at least one child.
External node (or leaf): A childless node.

Depth (of a node): The depth of the root is 0. The root’s children are at
depth 1; the root’s children’s children (grandchildren) are at depth 2
an so on.

Height (of a tree): The height of the tree is the maximum depth of any
any node. An equivalent definition is the length of the longest path
from the root to any node in the tree.

Ordered Tree: The basic definition of a tree gives no meaning to the order
that children appear in the tree’s representation. When the order does
matter, we say it is an ordered tree. Except for the example of the
book, all of the trees discussed informally in the previous section were
unordered.

We can represent a tree using parenthetical notation. The BNF is:

DRAFT April 8, 2004

7.3 Representation of trees 165

» (7 <root> { <Tree> } ’)’
alphanumeric characters

<Tree>
<root>

Figure 7.8 shows some examples of some simple trees and their corre-
sponding parenthetical representation.

) () (=)

(D)
Pre-order: D
Post-order: D
((

A (B) (Q) A (B) (D (Q)
Pre-order: A, B, C Pre-order: A,B, D, C
Post-order: B, C, A Post-order: B, D, C, A

()
. ©
ONONO

(A (B (D (B (F) (9)
Pre-order: A,B,D,E, F,C
Post-order: D, E, F, B, C, A

Figure 7.8: Examples of Trees with parenthetical representation

For example, the tree shown in Figure 7.7 can be represented as:

(A B (E) (F)) (C (G (H) (1) (1)) (D))

7.3 Representation of trees

A simple data structure can be used to represent a tree. We assume in
general:

DRAFT April 8, 2004

166 Trees

typedef TreeNode TreeNode, * TreeNodePtr;
typdef char * NodeInfo; /% For example */

where TreeNode is the data type for a node in a tree and NodeInfo is
the data type for the information associated with each node. The definition
of a tree indicates that each node knows all its children. If we had an ADT
TNPBag that could hold an arbitrary collection of node pointers, the TreeNode
data structure could be defined as:

struct TreeNode {
NodeInfo info; /* Data associated with node */

TNPBag kids; /* The collection of node’s children */
}

Other possible data structures that do not require a Bag ADT include:
struct TreeNode { struct TreeNode {

NodeInfo info; NodeInfo info;

int nKids; int nKids;

TreeNodePtr kids[]; TreeNodePtr kids[MAX_KIDS];
}; };
struct TreeNode { struct TreeNode {

NodeInfo info; NodeInfo info;

TreeNodePtr parent; TreeNodePtr parent;

int nKids; int nKids;

Node * kids[]; TreeNodePtr kids[MAX_KIDS];
}; };

The four variations make different choices about whether there is a max-
imum number of children for any node and whether explicit references to the
parent are included in the data structure.

We can initialize data structures such as the one in Figure 7.1 as follows:

typedef struct TreeNode TreeNode, * TreeNodePtr;
typedef char * NodeInfo; /* For example */

#tdefine MAX_KIDS 2

DRAFT April 8, 2004

7.4 Traversing Trees 167

struct TreeNode {

NodeInfo info;

int nKids;

TreeNodePtr kids[MAX_KIDS];
};

TreeNode me, mom, dad, momsMom, momsDad, dadsDad, dadsMom;

TreeNode me = {"ME", 2, {&mom, &dadl}};
TreeNode mom = {"Mom", 2, {&momsMom, &momsDadl}};
/¥ ... etc ... *x/

7.4 Traversing Trees

Traversing a tree is a systematic method for visiting each node in a tree.
There are two classic ways to do this.

Pre-order: This type of traversal is defined recursively as:

1. Visit the root.
2. Visit each of the children.

Post-order: In this case:

1. Visit each of the children.
2. Visit the root.

The trees in Figure 7.8 give the pre- and post-order traversals of each
one.
The implementation of these algorithms is simple:

void postOrder(TreeNodePtr t)
{
int k;
if(t !'= NULL) {
for(k = 0; k < t->nKids; k++)
postOrder (t->kids[k]) ;
printf ("%s\n", t->info);

DRAFT April 8, 2004

168 Trees

void preOrder(TreeNodePtr t)

{
int k;

if(t !'= NULL) {
printf ("%s\n", t->info);
for(k = 0; k < t->nKids; k++)
preOrder (t->kids [k]) ;

Another way is:

Breadth-first: Here we visit all nodes at depth 0, then at depth 1, and so
on.

We will the depth-first traversal method as well as breadth-first traversal
(a variation on pre-order) when we look at graphs in Chapter 10.
Another way is in-order:

1. Visit the children from left to right as follows:

a) Visit the child.
b

(a)
(b)
(c) Visit the next child.
(d)
)

Visit the root.

d
(e) Visit the next child and so forth.

Visit the root.

This does not correspond to a “pure traversal”, where each node is visited
exactly once, unless the maximum number of children is no more than two.
When there are three or more children, the parent is visited more than once.

DRAFT April 8, 2004

7.5 Binary trees

169

7.5 Binary trees

A binary tree is a rooted tree defined recursively as follows:
e Consists of nothing (i.e. no nodes at all), or

e Consists of a node with two children—a left child and a right child,
each of which are binary trees.

Binary trees differ from general trees in three ways:
1. The number of children is defined as being exactly two.
2. The order of the children matters.

3. A binary tree can be completely empty. (A general tree requires at
least one node.)

Some terms used with binary trees are:

Null tree: A binary tree with no nodes. (Also called an empty tree.)
Full binary tree: A tree where all external nodes have the same depth.

Complete binary tree: A binary tree in which all leaf nodes are at depth
height or height-1, and all leaves at depth height are towards the left.
A full tree is always a complete tree, the the converse is not generally
true.

Figure 7.9 shows some binary trees.
Figure 7.10 shows some (non-) complete binary trees.

7.5.1 Representing Binary trees

We can represent binary trees using parenthetical notation as we did for
ordinary trees. However, because we must distinguish between left and right
children, we add the additional convention that a nil child is presented with
‘()’. For example, the binary tree in Figure 7.10 with 6 nodes (A-F) would
be represented as:

(A B (D) (E)) (C (F) O))

DRAFT April 8, 2004

170 Trees

Figure 7.9: Some Binary Trees

DRAFT April 8, 2004

7.5 Binary trees

171

1 1 !
Full, Complete
2 3 2

Complete, NOT Full
Full, Complete

Complete, NOT Full

Figure 7.10: Some Complete and Non-complete Binary Trees

Algorithms that use binary trees usually need to use simple operations
such as:

GetLeftChild Given a node, get the left child (i.e. the node at the left
sub-tree’s root.)

GetRightChild Given a node, get the right child.

GetParent Given a node, get the parent node (or NULL if the node is the
root of the whole tree.) the left sub-tree’s root.)

GetInfo Given a node, get the information associated with the node.

Any representation of a binary tree should make these operations easy to
perform; they should be computed in constant time (i.e. independently of
the size of the tree.)

Any binary tree can be implemented as a set of linked nodes. Each node
in the Binary Tree contains pointers to its left and right child nodes. It is
also often convenient to have an explicit pointer to a node’s parent. One
possibility is:

DRAFT April 8, 2004

172 Trees

typedef struct BTNode BTNode, * BTNodePtr;
typedef char * NodeInfo; /* For example */

struct BTNode {

NodeInfo info;

BTNodePtr left;

BTNodePtr right;

BTNodePtr parent; //Optional
};

Array representation of complete binary trees

Complete binary trees can be represented as a simple array of objects con-
taining the information associated with each node. The elements of the array
do not need explicit pointers to children or parent.

This is accomplished by numbering each node of a complete binary tree
from 1 to n, where n is the number of nodes in the tree. The root node
(at depth 0) is numbered 1; its children (at depth 1) are numbered 2 and 3;
similarly, the 4 nodes at depth 2 are numbered 4, 5, 6 and 7. In general, the
nodes at depth ¢ are numbered from left to right 2¢ through 2:*! — 1.

The node numbered p is stored in element p of the array. It is easy to
show that the number of p’s left child is simply 2p and the number of its
right child is 2p + 1. Similarly, the number of its parent is p/2 (using integer
division.)

7.5.2 Binary Search Trees

A Binary Search Tree (BST) is a binary tree in which the information asso-
ciated with each node is called a key and the keys can be ordered. A BST
must respect the constraints:

e All nodes to the left of the root must have keys that are smaller than
the root’s key.

e All nodes to the right of the root must have keys that are bigger than
the root’s key.

e All subtrees must be BSTs.

DRAFT April 8, 2004

7.5 Binary trees

173

Algorithms associated with a binary search tree include:

Find Given a BST, determine if the specified key exists.

Add Add a node with a given key to a BST.

Delete Delete a specified node from a BST.

Max(min) Determine the maximum (minimum) key in a BST.

Successor(predecessor) Determine the next (previous) key from a given
node in a BST.

Each of these algorithms is now described.

Find

The find algorithm determines if a node exists in a BST. The algorithm is:

Find Algorithm

Search for a node in a BST

Step 1: Start at the root node.
Step 2: If the node is nul, the search is unsuccessful. sTOP.

Step 3: If the node information matches the search criterion, the search is
successful. sTOP.

Step 4: Otherwise, use the same algorithm on the left (right) child tree when
the key is smaller (bigger) than the current node.

DRAFT April 8, 2004

174 Trees

Add

The add algorithm is used to add a node to an existing BST. In a nutshell,
the algorithm is:

Add Algorithm

Add a node to a BST

Step 1: Use the Find algorithm to find the node or the nul node where it
would go.

Step 2: It it already exists, it cannot be added. STOP.

Step 3: Otherwise, replace the external node with the new node.

Delete

The delete algorithm is used to remove a node to an existing BST. In a
nutshell, the algorithm is:

Delete Algorithm

Delete a node to a BST

Step 1: If the node as 0 or 1 child, splice it out and sTOP.

Step 2: Otherwise (it has 2 children), replace its with its successer and delete
the successor node (which is guaranteed to have no more than 1 child)
by splicing it out. STOP.

7.5.3 Heaps
A heap is defined as a binary tree that meets the following two criteria:

1. It must be a complete tree.

2. The value of the root must be bigger than the value of any descendant
node and so on recursively.

DRAFT April 8, 2004

7.5 Binary trees

175

1 1 !
Full, Complete
> 3 2

Complete, NOT Full
Full, Complete

() 1
1
2 g 3 2 3\
e ° 4 5 6 7
4 5 6
Complete, NOT Full e e °
8 9 10

Figure 7.11: Some trees that are heaps

11
Complete, NOT Full

DRAFT April 8, 2004

176 Trees

Some heaps are shown in Figure 7.11
Since the biggest value in the tree is in the root node, determining the
maximum value is ©(1) operation.

FindHeapMax Algorithm

Find the mazimum value in a heap

Step 1: Output the value in the root node. STOP.
DeleteHeapMax Algorithm

Find and delete the marimum value in a heap

Step 1: Output the value in the root node.

Step 2: Replace the value in the root node with the value of the last node
and delete the last node li.e. the rightmost node in the bottom row of
the tree.)

Step 3: Interchange the root node value with the value of its biggest child.

Step 4: Continue interchanging until either the bottom of the tree is reached
or the node being examined is bigger than both children.

Step 5: STOP.
AddHeap Algorithm
Add a node to an existing heap

Step 1: If the heap is empty, create a 1-node tree with the new node and
STOP.

Step 2: Otherwise, add the new node as the last node in the complete tree
(i.e. as the next node on the bottom row of the tree if it is not already
fully populated; otherwise, as the first-leftmost-node on a new bottom
row.)

Step 3: If the new node is bigger than its parent, interchange it with parent.

Step 4: Continue interchanging until either the root of the tree is reached or
the node being examined is smaller than its parent.

Step 5: STOP.

DRAFT April 8, 2004

7.6 Problems 177

7.6 Problems

7.1 Convert, the following descriptions or trees (using parenthetical nota-
tion) into a standard diagram.

1. (A (B) (C(D)(E)(F)))

7.2 Consider the following dependency specification:

E: G
A: BC
C: DEF

Convert each statement into a tree diagram. Combine the diagrams into
a single dependency tree.

7.3 Consider a binary search tree described as:
M @G (D) & (I) @) R P) (N))

Draw the tree.
List the nodes:

1. inorder
2. preorder

3. postorder

Using the standard delete algorithm, delete the G node and give the text
(parenthetical) representation for the new tree and draw it.

7.4 What are the maximum and minimum possible depth for a tree of n
nodes?

7.5 What are the maximum and minimum possible depth for a binary tree
of n nodes?

DRAFT April 8, 2004

178 Trees

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

Chapter 8

Balanced Binary Search Trees

8.1 The problem with ordinary Binary Search
Trees(BSTs)

Ordinary BSTs have performance metrics for operations such as “search”,
“add” and “delete” that are proportional to the height of the tree. If the
tree is reasonably balanced, the height is proportional to logn, where n is
the number of nodes. Indeed, if the information added to a BST is inserted
in random order, the probability that the tree will be reasonably balanced is
extremely high. So, what’s the problem?

Alas, when information is elicited from mortals, people tend to supply
information in an orderly way and—here’s the sad part—this tidy way of
supplying information is often the very worst way of creating a BST. Specifi-
cally, adding information to a BST that is already in sorted order is the worst
possible way of creating a tree, but it is likely that people will do precisely
that...

Here’s a quick example: “Quickly now, tell me the names of 10 numbers
in the range 1...10. All of the numbers you name must be distinct.” Once
the question is understood, the “questionee” is likely to respond, “One, two,
three, four, five, six, seven, eight, nine, ten!” Perhaps, they will name the
numbers as a count down sequence, “Ten, nine, ... BLAST OFF!”. More
playful respondents may choose to name even numbers first followed by odd
numbers, or maybe they will partition the numbers into primes and non-
primes.

However inventive the respondent wishes to be, there is a strong likelihood

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

180 Balanced Binary Search Trees

that the numbers named will be in at least a semi-sorted order and, hence,
our BST will not behave in the way it would if the named numbers were truly
randomly selected. In short, it is highly unlikely that someone, when asked
this question, will build a 10-sided unbiased die marking each side with a
distinct integer in the range 0. .. 10, roll it to get the first number, mark the
number so that it should not be used again, roll the die at least 9 additional
times and reject results where the number has already been marked as used.
Whew... Frankly, if someone were to answer the question in this randomized
way, I would be very impressed by their inventiveness, but would harbour
some doubts about their sanity.

While there are precisely 3,628,800 (10!) correct ways of answering the
question, the solution “One, two, three, four, ...” is likely to occur much
more often than would be expected from a random selection of any of the
valid answers. (The expection that the sorted answer would be given from a
random selection is about .00003%.)

8.1.1 What can we do?

There are ways to change the shape of a BST (while retaining its BST char-
acteristics) that can make the tree more balanced and, hence, obtain the
O (logn) behavorior we desire.

8.1.2 What does “reasonably balanced” mean?

One simple metric for the imbalance of a tree is the difference between the
depths of the deepest and shallowes leaf nodes. We call this the “imbalance
measure’” .

One possible criterion for “reasonably balanced” is that the imbalance
measure be less than some constant (that must be independent of the num-
ber of nodes in the tree). A common requirement is that the imbalance
measure must be no greater than 2. (The AVL rebalacing algorithm uses
this measure.)

Another possible criterion is that the “imbalance measure” must be less
than some (constant) percentage of the tree height. A common requirement
is that the ratio between the depths of the shallowest and deepest leaves be
less than 2. (The Red-Black algorithm uses this measure.)

Version 1.1 (2003-03-11) (chapter version: 2003-04-10)

8.2 Basic re-balancing methods 181

8.2 Basic re-balancing methods

Consider the BST in Figure 8.1.

_ -~ Right (CW) BN
rotate around C

ST
A Left(CCW) <B
totate around C

Left
(Depth dereased)

Middle Right
Left Middle (Depth unchanged) (Depth increased)

(Depth increased) (Depth unchanged)

Figure 8.1: A BST with possible imbalances in left or right sub-tree

If the imbalance measure is more than 2 and if the “heavy” subtree is the
Left or the Right, then a simple rotation around the root in either the right
(clockwise) or left (counter clockwise) direction can reduce the imbalance.

However, when the Middle subtree is the problem, it is a bit more com-
plicated. See Figure 8.2.

_-“left(cow)
rotate around B

= Right (CW)
totate around A

Right
(Depth unchanged)

(Depth reduced by 1)

(Depth mcr;;u by1) Mid Left
Mid-Lef Mid-Right (Depthunchangea)
(Depth unchanged) (Depth increased by 1)

Figure 8.2: A BST with possible imbalances in middle subtree

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

182 Balanced Binary Search Trees

8.3 The Red-Black tree algorithm

One algorithm that inserts (and deletes) nodes in a BST and retains enough
balance so that all operations have ©(logn) complexity is the Red-Black tree
method.

8.3.1 Red-Black Tree (RBT) definition

An RBT is a BST with the additional constraints:

1. Every node is coloured either RED or BLACK.
2. RED nodes can only have BLACK childdren.
3. Leaf nodes are BLACK.

4. The “Black path length” to all leaves is a constant where the “Black
path length” to a leaf is defined as the total number of black nodes
present in the path from the root to the leaf.

In addition, by convention, we always colour the root BLACK.

8.3.2 RBT insert algorithm

The insert algorithm begins with the standard BST insert method and colours
the newly inserted node as RED. (The tree that has a node added to it must
be a RBT prior to insertion.)

After this initial step, the new tree will definitely continue to statisfy
all of the constraints of an RBT except (possibly) for the requirement that
“RED nodes can only have BLACK childdren”.

(Note: the other 3 constraints will hold. Clearly since every previoulsy
existing node was either RED or BLACK and a new node is added with the
colour RED, then every node is coloured. Leaf nodes (i.e. empty binary
trees) continue to be BLACK). The “Black path length” cannot change for
any leaf since there no BLACK nodes have be added or deleted.)

Consequently, the resulting tree after the simple insertion of a new RED
node can only violate the RBT constraints if its parent is also RED.

If the parent is RED, we consider two different possibilities.

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

8.3 The Red-Black tree algorithm

183

RED uncle

First, if the “uncle” is RED (the uncle node is the sibling of the parent), then
a simple recolouring will reduce (and perhaps fix) the problem as illustrated
in Figure 8.3. (Note that all the RBT constraints continue to apply with
the possible exception that recolouring the grandparent RED will make it in
violation. Even if this is the case, however, the violation has moved closer
to the root and, if the violation were to continue we would eventually reach
the root in log, n steps where n is the constant Black path length.)

Move violation up by recolouring
________________ ey

Grandparent now RED
(may now be violation)

Grandparent

Uncle
(recloured)

Parent
(recloured)

Violating node

No longer in violatation

Figure 8.3: Red parent and red uncle after basic insertion

BLACK uncle

In this case, there are two possibilites that are handled differently.

Violating node (with BLACK uncle) is a left child: In this case we need

to perform a rotation (right rotation about the parent) and some re-
colouring as shown in Figure 8.4.

Violating node (with BLACK uncle) is a right child: In this case we
need to perform a rotation (left rotation about the violating node)as
shown in Figure 8.5.

The net effect is that the there is still a node in violation, but it is now
a left child and the previous case applies which is then performed.

Note that the above cases are valid if the parent of the violating node is
a left child. The situation is symmetric if the parent is a right child but you
need to then interchange the words left and right.

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

184 Balanced Binary Search Trees

Move violation with right rotation around parent
________________ -

Grandparent)
Previous parent

Recoloured and moved up

Previous

Parent Uncle Grandparent

\ NS

Violating node

Previous
Uncle

Figure 8.4: Red parent, black uncle, left child

Rotate violator up (violator now left child)
________________ -~
Grandparent

Parent N

Violating node

Previous
Parent

Figure 8.5: Red parent, black uncle, right child

Version 1.1 (2003-03-1].) (Chapter version: 2003-04-10)

8.3

The Red-Black tree algorithm

185

htt
htt

~N
¥R K X X K X K X ¥ ¥ *

*

/

[**

¥ O ¥ K X K X X X X X X X *

*
~

p://yallara.cs.rmit.edu.au/"gregston/CS544/CS544/Terry_Gunning/RBTdemo.html
p://www2.cs.utah.edu/classes/cs3510/applets/RedBlackTree/

Red-black trees are used to implement the Java utility class TreeMap.

Q(#)TreeMap. java 1.27 98/05/06

Copyright 1997, 1998 by Sun Microsystems, Inc.,
901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
All rights reserved.

This software is the confidential and proprietary information
of Sun Microsystems, Inc. ("Confidential Information"). You
shall not disclose such Confidential Information and shall use
it only in accordance with the terms of the license agreement
you entered into with Sun.

Red-Black tree based implementation of the Map interface. This class
guarantees that the Map will be in ascending key order, sorted according
to the <i>natural order</i> for the key Class (see Comparable), or

by the Comparator provided at TreeMap creation time, depending on which
constructor is used. Note that this ordering must be total

in order for the Tree to function properly. (A total ordering is

an ordering for which a.compareTo(b)==0 implies that a.equals(b);

see OrderedMap for further details.)

<p>

This implementation provides guaranteed log(n) time cost for the
containsKey, get, put and remove operations. Algorithms are adaptations

of those in Corman, Leiserson, and Rivest’s Introduction to Algorithms.

@author Josh Bloch and Doug Lea

/** From CLR *x*/
private void fixAfterInsertion(Entry x) {
x.color = RED;

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

186

Balanced Binary Search Trees

while (x != null &% x != root && x.parent.color == RED) {
if (parentO0f(x) == left0f(parent0f (parent0f(x)))) {
Entry y = rightOf (parent0f (parent0f(x)));
if (color0f(y) == RED) {
setColor (parent0f (x), BLACK);
setColor(y, BLACK);
setColor (parent0f (parent0f (x)), RED);
x = parentOf (parent0f(x));
} else {
if (x == right0f (parent0f(x))) {
x = parentOf (x);
rotateLeft (x);
}
setColor (parent0f (x) , BLACK);
setColor (parent0f (parent0f (x)), RED);
if (parent0f(parent0f(x)) !'= null)
rotateRight (parent0f (parent0f(x)));
}
} else {
Entry y = left0f (parentOf (parent0f(x)));
if (color0f(y) == RED) {
setColor (parentOf (x), BLACK);
setColor(y, BLACK);
setColor (parent0f (parent0f (x)), RED);
x = parentOQf (parent0f (x));
} else {
if (x == leftOf (parent0f (x))) {
x = parentOf (x);
rotateRight (x);
}
setColor (parent0f (x), BLACK);
setColor (parent0f (parent0f (x)), RED);
if (parent0f(parent0f(x)) !'= null)
rotateLeft (parent0f (parent0f(x)));

}
}
root.color = BLACK;

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

8.3 The Red-Black tree algorithm

187

/** From CLR *x*/
private void rotateLeft(Entry p) {
Entry r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;

/** From CLR *x*/

private void rotateRight (Entry p) {
Entry 1 = p.left;
p-left = l.right;

if (1.right != null) l.right.parent

1l.parent = p.parent;

if (p.parent == null)
root = 1;

else if (p.parent.right == p)
p.parent.right = 1;

else p.parent.left = 1;

l.right = p;

p.parent = 1;

VAL

value is replaced.

* ¥ X ¥ ¥ * *

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

Associates the specified value with the specified key in this TreeMap.
If the TreeMap previously contained a mapping for this key, the old

Oparam key key with which the specified value is to be associated.
Oparam value value to be associated with the specified key.
Q@return previous value associated with specified key, or null if there

188

Balanced Binary Search Trees

was no mapping for key. A null return can also indicate that
the TreeMap previously associated null with the specified key.
Q@exception ClassCastException key cannot be compared with the keys
currently in the TreeMap.
Q@exception NullPointerException key is null and this TreeMap uses
natural order, or its comparator does not tolerate

* X X K K ¥ ¥

null keys.

*/
public Object put(Object key, Object value) {
Entry t = root;

if (t == null) {
incrementSize();
root = new Entry(key, value, null);
return null;

}

while (true) {
int cmp = compare(key, t.key);
if (cmp == 0) {
return t.setValue(value);
} else if (cmp < 0) {
if (t.left != null) {
t = t.left;
} else {
incrementSize();
t.left = new Entry(key, value, t);
fixAfterInsertion(t.left);
return null;
}
}else { // cmp > O
if (t.right != null) {
t = t.right;
} else {
incrementSize();
t.right = new Entry(key, value, t);
fixAfterInsertion(t.right);
return null;

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

8.4 AVL trees

189

8.4 AVL trees
8.5 Splay trees
8.6 Problems

8.1 Figure 8.6 shows a BST.

Figure 8.6: A binary search tree

a. What is the path length from the root to the deepest leaf node?
b. What is the path length from the root to the shallowest leaf?

c. Can nodes be colored so that it is a red-black tree? If so, show the
coloring.

8.2 A Red-Black BST is initially empty. Nodes with the keys 1, 2, 5, 3, 6,
4 are added in that order. Show the evolution of the tree after each addition.

Version 1.1 (2003-03-11) (Chapter version: 2003-04-10)

190 Balanced Binary Search Trees

Version 1.1 (2003-03-11) (Chapter version: 2002-02-27)

Chapter 9

Hash tables

Balanced binary search trees are excellent data structures for maintaining a
set of items where the operations find, add, delete, successor and predecessor
are all important in an application.

However, there is a wide number of applications where the find operation
is the most important and the add and (possibly) the delete operations are
also important but where retrieving the data in sorted order is rarely needed.

In such cases, a dictionary type of data structure—usually implemented
as a hash table is often the most appropriate choice.

As we shall see in this chapter, a properly implemented hash table pro-
vides @(1) performance for the find, add and delete operations (compared
to the ©(logn) performance of BSTs.)

In this chapter we assume that the items contained in the hash table
consist of data structures where one of the fields is unique. For example, if
we were dealing with data structures containing information about students
in a university, the field uniquely identifying an individual student would be
the student number. (In our university, this is a 9-digit number.)

9.1 Mapping data to numbers

Suppose the universe of keys an application deals with is:

<key> ::= <consonant> <vowel> <consonant>
<consonant> ::= blcld|flglhljlkllimInlplglrisitiviwlx|z
<vowel> ::= alelilolu

Version 1.1 (2003-03-11) (Chapter version: 2002-02-27)

192 Hash tables

In this case, all valid keys would be exactly 3 characters long. Some
examples of keys are “dog”, “cat”, “bin” and “zed”. Invalid keys include
words like “foo” (last character is a vowel), “foxy” (too many characters)
and “do” (too few characters.)

There is also a relatively small number of possible keys: the first letter
can be any of 21 consonants, the second any of 5 vowels and the last any
consonant. In all, then, there are 21 x 5 x 21 = 2205 possible keys.

All possible keys can then be mapped into a unique integer in the range
0—2204. Furthermore, any integer in the range can be converted back into
its corresponding unique key.

Details about this mapping—you can skip this

One way to do this is consider consonants to be mapped to their
ordinal (i.e. a number in the range 0—20); similarly, each of the
5 vowels are mapped to 0—4. We can then consider the key to be
represented as a mixed-base number.

For example, consider the key “dog” (consonant 2, vowel 3, consonant
4):

dog = 29135401 =2 %x 21 X543 x214+4 =277

Similarly, we can convert the mapped integer back to the key. For
example, if the integer is 121, we have:

first consonant ordinal = 121/105 = 1(remainder = 16)

middle vowel ordinal = 16/21 = 0(remainder = 16)

last consonant ordinal = 16

Since consonant 1 is ‘c’, vowel 0 is ‘a’ and consonant 16 is ‘t’, the
integer 121 is the mapped value of the key “cat”.

The main characteristic of this example is that the total universe of possi-
ble keys is quite small. Because of this, it is possible to map each possible key
into an integer in the range 0—n — 1 where n is the size of the key universe.

Version 1.1 (2003-03-11) (Chapter version: 2002-02-27)

9.2 Hash tables

193

Furthermore, a reverse mapping is also easily done and both mapping and
its inverse can be done in constant time (6(1).)

Hence we can allocate an array of n bits where each bit indicates whether
the mapped key exists or not. Initially, each bit is set to false and as
keys are added, the corresponding bit is set to true. Determining if a key
exists is trivial: calculate the map function (in ©(1) time) and look at the
corresponding bit.

9.2 Hash tables

The assumption made in case of direct-mapped tables are rarely met. In
real applications, the key field of a data item often has a huge number of
possibilities. For example, the 9-digit student numbers used at our university
allow for up to 1 billion students—there are much fewer.

Hash tables have some similarities to direct mapped tables in that each
key must be unique and keys are converted to an integer that is used as
an index into a table where the item can be found. However, unlike direct
mapping, the mapped integer (called the hash code does not have a one-to-
one mapping to keys. (Hence, there is no way to convert a hash code back
into a key.) On the contrary, several different keys can have the same hash
code.

Since knowledge of the hash value of a key (i.e. the slot number for that
key) is insufficient to identify the key, we cannot simply use boolean values
in slots to indicate that it is used or not. When the slot is used, we must
also keep track of the specific key that occupies the slot. This is the first
difference between a direct-mapped table and a hash table.

The second difference—and the one that makes the hash table algorithms
a bit more complex than their direct-mapped table counterparts—is how
collisions (two or more keys that have the same hash code) are handles.

To summarize:

e A hash table is an array of slots (numbered 0 to size-1).
e The size is usually a prime number.

e The data to be stored converted to a slot number with a “hash func-
tion”. If that slot is empty, the data is placed there. Otherwise, a
collision occurs.

Version 1.1 (2003-03-11) (Chapter version: 2002-02-27)

194 Hash tables

e A commonly used hash function is h(key) = key mod size

An important parameter that influences performance of hash tables is the
load factor(a) defined as:

number of slots

number of items

9.2.1 Collision resolution by chaining

In this method:

e Each slot is the head of a (possibly empty) list of data added to the
hash table whose hash function identifies the slot.

9.2.2 Collision resolution by probing

In this method:
e The next slots are tried until an empty slot is found.

e To search for an item, the natural slot is tried. If it is not empty and
the data is not what is being looked for, consecutive slots are examined
until either the data is found or an empty slot occurs.

9.2.3 Collision resolution by double hashing

e If the slot is occupied, additional slots are attempted by going through
the table in increments defined by the secondary hash function.

e [t is common to use 1 + key mod size — 1 as the incrementer.

e For example, to add key 20 to a hash table of size 11, calculate the
natural slot (28 mod 11 = 6). If a collision occurs, calculate the double
hash increment (1 + 28 mod 10 = 9). The try 6 +9 mod 11 = 4,6+ 2 x
9 mod 11 = 2, etc. until an empty slot is found.

Version 1.1 (2003-03-11) (chapter version: 2002-02-27)

9.3 Problems

195

9.3 Problems

9.1 A Hash Table implemented in an array of size 13 is initially empty and
the following integer keys are added in the order given: 5, 19, 17, 18, 4, 6.
Assume the primary hash function is:

h(key) = key (mod 13)

1. Draw a representation of the Hash Table when chaining is used for
collision resolution.

2. Draw a representation of the Hash Table when linear probing is used
for collision resolution.

3. Draw a representation of the Hash Table when double hashing is used
for collision resolution. Assume that the secondary hash function is

ha(key) =1+ key (mod 12)

Version 1.1 (2003-03-11) (Chapter version: 2002-02-27)

196 Hash tables

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-30)

Chapter 10

Graphs

Graphs and Trees—General concepts

10.1 Some definitions

10.1.1 Graph terminology

A graph consists of a set of nodes connected by arcs. Some examples of
graphs are shown in Figure 10.1.

Node: Nodes are the objects that are connected in a graph. Nodes are also
referred to as wvertices.

Arc: A connection between one node and another node (which may be the
same as the first node; in this case, the arc is called a self loop). Arcs
are also referred to as edges or connections.

Directed graph: If the arcs are directed (indicated with an arrow at one
end of the arc), the graph is called a directed graph (or digraph). Oth-
erwise, the graph is undirected.

Degree: The number of arcs connected to a node in an undirected3 graph
is called the node’s degree

In(out)-degree: For digraphs, the number of arcs directed away from a
node is called the node’s out-degree; the number of arcs entering it are
its in-degree.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

198 Graphs

Path: A sequence of arcs starting at one node and terminating on another
(possibly the same) node.

Path length: The number of arcs traversed in a path.

Reachable: One node is reachable from another if there is a path between
the two nodes.

Simple path: A path in which no node is encountered more than once.

Cycle: For undirected graphs, a cycle is a path of length 3 or more with the
same starting and ending nodes and where no other node in the path
is visited more than once. A simple cycle is one with no intermediate
node visited more than once. For directed graphs, a cycle is any path
with the same starting and ending nodes. A digraph with no self-loops
is simple.

Connected: If there is a path between every node and any other node, the
graph is connected.

10.1.2 Free trees

Free tree: A free tree is a connected, acyclic, undirected graph.
Free trees have the c following properties:
1. There is a unique path between any two nodes in the tree.

2. If any arc is removed, the graph is no longer connected and, hence, no
longer a tree.

3. The number of arcs is one less than the number of nodes.

4. If any arc is added, the graph becomes cyclic and, hence, is no longer
a tree.

10.1.3 Rooted trees

A rooted tree is a tree in which one node is called the root and is the starting
point for reaching all other nodes.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

10.2 Graph representations 199

Root: The node at the “top” (or “bottom”) of the tree.

Parent and Child: The nodes directly connected to a node and below it
are called the node’s children and the node itself is called the parent.
The parent of a parent is called the grandparent.

Siblings: Children of the same parent are called siblings.
Internal node: Nodes with children.
External node: A node with no children (at the “bottom” of the tree).

Depth: The depth of the root is 0 (zero). Its children are at depth 1; its
grandchildren are at depth 2, etc.

Height: The maximum depth of a tree.

2

(a) An undirected graph with: (a) A directed graph with:
- 5 nodes - 5 nodes
-6 arcs — 7 arcs
- connected - connected
- cyclic - cyclic

Figure 10.1: Some graphs

10.2 Graph representations

There are two common ways to represent a graph:

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

200 Graphs

Adjacency-list: A linked-list of adjacent nodes is maintained for each node
of the graph.

Adjacency-matrix: A V x V boolean matrix (where V is the number of
vertices in the graph) is used. Each element in the matrix indicates the
presence of an edge between the nodes corresponding to the row and
column of the element.

10.3 Traversal algorithms

1: Color all nodes white.

2: Choose a start node, color it gray and add it to GrayBag.
3: repeat

Set next <— node removed from GrayBag

5: Set next color to Black.

6: for all White nodes adjacent to next do

7 Color each one Gray and add to GrayBag.
8
9

s

end for
: until GrayBag is empty.
In this algorithm, we use the colors White, Gray and Black do distinguish
the nodes:

White: Nodes that have not yet been examined at all.
Gray: Nodes that we have begun to examine.
Black: Nodes that have been completely examined.

We can consider the Gray nodes to represent the boundary between the
nodes we have examined and ones that have not yet been looked at.

In this generic algorithm, we do not state the ordering characteristics
of the “GrayBag”. Recall that we use the abstract term “Bag” for a data
structure that can hold an arbitrary collection of things; we can only add or
remove one item at a time from the collection.

Common types of Bags include Queues, Stacks and Priority Queues. The
precise behavior of the algorithm depends on what specific kind of bag we
use. The most commonly used collections for this traversal algorithm are
Stacks and Queues. Note that in both of these cases adding or removing an
item from the collection is a constant time (©(1)) operation.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

10.4 Breadth first search

201

What is the complexity of this algorithm?

Note that in the outer repeat loop, one node is colored Black each time
through the loop. Once a node is Black, it can no longer be added to the Bag
(since only White nodes are added and immediately colored Gray.) Once no
more nodes can be colored Black, the algorithm terminates.

Consequently, the outer loops executes at most V' times (where V' is the
number of nodes.)

The inner loop (finding adjacent White nodes) can execute at most E
times in all (where E is the number of edges in the graph.)

All of the other steps have @(1) complexity (assuming the Bag is either a
Queue or a Stack). Consequently, the worst case complexity of the algorithm
is O(V + E).

We now consider the behavior of the algorithm when a Stack or a Queue
is used as the container for Gray nodes.

10.4 Breadth first search

The BF'S algorithm is as follows:

1: Color all nodes white.
Choose a start node, color it gray and add it to Queue.
Set start.parent <— NIL.
Set start.depth < 0.
repeat
Set next < node removed from Queue
Set next color to Black.
for all White nodes adjacent to next do
Color each one Gray, add to Queue.
Set each one’s parent < next.
Set each one’s depth < next.depth + 1.
12: end for
13: until Queue is empty.

—
= O

In this case, we also generate a tree structure (with the start node as the
root) and record the depth of each node in the tree.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

202 Graphs

10.5 Depth first search (DFS)

The DF'S algorithm is as follows:

Color all nodes white.
Choose a source node, color it gray and add it to Stack.
Set prev < NIL.
Set source.start < 0.
repeat
Set next < node at top of Stack
Color each one Gray, add to Stack.
Set each one’s depth < next.depth + 1.
until Stack is empty.

10.6 Topological Sort

1: Do a DFS
2: Front of linked list when finished.

10.7 Weighted Graphs

Weighted graphs have a weight (or cost) associated with each edge.

10.8 Minimum Spanning Tree

A Minimum Spanning Tree (MST) is the set of edges that connect all nodes
with the lowest cost.

10.8.1 Prim’s algorithm

all keys infity except source 0
All all nodes to PQ (min)
repeat
next = minPQ
for all adj do
if key > weight, set key to weight and set parent
end for

Version 1.1 (2003-03-1].) (Chapter version: 2003-03-30)

10.9 Shortest distance

203

until empty

10.9 Shortest distance

In this section we look at algorithms to determine the minimum cost to get
from one node to any other rachable node.

10.9.1 Relaxation
10.9.2 Dijkstra’s algorithm

This algorithm only applies to graphs where all the weights are non-negative.
The algorithm is:
all keys infinity except source which is zero.
All all nodes to PQ (min)
repeat
next = minPQ
for all adj to next do
if adj.key > weight-+next.key, set adj.key to weight+next.key and set
parent
end for
until PQ is empty

10.9.3 DAG shortest path
10.10 Problems

10.1 An undirected graph with 6 nodes labeled “A”, “B”, “C”, “D”, “E”
and “F” is described by the following adjacency list:
The entries in the adjacency list column give the nodes connected to the
one named in the first column. For example, the entry “B” in the first row
means there is an arc between “A” and “B”.

1. Draw the graph.

2. Using the standard breadth first search algorithm starting at A, state
the order of nodes visited.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

204

Graphs

Node

Adjacency list

HEHOQm >

BF
ACE
BDE
CE
BCFD
AE

3. Repeat the above for depth first search.

Version 1.1 (2003-03-11) (Chapter version: 2003-03-30)

Chapter 11

Computational theory

This chapter does not yet exist—I am working on it...

OUTLINE April 8, 2004

206 Computational theory

OUTLINE April 8, 2004

Chapter 12

Strategies

This chapter does not yet exist—I am working on it...

OUTLINE April 8, 2004

208 Strategies

OUTLINE April 8, 2004

Chapter 13

Algorithms in Hardware

This chapter does not yet exist—I am working on it...

OUTLINE April 8, 2004

210 Algorithms in Hardware

OUTLINE April 8, 2004

Part 111

Projects

OUTLINE April 8, 2004

Chapter 14

A Simple Digital Circuit
Simulator Engine

This is a quick overview of how event-driven simulators work. We first an-
alyze the problem, then we design the public interface to the required data
types, and, finally, we give a partial implementation of the design. Students
in ELE 428 are expected to study this document on their own to understand
the requirements of Lab 5. Understanding and doing the exercises should be
sufficient background for tackling the lab.

14.1 How to simulate a digital circuit (Anal-
ysis)

The event-driven model of digital circuit simulation presented here assumes
that the circuit is composed of blocks that are interconnected by wires. Each
wire has a valid value at all times. When the value of a wire changes, all of
the blocks that use the wire as an input re-evaluate themselves to determine if
the new input conditions require a change to the value of any of their output
wires. When an output wire will change, the “block evaluation” creates a
change event indicating what wire will change its value and the time that
the change should occur. This “change event” is then added to a priority
queue.
The simulator implements the following algorithm:

Step 1: If there is nothing in the Event Queue, STOP.

OUTLINE April 8, 2004

214 A Simple Digital Circuit Simulator Engine

Step 2: Get the next event.

Step 3: Determine all the blocks that use the wire in this event as an input
and re-evaluate them.

Step 4: Go back to Step 1.

This terse, but accurate, description of an event-driven simulator may
not be completely satisfying. The following examples flesh out the details of
what the simulator actually does.

14.1.1 An ideal 2-input AND gate

Consider the simple AND gate in Figure 14.1.

0~ 1(100)

Wi —] 0 — 1(150)
ANDI Y " s
w2 —————]

0 —~ 1(150)

Figure 14.1: A simple AND circuit

We begin the simulation of this simple circuit—consisting of 3 wires (wy,
wy and w3) and a single block(AND;)—Dby first assuming that all wires initially
are at zero and ensuring that this is a consistent configuration.

We also assume that an event queue has been set up up containing 2
events:

1. Wire w; becomes 1 at time 100.
2. Wire wy becomes 1 at time 150.

We remove the item with the least time from the event queue and see
that w; has changed. We then determine that the block AND; uses this wire
as an input; so we re-evaluate the output that the block will now produce.
Since the output is still zero, nothing further occurs in response to this event.

We then remove the next event which tells us that wy has become a
1 at time 150. Once again, block AND; evaluates; this time, however, it
determines that its output wire, ws, should change to a 1; hence it adds a

OUTLINE April 8, 2004

14.1 How to simulate a digital circuit (Analysis)

215

new event to the queue indicating that ws becomes 1 at time 150. (Note: we
are assuming an AND gate with no delay.)

We now remove the next event from the queue (the same one we just
added). In this case, ws is not connected to the input of any block, so there
is nothing to do with the event.

Finally, since there are no longer any events in the queue, the simulation
terminates.

14.1.2 An ideal AND followed by a delay
Now, consider an ideal AND gate followed by a delay as shown in Figure 14.2.

0~ 1(100)

wi — | 0 —~ 1(150)
ANDI Y| w4
Delay I
w2 ——— | w3

0 —~ 1(150)

Figure 14.2: An ideal AND followed by a delay

We also assume that an event queue has been set up up containing 3
events:

1. Wire w; becomes 1 at time 100.
2. Wire wy becomes 1 at time 150.
3. Wire wy becomes 0 at time 200.
When the simulation algorithm is executed, we obtain the following:

1. The next event (w; becomes 1 at time 100) is removed from the Event
Queue.

2. The AND gate is re-evaluated, but no further events are generated.

3. The next event (wy becomes 1 at time 150) is removed from the Event
Queue.

4. In this case, the output of the AND is scheduled to change; a new event
(Set w3z < 1 at time 150) is generated.

The event queue now contains:

OUTLINE April 8, 2004

216

A Simple Digital Circuit Simulator Engine

14.1

(a) Wire w3 becomes 1 at time 150.

(b) Wire we becomes 0 at time 200.
The next event (w3 becomes 1) is now removed from the Event Queue.

Since w3 is an input to the 10-unit delay, the “delay” is re-evaluated,
and adds a new event to the Event Queue indicating that w, becomes
1 at time 160. After this Event Queue removal and addition, it looks
like:

(a) Wire wg becomes 1 at time 160.
(b) Wire ws becomes 1 at time 200.
The event “w,; becomes 1” is next removed from the Event Queue.

Since this wire has no dependent blocks, nothing further occurs in the
handling of this event.

The event “w, becomes 0 at time 200” is next removed. Since wy does
have a dependent block (i.e. the AND gate), it is re-evaluated and adds
an event (w3 becomes 0 at time 200) to the Event Queue which now
looks like:

(a) Wire w3 becomes 0 at time 200 .

(b) This results in the creation of the event “w, becomes 0 at time
210.

(c) When this event is removed, no further events are generated and
the simulation terminates.

.3 A clock generator circuit using an INVERTER

Consider now a circuit with feedback—i.e. when an output wire is connected
back to an input. The simplest example is an INVERTER with its output
connected to its input as shown in Figure 14.3 below:

In

this case, we will assume that the INVERTER has an embedded propa-

gation delay (i.e. we assume that the INVERTER described here is really an
ideal inverter followed by an ideal delay element).

Assume that the clock signal is initially zero. Since the output of the
inverter should be a “1”, an event is scheduled to occur setting the signal to

OUTLINE April 8, 2004

14.1 How to simulate a digital circuit (Analysis)

217

Clk

Figure 14.3: A clock generator

“1” at time 10 (assuming the propagation delay of the inverter is 10). When
this event is removed from the queue, the gate is re-evaluated, and a new
event setting the clock to “0” at time 20 is added to the event queue. This
continues forever.

14.1.4 A clocked D-latch

Consider Figure 14.4 below for a clocked D-latch constructed with NAND
gates.

Clk
Shar 1

5
Rbar 1 25 Qbar
Dbar (10 1

Figure 14.4: A Clocked D-Latch

Each node is identified by a name (such as Sbar) and an initial stable
value (1 or 0). You should convince yourself that the node values are indeed
consistent and that the circuit will remain in the indicated state forever if
neither of the inputs (Clk and D) change.

The numbers in the NAND gates in Figure 14.4 are not just labels; they
are meant to represent the propagation delay in nanoseconds of the gate.
Using this fact, we can describe the evolution of the circuit in greater detail
if Clk becomes 1 at time 0 as follows:

1. The Sbar output of the NAND-20 gate goes to 0 at 20ns.

OUTLINE April 8, 2004

218 A Simple Digital Circuit Simulator Engine

2. The output of NAND-15 (Q) becomes 1 at 35 ns.

3. The change in Q—an input to NAND-25—from 0 to 1 causes the Qbar
output to change from 1 to 0 at 60 ns.

4. The Qbar change is fed back to NAND-15, but its output is not modified
by this input change; the circuit is now stable.

The timing is shown in Figure 14.5 below.

1
Clk 0 J
0

Dbar o
1
Shar o

Rbar o

@ |

Qbar o ‘

Figure 14.5: A Clocked D-Latch Timing Diagram

14.1.5 Generating Fibonacci Numbers in hardware

Consider Figure 14.6 below which generates the Fibonacci series in hardware.

14.2 The data types needed (Design)

14.2.1 The overall algorithm

We first express the overall algorithm for circuit simulation as a step-by-step
algorithm in English. We list the major steps in the outer (“top-level”) list;
inner lists provide more details about the major steps. The algorithm is also

OUTLINE April 8, 2004

14.2 The data types needed (Design) 219

RegHigh

8-bit Register
2
N (200 ns) ou

T Highnitially=1)

Adder CLK

| IN-1 SUM New(initiajly=2)

8-bit Adder
(50 ns)

Big(initiallly=0)

- IN-2 CARRY

-
() And Clock(initially=0),

ExternalClock CLK

RegLow

8-bit Register o
(100 ns) Low(initially=1)
IN ouT

Figure 14.6: Fibonacci number generator

OUTLINE April 8, 2004

220 A Simple Digital Circuit Simulator Engine

annotated to help us properly design the various data structures. When the
algorithm uses a particular data type that needs to be designed, the data
type is indicated in this font.

The algorithm can be implemented in many different programming lan-
guages (such as C, C++, Java, scheme, etc.)

1. Create an empty event queue.
2. Create the circuit:

(a) Create the wires: Each wire will be given an initial valid value and
may also be given a name.

(b) Create the blocks:

i. Each block will know its input and output wires.
ii. When a block is created, it will add itself to the dependent

blocks of all of its input wires.
3. Add events to the event queue.

Note that a block may add events to the event queue at the time the
block is created (if, for example, the current outputs are inconsistent
with the inputs).

4. Simulate the circuit.
(a) If the event queue is empty, STOP.
(b

(c

(d) If the wire does not change its value, ignore the event and go back
to the first step.

Remove next event from the queue.
Determine the wire set by the event.

)
)
)
)

(e) For all blocks that use the wire as in input:

Re-evaluate the block (possibly adding new events).
(f) Go back to the first step.

The remainder of the design will be expressed using C syntax, instead
of the more general English description used here.

OUTLINE April 8, 2004

14.2 The data types needed (Design) 221

14.2.2 Value

Value is a very simple data type. Normally, it will just be an integer. The
only function related to value is:

int isValidValue(Value_t): Returns “true” or “false” depending on whether
the passed value is legal.

14.2.3 Event

The event data type has the following API (“Application Programmer Inter-
face”):

Event_t newEvent(Wire_t w, Value_t v, int time): Creates and returns
a new event for the specified wire, value and time.

Wire_t getEventWire(Event_t e): Returns the wire associated with the
event.

long getEventTime(Event_t e): Returns the time of the event.

Value_t getEventValue(Event_t e): Returns the value the wire takes on
at the time of the event.

14.2.4 Event Queue

The event queue is of central importance to the simulation algorithm. Tt is
very much like a priority queue, except that removing an item deletes the
one with the smallest key, rather than the largest key as a priority queue
does. In addition, we will use the event queue to keep track of the current
simulation time (i.e. the time of the most recently removed event.)

The public APT is:

EventQ_t newEventQ(void): Creates and returns a new, empty event queue.

Event_t removeNextEvent (EventQ_t e): Removes and returns the next event
in the queue.

void addEventToQ(EventQ_t eQ, Event_t ev): Adds the specified event
to the queue.

OUTLINE April 8, 2004

222 A Simple Digital Circuit Simulator Engine

unsigned int eventQSize(EventQ_t eQ): Returns the number of events
currently in the queue.

Note that in our implementation of the event queue, we use an existing
Priority Queue abstract data type. The implementation section that follows
(Section E.6.8) explores this in greater detail.

Priority Queue

The standard priority queue abstract data type is used with the following
API:

PriorityQ-t newPriorityQ(void): Creates and returns a new, empty pri-
ority queue. Items in the queue will be events.

Event_t removeMaxFromPQ(PriorityQ-t pq): Removes and returns the event
with the largest time value.

void addToPQ(PriorityQ._t pq, Event_t e): Adds the specified event to
the priority queue.

14.2.5 Wire

Wires are one of the more complex data types. The API is:

Wire_t newWire(char * name, Value_t initVal): Creates and returns a
new wire with the specified name and initial value. The name may
not begin with “0x”. If the name is NULL or the empty string (""), a
unique name beginning with “Ox” will be automatically assigned. Note,
there is no guarantee that a user-supplied name will be unique.

void addWireDependent(Wire_t w, Block_t b): Adds the named block to
the list of blocks that use the wire as an input.

Value_t getWireValue(Wire_t w): Returns the current value of the wire.

void setWireValue(Wire_t w, Value_t v): Set the current value of the
wire to the value specified.

void resetWireDependents(Wire_t w): This is used in conjunction with
getNextWireDependent so that all the dependents will be returned
one by one.

OUTLINE April 8, 2004

14.2 The data types needed (Design)

223

Block_t getNextWireDependent(Wire_t w): Returns the next block that
uses the wire as an input. When there are no more dependents, NULL
is returned. Note that the order in which is the dependents are returned
is implementation dependent. Do not assume is the same as, or even
related to, the order in which the dependents were added.

14.2.6 Block

The block abstract data type needs to act as the interface to any specific
kinds of blocks. The block needs to know its input and output wires and how
to evaluate itself.

The API is:

Block_t newBlock(char * name): Creates and returns a new block with
the specified name. The rules for specifying a name are the same as
those for wires.

void evaluateBlock(Block_t b): Causes the block to re-examine its in-
puts and generate any events on its outputs that are appropriate.

void addInputToBlock(Block_t b, Wiret w): Adds the specified wire as
an input to the block.

void addOutputToBlock(Block t b, Wire t w): Adds the specified wire
as an output to the block.

14.2.7 Nand

The nand data type is a specific implementation of the block interface. It

implements a “nand” gate that can have any non-zero number of inputs and

precisely one output. The output evaluates to 1 if any of the inputs are 0.
The API is:

Block_t newNand(char * name, unsigned int delay, Wiret wil, ...):

Creates a new nand gate with the specified name and propagation de-
lay. At least two wires must be given as additional arguments. The
last wire will be the output; all the other wires will be inputs. The last
argument (i.e. the argument following the output wire argument) must
be NULL.

OUTLINE April 8, 2004

224

A Simple Digital Circuit Simulator Engine

14.3 Exercises

1.

OUTLINE April 8, 2004

Manually determine all of the events that will occur in the Fibonacci
circuit (Fig. 14.6). (Assume that the external clock is a square wave
with a period of 1000 ns.)

. Consider the clocked D-Latch in Figure 14.4. Suppose the Clk becomes

1 at time 0 and D becomes 0 at time 24. Determine the sequence of
events.

. Write the main function to simulate the clocked D-Latch of Figure 14.4.

Sketch out (in pseudo-C) how you would implement Block_ts to im-
plement the 8-bit adder and registers used in the Fibonacci generator
circuit.

Chapter 15

Combinational Logic

OUTLINE April 8, 2004

226 Combinational Logic

DRAFT April 8, 2004

Appendix A
Coding Standards

The source code for programming projects should always be organized and
written with the future tasks of testing, debugging and maintenance (possibly
by others) in mind. These tasks will be easier if the project is well organized
and the source code is written in a clear and consistent fashion. In addi-
tion, the future possibility of porting the program to different environments
(portability) should be addressed at the outset.

This appendix describes some basic rules for project organization that
readers of this book may wish to adopt (especially for programming projects
suggested in the problems and case studies). I also describe the coding and
organizational conventions I used in writing the source code for the book.
Finally, I discuss some general aspects of the portability problem.

A.1 Recommended Organizational and Cod-
ing Standards

Organization: Each project has a separate directory. For example,

Each project directory must have README and Makefile files. The
README file should give a general overview of the project and the
files that implement it.

Documentation-I (public): The “public” documentation of your source
code should inform a reader of who wrote the code and describe what
it does and how to use the interfaces described. The public comments
should provide sufficient information for a reader to use the functions

DRAFT April 8, 2004

228

Coding Standards

DRAFT April 8, 2004

without having to read the actual C code that implements the func-
tions. It is strongly recommended that you write these public comments
before you write your code. (Writing a function header comment fo-
cuses your mind on what you really want the function to do.)

All source code files (*.c and *.h) should conform to the following gen-
eral commenting standards:

e Identify your work with, for example, a Copyright notice including
your name and userid. For example:

/* Copyright (C) 1999 Jane Smith (jsmith@ryerson.ca) */

e The next comment—the header—briefly describes the purpose of
the file. For example, a file called towers.c might have the fol-
lowing header comment:

/**
* The functions in this file solve the classic
* towers of Hanoi problem.

*/

e Each function (in a .c file) is preceded by a function header com-
ment that briefly describes what the function does as well as in-
dicating the nature of any passed parameters or return value. For
example:

the towers of Hanoi problem. The command line arg
(which must be string representations of numbers)

and destination tower numbers. (The towers are
identified with the numbers 1, 2 and 3.)

@param argc the number of command line arguments
Oparam argv a pointer to an array of strings where:
There must be exactly 3 arguments where:

‘‘main’’ manages the command line interface to solving

indicate the number of disks to be moved and the source

-- the fist arg is the number of disks to move
-- the second is the ID-num of the source
—-- the third is the ID-num of the destination

A.1 Recommended Organizational and Coding Standards 229

* @return always returns an exit code of 0.
*/
int main(int argc, char * argv[])

{3
Notes

The conventions used for the public comments, specifically the /**
(with the extra *) and the tags @param and @return, correspond to
Java commenting standards. In particular, a Java tool called javadoc
can parse these specially formatted comments and the following dec-
laration to produce nicely formatted HTML documentation automat-
ically. While there is no version of javadoc for C code at this time, it
does no harm to use the clear conventions of Java in your C code.

Documentation-II (private): While the public documentation should be
written so that it does not require the reader to understand or even
look at the implementation, private documentation is meant to help
the reader understand the actual C code implementing a function. The
comments should be written under the assumption that the reader is a
competent C programmer. For example:

i++; /* Increment i by one */

is a useless comment since it is entirely obvious to a C programmer.

Often, no private comments are required at all in well written programs.
The use of descriptive variable and function names is also a great help.
Indeed, Rob Pike states:

Basically, avoid comments. If your code needs a comment to
be understood, it would be better to rewrite it so it’s easier
to understand.

Rob Pike[Pik]

Using descriptive names often eliminates the need for comments, Con-
sider:

foo = foo->bar; /* move "foo" to next item */

DRAFT April 8, 2004

230 Coding Standards

The comment would be unnecessary with the more intelligent variable
and field names:

item = item->next;
Avoid “magic numbers”: Numbers should rarely be placed directly in the
source code. (Common exceptions are the numbers 0 (zero), 1 or —1.)
Instead use an enum data type or the #define preprocessor directive.

(It is usually preferable to use an enum for a small number of integers
instead of a #define.)

For example, do not write code like:
double x = 3.14159265358979323846%*2.6%2.6;
or
for(i = 32; i < 212; i += 2)
or
if ((j = foo()) == 2)
instead, use:

#include <math.h> /* This defines the value of PI x/
#define RADIUS 2.6
double x = M_PI*RADIUS*RADIUS;

or

/* Note following temperatures assume Farenheit scale */
#define FREEZING 32

#define BOILING 212

#define TEMP_INCREMENT 2

for(i = FREEZING; i < BOILING; i += TEMP_INCREMENT)

DRAFT April 8, 2004

A.1 Recommended Organizational and Coding Standards 231

or

typedef enum {FooGood = 0,

FooWarn = 1,

FooBad = 2} FooReturn_t;
if ((j = foo()) == FooBad)

Compile with all warnings turned on: You should compile C source code
will all warnings turned on. Your C code should produce no warnings.

Portability You may only use POSIX/ANSI compatible library functions.

No gotos You can use all of the ANSI C language ezcept for the goto
statement. (The single exception to this rule involves the study of
“tail-recursion elimination”.)

Header files: Header files should only contain declarations (such as typedefs
or function prototypes) and preprocessor directives (such as constants
and macros). Executable C code (such as a function body) should
never be placed in a header file.

.h protection All .h files must be protected so that they are never included

more than once and that the order of their inclusion is less critical. For
example, the header file foo.h should be structured as:

#ifndef FOO_H
#tdefine FOO_H

/* Body of foo.h with other #includes... */

#tendif /* FOO_H x/

Line length and avoiding tabs: No source code line should be longer than
80 characters. Use spaces, not tabs, for indentation.

DRAFT April 8, 2004

232

Coding Standards

A.2 Other C programming conventions

A.2.1 The eprintf library

You may note functions such as eprintf or emalloc sprinkled through the
C code. These functions come from Kernighan and Pike’s[KP99, p. 109-111]
utility library which we have called eprintf.o.

Their use is summarized in Table A.1.

K&P name “Almost” like Comments
eprintf(...) | fprintf(stderr, ...) Exits
weprintf(...) | fprintf(stderr, ...) | Prints warning
emalloc(...) malloc(...) Exits on failure
erealloc(...) realloc(...) Exits on failure

Table A.1: Summary of eprintf functions

A.2.2 Using asserts

My view is that asserts should not be used as a lazy programmer’s way
of informing end-users of predictable error conditions in the operation of a
program. Rather, they should be used mainly during the development stage
to help the programmer figure out where things are going wrong.

Despite this, the source code often uses asserts in this “lazy” way.

A.2.3 Incorrect conventions

I use one coding “standard” that is incorrect and may lead to portability
problems. In particular, there are occasions where the following assumptions
are made:

1. A generic pointer void * is the same size as an integer (int) and data
of one type can be cast to the other.

2. A generic pointer void * and a pointer to a function void *() (...)
are the same size and either can be cast to the other.

DRAFT April 8, 2004

A.3 Conventions used in preparing this book

233

Both of these assumptions violate the formal specifications in the ANSI
C standard. They are, however, very commonly encountered.

Using these conventions makes some of the code easier to write and more
readable. Note that there is NO assumption about the size of these things.
Normally, however, they are all either 16 or 32 bits.

Some of the problems explore ways to avoid these assumptions.

A.2.4 Miscellaneous conventions

Some of the source code follows some other arbitrary conventions that are a
matter of personal choice. These include:

Addresses of functions: If funcP is a function pointer data type and foo ()
is a function, I use funcP = &foo to set funcP to be a pointer to the
function foo(). Other programmers use the shorter and equivalent
form: funcP = foo.

Private header files: If a header file is used only by the programmer im-
plementing a module and does not need to be viewed or included by
programmers using the module, I append the letter ‘P’ to the name of
the header. For example, foo.h would be a public header file, while
fooP.h would be a private (non-distributed) header file.

private and public: In implementing modules that have “static globals”
(i.e. declarations made at the highest level in the source code file
but qualified as “static” to prevent their names being exported to the
linker), I often use the pre-processor statements:

#define private static
#define public

This allows me to declare things at the global level as “private” or
“public” which I find closer to the semantics I have in mind.

Underscores for private names: When a name (such as a typedef or a

private variable is used in a module, I usually prepend an underscore
[

character (‘’) to its “logical” name.

A.3 Conventions used in preparing this book

DRAFT April 8, 2004

234

Coding Standards

src
RELDNE hhkeJile recujsion eprintf
RELDNE hhlefile tomirs.c bi n READVE Makefile eprintf.c eprintf.h
READVE sol ari s-sparc I'i nux-x86 wi n32

READVE towers

READVE towers. exe

Figure A.1: The source tree organization for this book

DRAFT April 8, 2004

Appendix B

Data Structures, Memory and
Pointers

This appendix is a review of the important C programming topics involving
data structures, memory usage (especially dynamic allocation and freeing),
and pointers. Because it is a review, it is terse. (Some of the problems—and
their answers—give more details.)

B.1 Data structures

A data structure is a collection of related data items that can be manipulated
as a single entity. As a simple example, suppose you wish to treat a person’s
age (in years) and height (in centimeters) as a single item. We could define
a data structure type as follows:

typedef struct AgeHeight AgeHeight;

struct AgeHeight {
unsigned int age; /* years */
unsigned int height; /* centimetres x/

};

These statements define the new data type AgeHeight, but they do not
allocate any storage or create any variables of this type. To do so, you declare
variables of this data type as follows:

AgeHeight jane, dick, sally, spot;
AgeHeight friends[10];

Version 1.0 April 8, 2004

236

Data Structures, Memory and Pointers

Version 1.0 April 8, 2004

Note that we can also initialize the values of fields in a structure with the
following syntax:

/* Tom is 8 years old and 1.3m tall */
AgeHeight tom = {8, 130};

Here we have defined four simple variables of this data type (jane, etc.)
and an array—friends—of AgeHeight data structures. We can access fields
(i.e. the component parts) with the “dot”(.) syntax as follows:

/* On Jane’s birthday... */
jane.age++;

The data structure as a whole can also be manipulated; it can be used
in argument lists, can be returned, its address can be evaluated, it can be
assigned, and the sizeof operator used on it. For example:

AgeHeight OlderAndTaller (AgeHeight ah, int grew)
{

ah.aget++;

ah.height += grew;

return ah;

/* The Birthday Girl grew more than an inch last year */
jane = OlderAndTaller (jane, 3);

If we determined the size (amount of memory) the data structure uses
with sizeof jane (or sizeof AgeHeight) we would get 8 bytes—the size
of 2 ints!

B.1.1 Strings in data structures

This porridge s too hot.
This porridge is too cold.
This porridge is just right!

—Goldilocks

!In these examples, we assume that the size of an int or pointer is 32 bits, the default
sizes on most popular computer systems. Systems with 16-bit or 64-bit architecture may
use different sizes, but the general principles about data structure size remain valid.

B.1 Data structures

237

We now consider a different data structure that raises new design and
implementation issues. We wish to treat a person’s name as a data struc-
ture containing two fields: first name and last name. The design issue we
face is whether to implement the data structure as two arrays of characters
(Name_arr) or as two pointers to null-terminated strings (Name_str). The
two different ways of doing this are shown below:

#define MAX 32 /* max num. of chars in first or last name */
typedef struct Name_arr Name;
//or typedef struct Name_str Name;
struct Name_arr {
char first[MAX];
char last[MAX];
};

struct Name_str {
char *x first;
char * last;

};

In the first array-based implementation, all of the information is in the
data structure itself; in the char * implementation, the actual strings are
located elsewhere in memory and the data structure itself only contains ref-
erences to them.

The array-based version is conceptually simpler, but comes at the price of
less flexibility and (usually) more space requirements. Both of these limita-
tions come about because the array of characters has a fixed size. If this fixed
size is too small, the data structure will be unable to handle long names; if
it is too big, more memory is wasted. (Only Goldilocks knows the size that
is “just right”.)

In the example above, the maximum number of characters in both the
first and last name fields is fixed at 32 each; hence the data structure occupies
64 bytes. The size of the data structure is always 64 bytes which is wasteful
for short names like “Jane Doe”. In the rare case when both arrays are
completely filled (each name is 31 characters with the last array slot used for
the null string terminator), memory is used as efficiently as possible.

The alternate pointer based structure always requires 8 bytes of memory
for the two pointers and additional storage elsewhere for the actual strings.

Version 1.0 April 8, 2004

238

Data Structures, Memory and Pointers

Version 1.0 April 8, 2004

Unlike, the array-based approach, there is no built-in limit to the size of the
strings and only the minimum amount of memory is needed.

The clear advantages of the pointer-based approach does come at a price,
however. Since the memory needed for the strings is not part of the data
structure itself, it has to be allocated separately. Even worse, if the data
structure has only limited lifetime (for example, if it is a local variable) the
memory allocated for the strings has to be explicitly freed to avoid “memory
leaks” .2

To see how the use of the array-based approach is easier than the pointer
one, suppose we wanted to read a last name from stdin. With the Name_arr
structure, we could write:

struct Name_arr name;
scanf ("%s", &name.last);

It is quite a bit more complicated when the Name_str data structure is
used:

char buf [MAX_LEN];
Name_str name;
int len;

/* read stdin into a temporary buffer */

scanf ("%s", buf);

/* Determine how many characters were read */

len = strlen(buf);

/* Allocate memory for the chars PLUS null terminator */
name.last = malloc(len+1);

/* Copy the buffer to the allocated memory */
strcpy(name.last, buf);

Sometimes, however, the Name_str is easier to use than the Name_arr
version. This is especially true when a string for either the first or last name
fields already exists. For example, compare:

2The “memory leak” problem is far from trivial to avoid in large software projects. All
too often it is unclear when and where dynamically allocated memory should be released.
In some programming languages—Ilisp and Java for example—the problem is avoided with
a technique called garbage collection that periodically finds chunks of memory that are no
longer being used and frees them. Indeed, this is one of the attractive features of Java
that have helped make it so popular.

B.1 Data structures

239

struct Name_arr dick;
strcpy(dick.last, "Tricky");

with:

struct Name_str dick;
dick.last = "Tricky";

B.1.2 Compound data structures

Note that a field within a data structure can itself be a structure and so on
recursively. For example, the following definition of a “Person” data type
combines the previous data structures and auxiliary information:

typedef struct AgeHeight AgeHeight;

struct AgeHeight {
unsigned int age; /* years */
unsigned int height; /* centimetres */

};

typedef struct Name_arr Name;
struct Name_arr {

char first[MAX];

char last[MAX];
};

typedef struct Person Person;
struct Person {

char gender;

AgeHeight ageHt;

Name name;

A Person data type could then be used as follows:

Person tom, dick, harry;
tom.gender = ’M’;
harry.ageHt.age = 20;
strcpy(dick.name.first, "Dick");

Version 1.0 April 8, 2004

240

Data Structures, Memory and Pointers

Version 1.0 April 8, 2004

B.2 Pointers to data structures

Love and marriage, love and marriage
Go together like a horse and carriage

—J. Van Heusen/S. Cahn

Pointers and data structures also go together “like a horse and carriage”.
Indeed, there is special notation for accessing the field of a structure from a
pointer to it as shown below:

AgeHeight ah, *ah_p;

ah_p = &ah; /% Initialize pointer */

ah.age = 8;

ah_p->height = 120; /* Use ‘->’ to access field via pointer */

It is very common, for example, to pass a parameter as a pointer to a
data structure rather than the structure itself. This is both more efficient
and more flexible. It is more efficient because a pointer to any structure, no
matter how large, is always four bytes. It is more flexible because the called
function can access and modify the actual fields of the data structure. We
could re-write the previous function 0lderAndTaller more efficiently as:

void OlderAndTallerP(AgeHeight * ahp, int grew)
{

ahp->age++;

ahp->height += grew;

OlderAndTallerP(&jane, 3);

Sometimes you want to get the efficiency of passing a pointer to a struc-
ture, but you do want the called function to be able to modify the structure.
(The called function could not modify the structure if the whole thing were
passed since this gives access only to a copy of the structure and any changes
to it have no effect on the original.) To achieve this, simply declare the ar-
gument as a const. Not only will the compiler disallow modifications inside
the called function, it may also be able to optimize the running time of the
program more effectively.

For example:

B.2 Pointers to data structures 241

unsigned int TotalHeight(const AgeHeight * al,
const AgeHeight * a2)
{
return al->height + a2->height;
b

B.2.1 Linked structures

Many engineering concepts and designs can be visualized with diagrams con-
taining boxes and interconnections of various sorts. Well known examples
include state-machine diagrams, control system diagrams, flowcharts, block
diagrams, etc. Almost all of these kinds of visualizations can be converted
into a set of data structures that contains all the information in the diagram.
We illustrate the general technique with a simple example: our solar
system and galaxy. Of course, we could draw a picture like Figure B.1.

Figure B.1: Our Solar System (partial, not to scale)

This picture corresponds (very roughly) to the physical structure of part
of our solar system. But it does not highlight what we are really interested
in: what body orbits which other body and so on. The picture would get
quite messy, for example, if we tried to include the Sun orbiting the black
hole at the center of our galaxy and a (hypothetical) NASA probe orbiting

Version 1.0 April 8, 2004

242 Data Structures, Memory and Pointers

Jupiter’s moon Europa. But we can easily distill this information using a
more abstract diagram shown in Figure B.2.

orbits

orbits orbits

Galactic
Centre

Figure B.2: Some Celestial Bodies

To convert information in this figure into a set of data structures, we first
note that each circle contains two pieces of information: the name of the
celestial body (Earth, Moon, etc) and an arrow labeled “orbits” that points
to the body it orbits. We conclude that each circle corresponds to a data
structure with two fields: name and orbits. We will call the data structure
type Body, use char * data type for name and a pointer to a Body structure
as the data type for orbits. Note also that we have defined a “helper” data
type—BodyP—to indicate a pointer to a Body.

The type definitions are as follows:

typedef struct Body Body, * BodyP;
struct Body {

char * name;

BodyP orbits;

Version 1.0 April 8, 2004

B.2 Pointers to data structures

243

};

Next we declare the data types of variables corresponding to each circle:

Body probe, jupiter, earth, moon, sol,
europa, galacticCentre;

Finally, we define the values of the data structures:

Body probe = {"Probe", &europal;

Body jupiter = {"Jupiter", &sol};

Body earth = {"Earth", &sol};

Body moon = {"Moon", &earth};

Body sol = {"Sun", &galacticCentre};

Body europa
Body galacticCentre

{"Europa", &jupiter};
{"Black hole", NULL};

We can now write a simple function that prints out the sequence of orbits.
(For example, if the function is called with the argument probe, it would
print: “Probe orbits Europa orbits Jupiter orbits Sun orbits Black hole orbits
nothing.”)

void orbits(BodyP b)
{
assert(b != NULL);
do {
printf("%s orbits ", b->name);
b = b->oribts;
} while (b != NULL);
printf("nothing.\n");

Complete working code based on the examples in this appendix can be
found in Appendix E or in the directory src/dataStructsAndPtrs.

Version 1.0 April 8, 2004

244

Data Structures, Memory and Pointers

Version 1.0 April 8, 2004

B.3 Problems

B.1 Why do I use the idiom:

typedef struct Foo Foo;
struct Foo {

};

Foo foo;
instead of:

struct Foo {

};

struct Foo foo;
or:

typedef struct {

} Foo;
Foo foo;

B.2 Add Mars and its two moons to the diagram and to the initialization

of the data structs in C.

B.3 Suppose we wished to put information explicitly into our celestial bod-
ies diagram (Figure B.2) that shows what is orbited by a body. (For example,
the sun is orbited by the Earth and Jupiter.)

1. How would you modify the diagram to show this information?

2. Modify the Body data structure to reflect the new information.

3. What kind of general data structure have you now built (considering
only the new links you have added).?

B.3 Problems

245

B.4 What will the following print:
printf ("%s\n", probe->orbits->orbits->name) ;
B.5 Many programmers use the typedef:
typedef char * String;
Discuss the pros and cons of this kind of typedef.

B.6 Write a program that reads zero or more lines of text in the following
format:

<lastName> <firstName> <gender> <age> <height>
A set of Person type records should be initialized using this information.

B.7 As written, the orbits() function produces results like:
“Europa orbits Jupiter orbits Sun orbits Black hole orbits nothing.”
How can the function and data structures be modified so that common
words such as “sun” or “moon” be preceded with the article “the”? Indicate
also how the word “the” should be expressed as “The” or “the”... (although
we do not want to get into bizarre arguments about what the word “the”
means despite some Presidential musings. . .)

Version 1.0 April 8, 2004

246 Data Structures, Memory and Pointers

DRAFT April 8, 2004

Appendix C

Modules, Linking and Scope

This appendix is a review of the important topics in the organization of
source code into separate files and modules.

C.1 A Simple Example
C.2 Problems

DRAFT April 8, 2004

248 Modules, Linking and Scope

DRAFT April 8, 2004

Appendix D

Solutions

The solutions to most of the problems are given in this Appendix.

Please inform me of any errors (it would be virtually impossible that I
have not made some) you find. I would also be interested in alternative
solutions.

DRAFT April 8, 2004

250 Solutions

D.1 Answers for Chapter 1

1.1 Step 1 Set the minimum value to UNDEFINED (whose “numerical” value
is assumed to be 00).

Step 2 Examine the next card (if there is one). If it is less than minimum
value, change the minimum value to this card’s value.

Step 3 If there are no more cards, the answer is minimum value and STOP.
Step 4 Go back to Step 2.
1.2

FindDuplicates Algorithm

Find any duplicates in n cards

Step 1: Sort the cards with an nlogn sort algorithm like MergeSort.

Step 2: Go through the cards one by one remebering the last card ex-
amined. If there are any duplicates, the last and current cards will be
the same. If this happens, STOP and report the duplicates. If the end
of the deck is reached, STOP and report “no duplicates”.

Step 1 is of nlogn complexity. Step 2 is clearly of linear complexity and
is swamped by Step 1 for large n; hence the entire algorithm is of nlogn
complexity.

1.3 If the card is in the deck, we can choose any one at random and, if we
are very lucky, it will be “the” card. So, it us possible to find a particular
number by looking at only one card.

A simple way to find a card would be to look at each card in the deck
one after the other. If you find the card you are looking for, great. If you
don’t find it before reaching the end of the deck, it is not there. This linear
method will require, on average, n/2 operations to find a card; you need to
look at all n of them to be sure that the card you are looking for is not there.
(This method does not take advantage of the deck being in sorted order; it is
simple to implement and can be used with any pile of cards whether or not
they are in sorted order.)

DRAFT April 8, 2004

D.1 Answers for Chapter 1

251

More seriously, look first at the middle card. If its value is what we
are looking for, STOP. Otherwise, if its value is bigger than the one we are
looking for, search for it among the 511 sorted cards smaller than the middle
one. If the search value is bigger, search in the other 511 cards. In either
case, the problem is has now been reduced to searching amongst 511 cards
after only one comparison. Repeating the method again reduces the search
space to 255 cards.

If the card exists, we will find with no more than 9 comparisons. If the
card is not in the deck, we need 10 comparisons.

1.4
Tables D.2 and D.1 show the manual calculations for two cases including
the most general case.

n | T(n/2) 2T (n/2)+n || nlgn+n
2 1 2x1+2=4 4
4 4 2x44+4=12 12
8 12 2x12+8=32 32
16 32 2x324+16 =280 80
32 80| 2x80+32=192 192
64 192 | 2 x 192 + 64 = 448 448

Table D.1: 27'(n/2) 4+ n for selected values assuming 7°(1) = 1

n T(n/2 2T (n/2)+bn | nlgn
2 a 2a + 2b 2
4 2(a+b) 2x2(a+0b)+4b=4a+8b 8
8| 4(a+2b) 2 x (4a+8b) +8b=8a+24b| 24
16 8a + 24b 2 x (8a + 24b) + 16b = 16a + 64b 64
32 | 16a+64b| 2 x (16a+ 64b) + 32b = 32a +160b | 160
64 | 32a 4+ 160D | 2 X (32a + 160b) + 64b = 64a + 384b 384

Table D.2: 2T(n/2) + bn for selected values where T(1) = a

For the most general case, we guess that the closed form solution is T'(n) =
bnlgn + an. This is clearly true for n = 1. We now use mathematical

DRAFT April 8, 2004

252 Solutions

induction to prove that it is true for T(2n):

T(2n) = 2T(n)+2n

2bnlgn + 2an + 2bn

2nb(lgn + 1g2) + 2an
bx2nlg2n +a x 2n

which completes the proof.
1.5
CalculateAverage Algorithm

Calculate and output the average of n numbers (the input)

Step 1: Set average < UNDEFINED.
Step 2: Set total < 0.
Step 3: Set i < 0

Step 4: If there are no more numbers to read, set average < total/i if
i # 0. Output average (the answer) and STOP.

Step 5: Read the next input number and add it to total.
Step 6: Set 1+ 1+ 1
Step 7: Go back to Step 4.

Note that the way this algorithm handles the case of zero items differs
from how it was done in the CalculateTotal algorithm. In calculating the
total, the answer was defined as 0 if there were no inputs. When calculating
the average, however, we use the special value UNDEFINED as the answer
when there is nothing to average. Other versions of the algorithm could use
a different convention (including the same convention we used for Calculate-
Total.) The convention used, however, should be clearly stated to the user
of the algorithm.

The convention used here would be more difficult to implement in C as
we could no longer use the primitive data type int as the return value since

DRAFT April 8, 2004

D.1 Answers for Chapter 1

253

the special “value” UNDEFINED would have to differ from all ints; we would
have to use some type of data structure or pointer (using a NULL pointer to
represent UNDEFINED) as the return value.!

1.6 This solution is only available to professors.
1.7 Not yet available.

1.8 The number of steps is 2+3n. The time is T'(n) = T1+To+n(T3+T4+15),
or, T'(n) = e1n + ¢y where ¢ is Ty + T3 + Ty and ¢y is T} + Ty. 1t is linear.

1.9

linear: 25 seconds (because increasing the size of a linear problem by a factor
of 5, increases the time by the same factor.)

logarithmic: 5.8 seconds (because T'(n) = K logn, hence K = 5/(log 20000) =
5/4.3 = 1.16 and 7°(100000) = K log 100000 = 5.8.)

cubic: 625 seconds (because increasing the size of a cubic problem by a factor
of 5, increases the time by a factor of 53 = 125.)

nlogn: 29 seconds (by combining the linear factor—5—with the logarithmic
factor—1.16.)

quadratic: 125 seconds (because increasing the size of a quadratic problem
by a factor of 5, increases the time by a factor of 5% = 25.

constant: 5 seconds (independent of problem size)
1.10 Tell me your results.

1.11 Logarithms of one base can be converted to another base by multipli-
cation by a constant. In particular:

_log,x

1 =
08a log, a

Hence, if an algorithm is logarithmic to base a, we can say:

T(n) = klog,n

'We could, however, use IEEE floating point numbers, returning the value NaN (“not
a number”) for the case of zero inputs.

DRAFT April 8, 2004

254

Solutions

But this can be written as:

T(n) = klog,n/log,a

= 1
log, a %o T

= k'log,n

In other words, changing the base only changes the multiplication con-
stant.

1.12

1.13

SelectionSortList Algorithm

Sort a list of n elements

Step 1: Set head < beginning of list.

Step 2: If head is NIL, STOP.

Step 3: Set small < smallest item on the list beginning with head.
Step 4: Interchange the data at head and small unless either is NIL.
Step 5: Set head to next item on list.

Step 6: Go back to Step 2

a) No.

b) Yes.

c) void easter(int Y)

DRAFT April 8, 2004

{
int G, C, X, Z, D, E, N;

G = Ys9 + 1;

D.1 Answers for Chapter 1 255

C =7Y/100 + 1;

X = (3xC)/4 - 12;

Z = (8%C + 5)/25 - 5;

D = 5xY/4 - X - 10;

E = (11*G + 20 + Z - X)%30;

/* Following needed because C’s mod operator incorrect. */

if (E < 0)
E += 30;

if (((E==25) && (G > 11)) || (E == 24))
E++;

N = 44 - E;

if (N < 21)
N += 30;

N=N+7- (DHN%7;
if (0 > 31) {
printf ("%d April %d\n", N-31, Y);
} else {
printf("%d March %d\n", N, Y);
}

return;

}

d) I regularly use the emacs text editor; it has a command—holidays—
which tells me (amongst other things) the date for Easter. A portion
of the elisp source code is:

(defun holiday-easter-etc ()
"List of dates related to Easter, as visible in calendar window."
(let* ((century (1+ (/ displayed-year 100)))

(shifted-epact ;; Age of moon for April 5...

(% (+ 14 (x 11 (% displayed-year 19));;...by Nicaean rule
(- ;3...corrected for the Gregorian century rule
(/ (x 3 century) 4))
/ ;;...corrected for Metonic cycle inaccuracy.
(+ 5 (x 8 century)) 25)
(* 30 century));; Keeps value positive.
30))

(adjusted-epact ;3 Adjust for 29.5 day month.

DRAFT April 8, 2004

256

Solutions

(if (or (= shifted-epact 0)
(and (= shifted-epact 1)
(< 10 (% displayed-year 19))))
(1+ shifted-epact)
shifted-epact))
paschal-moon ;;Day after the full moon on/after March 21.
- (calendar-absolute-from-gregorian
(1ist 4 19 displayed-year))
adjusted-epact))

(list (calendar-gregorian-from-absolute
(- abs-easter 49))
"Shrove Sunday")

(list (calendar-gregorian-from-absolute
(+ abs-easter 60))
"Corpus Christi")))

e) Because the modern Gregorian calendar was established in that

year following a papal bull, Inter Gravissimas, issued by
Pope Gregory XIII on February 24, 1582. The rules for cal-
culating Easter changed. (For the fanatically curious, the
Latin original and an English translation are available at
http://www.bluewaterarts.com/calendar/InterGravissimas.htm)

f) No and no.

1.14 Not yet available.

1.15 Not yet available.

1.16 Not yet available.

1.17 The only changes required are the declarations of array[] and tmp to
be doubles instead of ints:

DRAFT April 8, 2004

D.1 Answers for Chapter 1 257

void mySort(double array[], unsigned int first, unsigned int last)
{
int i;
/* Step 1: Is there nothing to sort? */
while (first < last)
/* Step 2: Swap... */
for(i = first+l; i <= last; i++) {
/* Find smallest one in rest of array */
if (array[first] > arrayl[il)) {
/Step 2..continued...swap them */
double tmp;
tmp = array[first]
array[first] = arrayl[il;
array[i] = tmp;

}
first++;
}
return;

1.18 The declarations of array[] and tmp must be changed to be char * in-
stead of ints. Also, since strings (unlike ints or doubles) cannot be compared
with the > operator, we need to use the standard strcmp function:

void mySort(char * array[], unsigned int first, unsigned int last)
{
int i;
/* Step 1: Is there nothing to sort? */
while (first < last)
/* Step 2: Swap... */
for(i = first+1l; i <= last; i++) {
/* Find smallest one in rest of array */
if (strcmp(array[first] ,array[i]) > 0) {
/Step 2..continued...swap them */
char * tmp;
tmp = array[first]
array[first] = arrayl[il;
array[i]l = tmp;

DRAFT April 8, 2004

258 Solutions

first++;
}

return;
1.19 Not yet available.
1.20 Not yet available.
1.21 Not yet available.

1.22 1. T(n) = 1.01™" ! usec.

2. T(100) ~ 2.7usec, T(3000) ~ 9.2 x 10° sec ~ 3 months.

D.2 Answers for Chapter 2

2.1 int nWaysToMakeChange(int amount, int nCoinTypes, int coinsUsed[])

{
int used2[5];

if (amount == 0) {
showCoinsUsed (coinsUsed) ;
return 1;

}

if (nCoinTypes == 1) {
coinsUsed[0] = amount;
showCoinsUsed (coinsUsed) ;
return 1;

}

if (amount < 0)
return O;
memmove (used2, coinsUsed, 5*sizeof(int));
used2[nCoinTypes-1]++;
return nWaysToMakeChange (amount, nCoinTypes-1, coinsUsed)
+ nWaysToMakeChange (amount - typesO0fCoins[nCoinTypes-1],
nCoinTypes, used?2);

DRAFT April 8, 2004

D.2 Answers for Chapter 2

259

2.2 It will still work. There are fewer steps if the pink number is the smallest.

2.3 The recursion goes on forever. The algorithm can be fixed by incre-
menting the “pink” number and decrementing the “blue” number when the
“pink” number is negative.

2.4 Solving the problem requires 18,446,744,073,709,551,615 moves or 584.5
billion years if they are moved at the rate of one per second. Since the
universe is thought to be no older than 20 billion years, there is nothing to
worry about (yet!). Alas, if the moves are executed at the rate of one per
millisecond, the universe should have been destroyed about 580 million years
after the Big Bang.

Suppose, however, that the Big Bang occurred ezactly 15 billion years
ago (from the time you start reading this answer) and the moves are made
at the rate of one ever 25.86 milliseconds then Watch Out! (You may not be
able to read to the end of this sentence.)

2.5 The C program is:

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

unsigned int gcd(unsigned int m, unsigned int n)
{

unsigned int r;

r = m)n;
if (r == 0)
return n;
else
return gcd(n, r);

}

int main(int argc, char * argv[])
{
unsigned int nl, n2;
assert(argc == 3);
nl = atoi(argv[1]);

DRAFT April 8, 2004

260 Solutions

n2 = atoi(argv[2]);
printf ("GCD of %d and %d is %d\n", nl, n2, gcd(nl, n2));
exit (0);

}

2.6 Not yet available

2.7

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
int fib(int);

int main(int argc, char * argv[])
{
int n;
n = atoi(argv[i]);
printf ("Fib{%d): %d\n", n, fib(n));
exit (0);
}

int fib(int n)

{
unsigned int fibNumbers[20];
int i;

assert(n >= 1 & n < 20);
fibNumbers[0] = 1;
fibNumbers[1] = 1;
for(i = 2; 1 < n; i++)
fibNumbers[i] = fibNumbers[i-1] + fibNumbers[i-2];
return fibNumbers[n-1];

2.8 Not yet available

DRAFT April 8, 2004

D.2 Answers for Chapter 2 261

2.9 Not yet available

2.10 We “guess” that the closed form solution is: M(n) = 2" — 1. This is
clearly true for the base case (n = 0).

We prove it is true in general using mathematical induction where we
assume it is true for n and prove that this implies it is true for n + 1:

M(n+1) = 2M(n)+1 (by definition)
= 2(2" — 1)+ 1 (the hypothesis)
= "l _241

2n+1 -1

proving the hypothesis.
2.11 Not yet available

2.12 #include <stdio.h>
#include <stdlib.h>

static char * digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

void printVal(unsigned int i, unsigned int base)

{
if (i < base) {
putchar(digits[i]);
} else {
printVal(i/base, base);
putchar(digits[i%base]);
}
}
int main(int argc, char * argv[])
{
int n, b;

if (arge '= 3) {
fprintf (stderr, "Usage: %s number base\n", argv[0]);

DRAFT April 8, 2004

262 Solutions

exit(2);
}
n = atoi(argv[1i]);
b = atoi(argv[2]);
printVal(n, b);
putchar(’\n’);
exit(0);

2.13 Not yet available.
2.14 Not yet available
2.15 Not yet available

2.16 Not yet available

2.17

0 ifn=20
mul(m,n —1)+m ifn >0

mul(m, n) = {

2.18 Not yet available.
2.19 Not yet available.
2.20 Gib(n) = (k+ ¢)Fib(n) — k

2.21 The results (in seconds) for calculating F'ib(n) for selected values using
fib.c (the recursive version) and fib-linear.c are shown in the table be-
low. (Note that we stop at n = 47 because F'ib(47) is the biggest Fibonacci
number that fits into a 32-bit binary number.)

While there is no perceptible difference in performance for small numbers,
the superiority of the linear algorithm is striking for larger numbers.

DRAFT April 8, 2004

D.3 Answers for Chapter 3 263

n Linear Recursive

20 0.0 0.0
25 0.0 0.0
30 0.0 0.2
35 0.0 1.9
40 0.0 21.7
45 0.0 241.2
47 0.0 634.9

Table D.3: Times for calculating F'ib(n) with linear and exponential algo-
rithms

D.3 Answers for Chapter 3

3.1 An interpreter.
3.2 Compilation.

3.3 <while_statement> ::= ’while’ ’(’ <expression> ’)’ <statement>
3.4 <expr> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
>factor> ::= <base> { ’~’ <base> }
<base> ::= <num>
|)() <expr> ;))
| ’-? <expr>
<addop> ::= 4’ | =’
<mulop> ::= ’x’ | 7/’

3.5 Not yet available.
3.6 Not yet available.
3.7 Not yet available.

3.8 The keywords in C are: auto, break, case, char, const, continue,
default, do, double, else, enum, extern, float, for, goto, if, int,
long, register, return, short, signed, sizeof, static, struct, switch,
typedef, union, unsigned, void, volatile, while.

The separators and operators,are: [1 () {3} . => ++-——= "1 = + & x /
KK>> K> =>===1=" | & || 7 : = += -= %= /= Y= <<= >>= &= "= |= |

DRAFT April 8, 2004

264 Solutions

3.9 Pure lisp has the fewest number of syntactical rules (parentheses must
balance). C++ inherits all of C’s syntax and then some... It is the most
complex language that I regularly program in.

3.10

3.11

3.12 Not yet available.

3.13 Not yet available.

3.14 Not yet available.

3.15 Not yet available.

3.16 The only function that needs to change is factor():

/*x factor() parses and evaluates a <factor> as defined
* by the BNF:

x <factor> ::= <num> | ’(’ <expr> ’)’
*
* ENTRY CONDITIONS: The next unprocessed token must
* be in the token global variable.
* EXIT CONDITIONS: The next unprocessed token will be
* in the token global variable.
*
* @return The value of the factor.
x/
int factor(void)
{
int value;

if (isdigit(token)) {
value = token - ’0’;
token = getNextToken();
return value;

}else if (token == ’-’) {
token = getNextToken();

DRAFT April 8, 2004

D.4 Answers for Chapter 4

265

value = expr();
return -value;
} else {
assert(token == ’(’);
token = getNextToken();
value = expr();
assert(token == ’)’);
token = getNextToken();
}
return value;

}

3.17

<simple_sentence> ::= <noun_phrase> <verb> <noun_phrase>
<noun_phrase> ::= <article> { <adjective> } <noun>
<article> ::= ’the’

| 1’37
<adjective> ::= ’hungry’
| ’black’
| ’white’
| ’cute’
) |)dog;

<noun> ::= ’cat

<verb> ::= ’chased’ | ’ate’ | ’likes’

D.4 Answers for Chapter 4
4.1
1. The © complexities are:
(a)
n*+n+5=0(n%
(b)

200n + 6 = O(n)

DRAFT April 8, 2004

266 Solutions

(c)
lgn! = O©(nlogn)

2. If n =100, the running times are:

(a)
n® +n+ 5= 1002 + 100 + 5 = 10105
(b)
200n + 6 = 20006
()

lgn! = 524.7649933

4.2 First, T(n) = ©(n?®). (Note that T(n) = 2.6n + lgn!® + 123.456 =
2.6n® + 101gn + 123.456; hence the cubic term is the fastest growing.)

This implies it is O(n?) and 2(n3). It is also O() of any function that
grows faster than a cubic one and () of anything that grows more slowly

than a cubic function.
Thus:

DRAFT April 8, 2004

D.4 Answers for Chapter 4 267

4.3 One way to prove this is to show:
L Yicicni® = O(nft)
2. Yicicnt® = 2(n*)
First:
Z i* < an = pkt!
1<i<n 1<n
Hence, Zlgzsn Zk == O(nk+1).
Second:

Yoifbs> Y (n/2)F > (1/2)(n/2) > Kn*t!

1<i<n n/2<i<n
ko k+1
Hence, 1<, 1° = 2(n*").

4.4 An informal solution:
Note that Kin! + Px(n) = ©(n!)
Hence, log (Kin! + P(n)) = log ©(n!) = @(nlogn)

4.5 The for loop implies that f takes the values:

01,0102,6163,0103"'

Hence, f will get bigger if and only if ¢; > 1 and, in this case, it will grow
exponentially.

More specifically, the number of times the loop will execute is:

[log.,(n/c1)] +1

Hence, the loop has ©(logn) complexity.
The loop will terminate only if the series:

2 3
C1,C1C2,C1Cy,C1Cqy * * »

increases.
Hence, we require that cico > 1

DRAFT April 8, 2004

268 Solutions

n Derivation T(n)
1 T(l)=c c
2 T(2)=2T(1)4+2a+b=2c+b+2a| 2a+b+2c
41 T4)=2T12)+4a+b=(4da+2b+4c)+4a+b| 8a+3b+4c
8| T(8)=2T(4)+8a+b=(16a +6b+8c) +8a+b | 24a + 7b + 8¢
Table D.4: T'(n) = 2T'(n/2) + an + b for selected values
4.6 Given:

T(n) = c ifn=1
"' T\ 2T(n/2) + an+b otherwise

We start with the manually derived Table D.4

Next, we draw the recurrence tree for the general case as shown in Fig-
ure D.1.

We can now see the closed form solution for 7'(n):
T(n) =nalgn+ (n—1)b+nc

Clearly, then T'(n) = @(nlgn) (because nalgn is the fastest growing
term in the closed-from solution.)

4.7 This is equivalent to showing that n¢ is 2(Ign).
We know that for all n:

T(2n)=lg2n=1gn+1=T(n)+1
So we need only show that:
T(2n)—T(n)=(2n)*—n‘>1

for sufficiently large n > ny.
We have:

(2n)*—nt > 1
nf(2°—1) > 1

1 1/e
n > (26_1>

DRAFT April 8, 2004

D.5 Answers for Chapter 5

269

Row 0 T(n)

Row 1 T(n/2) T(n/2)

Row 2 T(n/4) T(n/4) T(n/4) T(n/4)
Row i T(n/2%) o« 2" nodes in Row i

Rowlgn T(7;/215") = F(lyp =ncnodes in Row lgn

Recursive Part

Summary: Row 0 contribution: an + b
Row 1 contribution: an + 2b
Row 2 contribution: an + 4b
Row i contribution: an + 2%
Row lgn contribution: nc

Total: (nlgn)a+ (n —1)b+nc

an+ b
an + 2b

an + 4b

an + 2'b

ne
Non-Recursive Part

Figure D.1: Tree for T'(n) = 2T (n/2) + an + b

D.5 Answers for Chapter 5

5.1 The possible sets are {} (the empty set), {1}, {2} and {1 2} for a total
of 4. (Note that {2 1} is not a separate set since the order of elements is

immaterial.)

There are an infinite number of allowable bags; obviously, all the sets are
permissible, but so are bags like {1 1 1 1 } (a bag with four 1’s in it).

5.2 Not yet available.
5.3 Not yet available.
5.4 Not yet available.

5.5
Not yet available.

5.6

DRAFT April 8, 2004

270 Solutions

int myGetSize(IntLLBag b)
{
int s;
IntLLBag b2;
b2 = newIntLLBag();
for(s = 0; !'isEmpty(b); s++)
addIntLLBag (b2, removeIntLLBag(b));
while!isEmpty(b2))
addIntLLBag(b, removeIntLLBag(b2));
destroyIntLLBag(b2) ;
return s;

}
5.7 Not yet available.
5.8 Not yet available.

5.9 Not yet available.

D.6 Answers for Chapter 6
6.1 The code is:

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

/**x Typedefs **x/
typedef enum{Penny = 1,
Nickel = 5,
Dime = 10,
Quarter = 25,
HalfDollar = 50}
Coin;

typedef struct
{

int amt;

DRAFT April 8, 2004

D.6 Answers for Chapter 6 271

unsigned int nTypes;
} Params;

static unsigned int top = O;

#tdefine STACK_SIZE 1000
static Params stack[STACK_SIZE];

/**%* Globals ***/
Coin typesOfCoins[] = {Penny, Nickel, Dime, Quarter, HalfDollar};

/**x Function prototypes ***/
int nWaysToMakeChange (int amount, int nCoinTypes);

static void push(Params p)

{
stack[top++] = p;
return;
}
static void initStack()
{
top = O;
return;
}
static Params pop()
{
return stack[--top];
}
static int isEmptyStack()
{
return (top == 0);
}

DRAFT April 8, 2004

272 Solutions

int main(int argc, char * argv[])
{
if ((argc '= 2) || (atoi(argv[1]) < 0)) {
fprintf (stderr, "Usage: %s amount(in cents)\n", argv[0]);
exit(1);
}
printf ("%d\n", nWaysToMakeChange(atoi(argv[1]),
sizeof (typesOfCoins)/sizeof (int)));
exit(0);
}

int nWaysToMakeChange(int amount, int nCoinTypes)

{

int ans = 0;

Params p;
p.amt = amount;
p-nTypes = nCoinTypes;
initStack();
push(p) ;
while(!isEmptyStack()) {
p = pop();
if ((p.amt == 0) || (p.nTypes == 1)) {
ans++;
continue;
}
if (p.amt < 0)
continue;
p.nTypes——;
push(p) ;
p.amt -= types0fCoins[p.nTypes];
p.nTypes++;
push(p) ;
}
return ans;

}

DRAFT April 8, 2004

D.6 Answers for Chapter 6 273

6.2

6.3 typedef int StackData; /* For example */
static unsigned int top = O;

#define STACK_SIZE 1000

static StackData stack[STACK_SIZE];

static void push(StackData p)

{
stack[top++] = p;
return;
}
static void initStack()
{
top = 0;
return;
}
static StackData pop()
{
return stack[--top];
}
static int isEmptyStack()
{
return (top == 0);
}

static DataType set(int index, DataType data)
{

DataType old;

assert(index >= 0 &% index < top);

0ld = stack[index];

stack[index] = data;

return old;

DRAFT April 8, 2004

274

Solutions

static unsigned int getSize(void)

{

return top;

3

static DataType get(int index)

{
assert(index >= 0 && index < top);
return stack[index];

}

6.4 Not yet available.
6.5 Not yet available.

6.6 top-—-—> local variable x (in foo)
local variable y (in foo)
local variable z (in foo)
return address main_2
formal parameter p
formal parameter q

5
6

6.7 Because it is extremely poor practice to use any part of memory that
has been released. While it is highly probable that the re-written code will
work and be slightly more efficient, there is a possibility that it will fail,
especially in a multi-threaded system with a pre-emptive scheduler and lots
of interrupts.

6.8 Not yet available.

6.9 Not yet available.

6.10 Not yet available.

6.11 Not yet available.

6.12 All the operations are ©(1).

DRAFT April 8, 2004

D.7 Answers for Chapter 7

275

D.7 Answers for Chapter 7

7.1 Not yet available.
7.2 Not yet available.

7.3 The original tree looks is shown in Figure D.2.

()

o

O O

Figure D.2: A simple binary tree

The traversal orders are:
inorder D, G, I, K, L, M, P, R, V
pre-order M, G, D, K, I, L, R, P, V

post-order D, I, L, K, G, P, V, R, M

Figure D.3 shows the tree after deleting the G node.

It is described in parenthetical notation as:
M (T @D & O @) ®R @) (V))
7.4 Note yet available.

7.5 Not yet available.

DRAFT April 8, 2004

276 Solutions

()

AP
()

Figure D.3: A simple binary tree with G node deleted

D.8 Answers for Chapter 8

8.1 a. 2.
b. 4.

c. Yes as shown in Figure D.4

8.2 The evolution is shown in Figure D.5

D.9 Answers for Chapter 9

9.1 Figure D.6 shows the hash tables.

D.10 Answers for Chapter 10

10.1 1. The graph is shown in Figure D.7

D.11 Answers for Appendix B
B.1 Not yet available.

B.2 We would add:

DRAFT April 8, 2004

D.11 Answers for Appendix B 277

/
e
TANA

Figure D.4: Colored tree

Body mars, deimos, phobos ;

Body mars = {"Mars", &sol};
Body deimos = {"Deimos", &mars};
Body phobos = {"Phobos", &mars};
B.3 Not yet available.

B.4 “Jupiter”.

B.5 Not yet available.

B.6 Not yet available.

B.7 Not yet available.

DRAFT April 8, 2004

278 Solutions

Rotate and color

°© o o -

Add 1 (color root black) Add 2 (no violation)

Add 5 (violation, black uncle, right child, right grandparent)

Add 3 (violation, red uncle) Add 6 (i iolation)
no violation,

Recolor
[-

Add 4 (violation, red uncle)

Figure D.5: Building a Red-Black Tree

DRAFT April 8, 2004

D.11 Answers for Appendix B 279

Chaining Linear Probing Double Hashing
o | [w o [] o [6|
1 7ﬁv 1| 1|
2 v 2 2

3 | v 3 || 3 ||
4 | 4 17| 4 |17
5 | | 5 |5 | 5 |5 |
6 | | [6 | 6 |19 | 6 | 19|
7 | Tw 7 |15 | 7 |
8 7@ 8 T g |]
9 7ﬁv 9 |6 | 9 | 4|
10 7ﬁv 10 | | 10 | |
11 71 1o 1
12 7? 12 || 12 |18 |

Figure D.6: Resulting Hash tables after adding “5, 19, 17, 18, 4, 6”

Figure D.7: Resulting Graph

DRAFT April 8, 2004

280 Solutions

DRAFT April 8, 2004

Appendix E

Source code

This appendix includes all of the source code discussed in the text (including
the problems).

Note that all of the code does not respect the basic coding standards
given in A. There are also inconsistencies.(I’'m working on it...)

E.1 Algorithms

Source code for Chapter 1. This source code can also be found in the directory
src/algorithms.

E.1.1 README

This directory contains the source code for programs
discussed in Chapter 1---Algorithms of the book
"Engineering Algorithms and Data Structures".

Makefile --- the Makefile (what else)

metrics.c ——— the implementation of the "metrics" package.
metrics.h —-—- the header file for the "metrics" package.
selectionSort.c --- recursive implementation of Selection Sort
sortDriver.c --- a driver for any implementation of "mySwap"

DRAFT April 8, 2004

282 Source code

E.1.2 Makefile

CFLAGS=-Wall -g -ansi -pedantic
EXECS= selSort easter testMetrics
CC=gcc

all: ${EXECS}

selSort: selectionSort.o sortDriver.o metrics.o eprintf.o
gcc -o selSort selectionSort.o sortDriver.o metrics.o eprintf.o

easter: easter.o eprintf.o
gcc -0 easter easter.o eprintf.o

testMetrics: metrics.c
gcc -o testMetrics -DTEST_METRICS metrics.c

clean:
-@rm -f *~ *.dvi *.log *.ps *.log *.aux *.o ${EXECS} junk*

E.1.3 metrics.h

/* Copyright (C) 1999 Ken Clowes (kclowes@Qee.ryerson.ca) */

#ifndef METRICS_H
#define METRICS_H

int myCompare(int, int);

void mySwap(int *, int *);

void myCopy(const int *, int *);
unsigned int getNumCompares();
unsigned int getNumCopies();
unsigned int getNumSwaps();

DRAFT April 8, 2004

E.1 Algorithms 283

#endif /* #ifndef METRICS_H */

E.1.4 metrics.c

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

~
*
*

The metrics module provides utility functions to compare, swap

and copy ints. The module tracks the number of times each operation
is performed and provides functions to obtain these numbers.

The primary use of the metrics module is to facilitate the
performance measurement and comparison of sorting algorithms.

The module also includes a stand alone self-test main routine
allowing the automatic testing of its components. The test executable
may be obtained by compiling this module with TEST_METRICS #defined.

¥ O X X X X X ¥ ¥

*/

static unsigned int numCompares = O0;
static unsigned int numSwaps = O;
static unsigned int numCopies = 0;

/**
* myCompare compares two ints. The function returns an integer
* greater than, equal to, or less than 0, if the first number
* is greater than, equal to, or less than the second number
* respectively.
*
* @param nl The first number.
* @param n2 The second number.
*/
int myCompare(int nl, int n2)
{
numCompares++;
return (nl - n2);
}
/%%

DRAFT April 8, 2004

284 Source code

mySwap interchanges two ints.

Example:

int al]l = {1, 2, 3, 4};

mySwap (&a[0], &al[31);

printf("al0] = %d; al3] = %d\n", a[0], al3]);
will produce the output:

al0] = 4; a[3] =1

@param ipl A pointer to the first int.
@param ip2 A pointer to the second int.

¥ O X X X ¥ X X ¥ X *

*/
void mySwap(int * ipl, int * ip2)
{

int tmp;

numSwaps++;

tmp = *xipl;

xipl = *ip2;

*ip2 = tmp;

return;

/**

* myCopy copies an int elsewhere.

* @param ipl A pointer to the int that is to be copied

* @param ip2 A pointer of where to copy the first int to.

*/

void myCopy(const int * ipl, int * ip2)
{

numCopies++;

*ip2 = *ipl;

return;

3

/%%
* getNumCompares returns the number of times myCompare
* was invoked.

DRAFT April 8, 2004

E.1 Algorithms

285

*/
unsigned int getNumCompares ()
{

return numCompares;

3

VAL
* getNumCopies returns the number of times myCopy
* was invoked.
*/
unsigned int getNumCopies()
{
return numCopies;

3

VAL
* getNumSwaps returns the number of times mySwap
* was invoked.
*/

unsigned int getNumSwaps ()

{

return numSwaps;

}

#ifdef TEST_METRICS
#include <stdio.h>
#include <assert.h>
int main()
{
int datal] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int nTests 0;
int tmpl, tmp2;
/* Ensure that the initial counts are all zero.

assert(getNumSwaps() == 0); nTests++;
assert (getNumCompares() == 0); nTests++;
assert(getNumCopies() == 0); nTests++;

/* Test compare operations */

DRAFT April 8, 2004

286 Source code

assert (myCompare(5, 5) == 0); nTests++;

assert (myCompare (12, 34) < 0); nTests++;

assert (myCompare (-5, -10) > 0); nTests++;
assert (myCompare (Oxffffffff, 0) < 0); nTests++;
assert (getNumCompares() == 4); nTests++;

/* Test swap operations */

tmpl = datal[2];

tmp2 = datal3];

assert(tmpl != tmp2);

mySwap (&data[2], &datal3]);

assert ((tmpl == datal[3]) && (tmp2 == datal[2])); nTests++;
mySwap (&datal[2], &datal3]);

assert ((tmpl == data[2]) && (tmp2 == datal[3])); nTests++;
assert (getNumSwaps() == 2); nTests++;

/* Test copy operations */

myCopy (data+5, &tmpl);

assert(tmpl == 6); nTests++;
assert(tmpl != tmp2);

myCopy (&tmpl, &tmp2);

assert(tmp2 == 6); nTests++;

assert (getNumCopies() == 2); nTests++;

printf ("The metrics module passed all %d tests\n", nTests);
exit(0);

}

#endif /* TEST_METRICS x*/

E.1.5 selectionSort.c

#include "metrics.h"

/*x mySort sorts a sub-array of int’s. The array name and the
starting and ending indices are passed as parameters. The function
modifies the array such that all of its elements between the start
and end indices (inclusively) are in sorted order from smallest to
largest.

* ¥ X *

DRAFT April 8, 2004

E.1 Algorithms 287

*

* Example:

* If you write:

* int data[] = {-5, 20, -17, 63, 6};

* mySort (data, 0, 4);

* for(int i = 0; i <= 4; i++)

* printf("%d\n", datalil);

*

* the following will be printed to stdout:

* -17

* -5

* 6

* 20

* 63

*

* @param array The array to be modified.

* @param first Index of first element of the sub-array.
* @param last Index of last element of the sub-array.

*

*/
void mySort(int arrayl[], unsigned int first, unsigned int last)
{

int i;

/%
This version of "mySort" uses the Selection Sort algorithm
as described in class:

Step 1: If there are no cards to sort, then STOP.

Step 2: Otherwise, find the smallest card,

remove it and place it on top of the sorted card pile.
Step 3: Go back to step 1.

To implement the basic idea of the algorithm in the context
of sorting a sub-array of ints instead of a deck of cards,
we first re-phrase the algorithm as follows:

Step 1: If the sub-array to be sorted contains no elements
(i.e. if the first index is >= the last index), then

¥ O X X X X X X X ¥ X X X

DRAFT April 8, 2004

288 Source code

simply return.

Step 2: Otherwise, replace the array element "array[first]"
with the smallest int in the sub-array "array[first]..array[last]"
and ensure that the original value of array[first] is somewhere
in the smaller sub-array "array[first+1]..array[last]" whenever
array[first] is modified.

Step 3: Solve the smaller problem of sorting the sub-array
"array[first+1]..array[last]"

*
*
*
*
*
*
*
*
*
*
*
* (NOTE: The original algorithm has simple recusive and
* iterative implementations; we have chosen a recursive
* implementation.)

*

*

The C implementation of the array-based algorithm follows.

*/

/* Step 1: Is there nothing to sort? */
if (first >= last)
return;

/* Step 2: Make array[first] the minimum in array[first]..array[last].
Modify array[first] only with "swap" operations. */
for(i = first+l; i <= last; i++) {
if (myCompare (array[first], array[il) > 0) {
mySwap (&array[first], &arrayl[il);
}
}

/* Step 3 */
mySort (array, first+1, last);

return;

DRAFT April 8, 2004

E.1 Algorithms 289

E.1.6 sortDriver.c
/* Copyright (C) 1999 Ken Clowes (kclowes@Qee.ryerson.ca) */
#include <stdio.h>

#define MAX_SIZE 100000

#include "metrics.h"

#include "eprintf.h"

extern void mySort(int array[], unsigned int first, unsigned int last);

int main(int argc, char * argv[])
{

int a[MAX_SIZE];

unsigned int array_size, 1i;

setprogname (argv[0]) ;

if (argec !'= 1) {
eprintf("with NO additional command line args\n'");
exit(1);

}

/* Read ints from stdin into an array */
for(array_size = 0; (scanf("%d", &alarray_size]) != EQOF)
&& (array_size < MAX_SIZE);
array_size++)

H

/* sort the array */
if (array_size > 0) {
mySort(a, 0, array_size-1);

}

/* Print out the modified array */

for(i = 0; i < array_size; i++)
printf ("%d\n", alil);

/* Print stats */

DRAFT April 8, 2004

290 Source code

fprintf(stderr, "Comparisons: %d\n", getNumCompares());
fprintf(stderr, "Swaps: %d\n", getNumSwaps());
fprintf(stderr, "Copy operations: %d\n", getNumCopies());

exit (0);

E.1.7 easter.c

/** Determine the Date of Easter for any year after 1582.

Invoked from the command line as:
easter <Year>

Example:
easter 2009
produces (on stdout)
12 April 2009

* K X X ¥ X X X

*

/

#include <stdio.h>
#include <stdlib.h>
#include "eprintf.h"

void easter(int year);

int main(int argc, char * argv[])
{
int Y;
setprogname (argv[0]) ;
if (arge != 2) {
eprintf("Usage: easter year (where year > 1582)");
}
Y = atoi(argv[il);
if (Y < 1582) {
eprintf ("Year must be greater than 1582");
}

easter(Y);

DRAFT April 8, 2004

E.1 Algorithms 291

exit (0);
X
/*
* The algorithm is implemented using the description
* from Knuth’s "The Art of Computer Programming", Vol 1.
* page 159--160.
*/

void easter(int Y)

{
int G, C, X, Z, D, E, N;

Y/i19 + 1;
Y/100 + 1;
(3xC)/4 - 12;
(8%xC + 5)/25 - 5;
5%xY/4 - X - 10;
(11%G + 20 + Z - X)%30;
/* Following needed because C’s mod operator incorrect. */
if (E < 0)
E += 30;
if (((E==25) && (G > 11)) || (E == 24))
E++;

N =44 - E;
if (W < 21)

N += 30;
N=0N+7- (D+tN)%7;
if (N> 31) {

printf("%d April %d\n", N-31, Y);
} else {

printf("%d March %d\n", N, Y);
}

return;

MO NMQ®
1l

DRAFT April 8, 2004

292 Source code

E.2 Recursion

Source code for Chapter 2. This source code can also be found in the directory
src/recursion.

E.2.1 README

This directory contains the files associated with
Chapter 2---Recursion--—-in the book "Engineering
Algorithms and Data Structures".

CountChange.c -- Count ways to make change using
1c, 5¢,10c, 25c¢ and 50c coins
CountChangeShowWays.c -- Show how each way is formed

Makefile -- the makefile (what else)
euclid.c -- Euclid’s algorithm for gcd

fib-linear.c —- A linear complexity Fibonacci generator
fib.c -- Recursive Fibonacci

goodTowers.c —— Towers of Hanoi

towers.c -- Towers of Hanoi (buggy version)

pv.c —— print value to any base

E.2.2 CountChange.c

#include <stdio.h>
#include <stdlib.h>

/**x Typedefs **x/
typedef enum{Penny = 1,
Nickel = 5,
Dime = 10,
Quarter = 25,
HalfDollar = 50}
Coin;

/***x Globals *%*x*/
Coin typesOfCoins[] = {Penny, Nickel, Dime, Quarter, HalfDollar};

DRAFT April 8, 2004

E.2 Recursion 293

/*** Function prototypes **x/
int nWaysToMakeChange (int amount, int nCoinTypes);

int main(int argc, char * argv[])
{
if ((arge != 2) || (atoi(argv[1]) < 0)) {
fprintf (stderr, "Usage: %s amount(in cents)\n", argv[0]);
exit(1);
}
printf("%d\n", nWaysToMakeChange(atoi(argv[1]),
sizeof (types0fCoins)/sizeof (int)));
exit (0);
}

int nWaysToMakeChange(int amount, int nCoinTypes)
{
if ((amount == 0) || (nCoinTypes == 1))
return 1;
if (amount < 0)
return O;
return nWaysToMakeChange (amount, nCoinTypes-1)
+ nWaysToMakeChange (amount - typesOfCoins[nCoinTypes-1], nCoinTypes);

E.2.3 CountChangeShowWays.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*** Typedefs *¥x*/
typedef enum{Penny = 1,
Nickel = 5,
Dime = 10,
Quarter = 25,
HalfDollar = 50}
Coin;

DRAFT April 8, 2004

294

/**%x Globals **x/

Coin typesOfCoins[] = {Penny, Nickel, Dime, Quarter, HalfDollar};

char * coinName[] = {"Penn", "Nickel", "Dime", "Quarter", "HalfDollar'"};

/*** Function prototypes ***/

int nWaysToMakeChange(int amount, int nCoinTypes, int coinsUsed[]);

void showCoinsUsed(int coinsUsed[]);

int main(int argc, char * argv[])

{

int nWaysToMakeChange(int amount, int nCoinTypes, int coinsUsed[])

{

int coinsUsed[] = {0, 0, 0, 0, 0};
if ((argc '= 2) || (atoi(argv[il) < 0)) {

fprintf (stderr, "Usage: %s amount(in cents)\n", argv[0]);

exit(1);
}

nWaysToMakeChange(atoi(argv[1]), sizeof(types0fCoins)/sizeof(int),

coinsUsed) ;
exit (0);

int used2[5];

if (amount == 0) {
showCoinsUsed (coinsUsed) ;
return 1;

}

if (nCoinTypes == 1) {
coinsUsed[0] = amount;
showCoinsUsed (coinsUsed) ;
return 1;

}

if (amount < 0)
return O;

memmove (used2, coinsUsed, 5*sizeof(int));

used2[nCoinTypes-1]++;

DRAFT April 8, 2004

Source code

E.2 Recursion

295

return nWaysToMakeChange(amount, nCoinTypes-1, coinsUsed)
+ nWaysToMakeChange (amount - types0fCoins[nCoinTypes-1],
nCoinTypes, used2);

}
void showCoinsUsed(int coinsUsed[])
{

int i;

int n = sizeof (types0fCoins)/sizeof (int);
int printed = 0;

for(i = 0; i < nj; i++) {
if (coinsUsed[i] != 0) {
if (printed)
printf (" and ");
printf ("%d %s", coinsUsed[i], coinNamel[il);
if (i==0) {

printf("%s", (coinsUsed[i] == 1) ? "y" : "ies");
} else if (coinsUsed[i] > 1)
printf("s");
printed = 1;
}
}
printf("\n");
return;

}

E.2.4 Makefile

CFLAGS=-Wall -g

EXECS=towers fib CountChange fib-linear euclid \
CountChangeShowWays pv goodTowers

CC=gcc

all: ${EXECS}

towers: towers.o
gcc -0 towers towers.c

DRAFT April 8, 2004

296 Source code

goodTowers: goodTowers.o eprintf.o
gcc —-o goodTowers goodTowers.o eprintf.o

fib: fib.o
gcc —o fib fib.o

fib-linear: fib-linear.o
gcc —o fib-linear fib-linear.o

euclid: euclid.o
gcc —o euclid euclid.o

CountChange: CountChange.o
gcc -o CountChange CountChange.o

CountChangeShowWays: CountChangeShowWays.o
gcc —o CountChangeShowWays CountChangeShowWays.o

pv: pv.o
gcc -0 pV pv.o

clean:
-0rm -f *” *.dvi *.log *.ps *.log *.aux *.o ${EXECS} *.exe

E.2.5 euclid.c

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

unsigned int gcd(unsigned int m, unsigned int n)

{

unsigned int r;

DRAFT April 8, 2004

E.2 Recursion 297

r = m)n;
if (r == 0)
return n;
else
return gcd(n, r);

}

int main(int argc, char * argv[])
{
unsigned int nl, n2;
assert(argc == 3);
nl = atoi(argv[1]);
n2 = atoi(argv([2]);
printf("GCD of %d and %d is %d\n", nl, n2, gcd(nl, n2));
exit (0);

E.2.6 fib-linear.c

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
int fib(int);

int main(int argc, char * argv[])
{
int n;
n = atoi(argv([i]);
printf ("Fib{%d): %d\n", n, fib(n));

exit (0);

}

int fib(int n)

{
unsigned int fibNumbers[200];
int i;

assert(n >= 1 && n < 200);

DRAFT April 8, 2004

298 Source code

fibNumbers [0] 1;
fibNumbers[1] 1;
for(i = 2; 1 < n; i++)
fibNumbers[i] = fibNumbers[i-1] + fibNumbers[i-2];
return fibNumbers[n-1];

E.2.7 fib.c

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
int fib(int);

int main(int argc, char * argv([])
{
int n;
n = atoi(argv[1il]);
printf ("Fib{%d): %d\n", n, fib(n));
exit(0);

int fib(int n)
{
assert(n >= 1);
if((n==1) || (n==2))
return 1;
return fib(n-1) + fib(n-2);
}

E.2.8 goodTowers.c
/* Copyright (c) 1999 Jane Smith (jsmithQee.ryerson.ca) */
/** The functions in this file solve the classic Towers of Hanoi

* problem.

*/

DRAFT April 8, 2004

E.2 Recursion 299

/*%% Includes *xx*/
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

/*** Function prototypes **x/
void towers(int n, int from, int to);

/** * main manages the command line interface to solving the
* Towers of Hanoi problem. The command line args (which
must be string representations of numbers) indicate the

number of disks to be moved and the source and
destination tower numbers. (The towers are identified
with the numbers 1, 2 and 3.)
@param argc the number of command line arguments
@param argv a pointer to an array of strings where:
There must be exactly 3 arguments where:
- the fist arg is the number of disks to move
- the second is the ID-number of the source
- the third is the ID of the destination
@return returns an exit code of 0 at
completion unless invoked incorrectly or if system
resources or user patience is exceeded;
in those cases an exit code of 1 (for invokation
errors) or some non-zero value (for impatience
or resource exhaustion) is returned.

O K X X X K K K K XK X X X X *

*/
int main(int argc, char * argv[])
{
int nDisks, sourceTower, destTower;
if (arge !'= 4) {
eprintf(stderr, "Usage: towers n_disks source dest\n");
}
nDisks = atoi(argv[1i]);
if (nDisks < 0) {
eprintf ("Number of disks must be non-negative\n");
}

sourceTower = atoi(argv[2]);

DRAFT April 8, 2004

300 Source code

if (sourceTower < 1 || sourceTower > 3) {
eprintf ("Source tower ID must be 1, 2 or 3\n");
}
destTower = atoi(argv[3]);
if (destTower < 1 || destTower > 3) {
eprintf ("Destination tower must be 1, 2 or 3\n");
}
if (destTower == sourceTower) {
eprintf ("Source and Destination must be different\n");

}

towers (nDisks, sourceTower, destTower);
exit (0);

VAL

* '"towers" solves the Towers of Hanoi problem

* and writes the solution to <stdout> as 2°n -1

* lines in the form:

* <from> <to>

* where:

* <from> is the ID of a tower to pick up a disk from

* <to> 1is the ID of where to drop the disk to

* @param n the number of disks to move

* @param from the tower ID number to move from

* @param to the tower ID number of the destination

*/

void towers(int n, int from, int to)
/*
* The standard recursive '"divide and conquer" method
* 0ois used to solve the problem. Specifically:
* 1) If the number of disks is O, then STOP.
* 2) Otherwise, move n-1 disks to the spare tower.
* 3) Move a single disk to the destination.
* 4) Move n-1 disks from the spare to destination
*/

{

if(n > 0) {

DRAFT April 8, 2004

E.2 Recursion 301

/* Note: "spare", "from" and "to" are distinct
and chosen from 1 or 2 or 3. Hence, we must have
the invariant:

spare + from + to =1+ 2 + 3 =6

* ¥ *

*/

int spare = 6 - from - to;
—-n;
towers(n, from, spare);
printf("%d %d\n", from, to);
towers(n, spare, to);

E.2.9 towers.c

/* Copyright (c) 1999 Jane Smith (jsmith@ee.ryerson.ca) */

/** The functions in this file solve the classic Towers of Hanoi
* problem.

*/

/**x Includes ***/
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

/*** Function prototypes **x/
void towers(int n, int from, int to);

/** * main manages the command line interface to solving the
* Towers of Hanoi problem. The command line args (which
must be string representations of numbers) indicate the

number of disks to be moved and the source and
destination tower numbers. (The towers are identified
with the numbers 1, 2 and 3.)
@param argc the number of command line arguments
@param argv a pointer to an array of strings:
There must be exactly 3 arguments:

O S R I

DRAFT April 8, 2004

302 Source code

-- the fist arg is the number of disks

-- the 2nd is the ID of the source tower

-- the 3rd arg is the ID of the destination

Oreturn returns an exit code of 0 at

completion unless invoked incorrectly
or if system resources or user patience
is exceeded; in those cases an exit code
of 1 (for invokation errors) or some non-zero
value (for impatience or resource exhaustion)
is returned.

¥ O X X K X X ¥ ¥ *x

*/
int main(int argc, char * argv[])
{
int nDisks, sourceTower, destTower;
if (argec !'= 4) {
fprintf(stderr, "Usage: towers num_disks source dest\n");
exit(1);
}
nDisks = atoi(argv[1i]);
if (nDisks < 0) {
fprintf (stderr, "Number of disks to move must be non-negative\n");
exit(1);
}
sourceTower = atoi(argv[2]);
if (sourceTower < 1 || sourceTower > 3) {
fprintf(stderr, "Source tower number must be 1, 2, or 3\n");
exit(1);
}
destTower = atoi(argv[3]);
if(destTower < 1 || destTower > 3) {
fprintf(stderr, "Destination tower must be 1, 2, or 3\n");

exit(1);

}

if (destTower == sourceTower) {
fprintf(stderr, "Source and Destination towers must be different\n");
exit(1);

}

DRAFT April 8, 2004

E.2 Recursion 303

towers (nDisks, sourceTower, destTower);
exit(0);
}

* "towers" solves the Towers of Hanoi problem and writes the solution
* to <stdout> as 2°n -1 lines in the form:
* <from> <to>
* where:
* <from> is the ID of a tower to pick up a disk from
* <to> 1is the ID of where to drop the disk to
* Q@param n the number of disks to move
* @param from the tower ID number to move from
* @param to the tower ID number of the destination
*/
void towers(int n, int from, int to)
/%
* The standard recursive "divide and conquer" method is used
* to solve the problem. Specifically:
* 1) If the number of disks to move is 0 (zero), then STOP.
* 2) Otherwise, move n-1 disks to the spare tower.
* 3) Move a single disk to the destination.
* 4) Move n-1 disks from the spare tower to the destination

*/

if(n>0) {

/* Note: "spare", "from" and "to" are distinct and chosen from
* 1 or 2 or 3. Hence, we must have the invariant:
* spare + from + to =1+ 2 + 3 =6
*/

int spare = 6 - from - to;

--n;

towers(n, from, spare);

printf("%d %d\n", from, to);

towers(n, to, spare);

DRAFT April 8, 2004

304

Source code

E.3 Parsing

Source code for Chapter 3. This source code can also be found in the directory
src/parsing.

E.3.1 README

This directory contains the files associated with
Chapter 3---Parsing---in the book "Engineering
Algorithms and Data Structures".

Makefile -- the makefile (what else)
calc.c —— a simple calcultor (algebraic expressions)
nounPhraseWordCounter.c -- simple BNF example

E.3.2 Makefile

CFLAGS=-Wall -g -ansi -pedantic
EXECS=nounPhraseWordCounter calc calc2
CC=gcc

all: ${EXECS}

calc: calc.o
gcc -o calc calc.o

calc2: calc2.o0
gcc -o calc2 calc2.o

nounPhraseWordCounter: nounPhraseWordCounter.o
gcc —o nounPhraseWordCounter nounPhraseWordCounter.o

clean:
-0rm -f *~ x.dvi *.log *.ps *.log *.aux *.0 \
.eps core junk *.bak ${EXECS}

DRAFT April 8, 2004

E.3 Parsing 305

E.3.3 calc.c
/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/** This program parses and interprets arithmetic expressions and
* prints their values. Arithmetic expressions are defined by the BNF:

*

* <pre>

* <expr> ::= <term> { <addop> <term> }

* <term> ::= <factor> { <mulop> <factor> }

* <factor> ::= <num>

* | >’ <expr> ’)’

* <addop> ::= '+’ | =’

* <mulop> ::= ’%’ | 7/’

*x </pre>

*

* This program is pedagogical; it shows you how to write an interpreter
* using "recursive descent parser" techniques for a recursive BNF.

* However, it is (obviously) not meant to be a real calculator since
* its tokenizer can only recognize single-digit numbers. Nonetheless,
* it is not difficult to modify the tokenizer for more meaningful

* multi-digit representations of numbers. We leave this as an

* exercise.

*

* The exit code is zero unless a syntax error is detected.

*/

/* **% System includes ** */
#include <stdio.h>
#include <ctype.h>
#include <assert.h>

/* x* typedefs *x x/
typedef int token_t;

/* ** globals ** */
token_t token;

DRAFT April 8, 2004

306 Source code

/* *x prototypes ** x/
token_t getNextToken(void) ;
int term(void) ;

int factor(void);

int expr(void);

int main()
{
int value;
while ((token = getNextToken()) != EOF) {
if (token == ’\n’)
continue;
value = expr();
printf ("%d\n", value);
}
exit (0);
}

/** expr() parses and evaluates an arithmetic expression, returning its
* numerical value. Arithmetic expressions are defined with the BNF:

*
* <expr> ::= <term> { <addop> <term> }
*
* ENTRY CONDITIONS: The next unprocessed token must be already
* available in the token global variable.
* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.
* @return The value of the expression.
*/

int expr(void)

{

int value, valueRight;
token_t opToken;

value = term();

while((opToken = token) == ’+’ || opToken == ’-’) {
token = getNextToken();
valueRight = term();

DRAFT April 8, 2004

E.3 Parsing

307

if (opToken == ’+’)
value = value + valueRight;
else
value = value - valueRight;
b
return value;

}

/** getNextToken() reads the next character from stdin (ignoring whitespace)

* and returns it.
*

* @return the next character that is not a space or a tab.

*/

token_t getNextToken(void)
{
int ch;
/* Skip spaces and tabs */
while (((ch = getchar()) ==’) || (ch == ’\t’))

b

return ch;

}

/** term() parses and evaluates a <term> as defined by the BNF:
* <term> ::= <factor> { <mulop> <factor> }

ENTRY CONDITIONS: The next unprocessed token must be already
available in the token global variable.

EXIT CONDITIONS: The next unprocessed token will be placed
in the token global variable.

E O I S

@return The value of the term.
*/

int term(void)

{

int value, valueRight;

token_t opToken;

DRAFT April 8, 2004

308

Source code

/%

*
*
*
*
*
*
*
*

*

value = factor();
while((opToken = token) == ’x%’
token = getNextToken() ;
valueRight = factor();
if (opToken == ’%7)
value = value * valueRight;
else
value

|| token == ’/?)

value / valueRight;
}

return value;

* factor() parses and evaluates a <factor> as defined by the BNF:
<factor> <num> | ’(’ <expr> ’)’

ENTRY CONDITIONS: The next unprocessed token must be already
available in the token global variable.
The next unprocessed token will be placed

in the token global variable.

EXIT CONDITIONS:

O@return The value of the factor.

/

int factor(void)

{

int value;

if (isdigit(token)) {

value = token - ’0’;
token = getNextToken() ;
return value;
} else {
assert(token == ’(’);
token = getNextToken();
value = expr();
assert(token == ’)’);
token = getNextToken();
}

DRAFT April 8, 2004

E.3 Parsing 309

return value;

}

E.3.4 nounPhraseWordCounter.c

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/*x This program parses noun phrases writing

"Good: ’n’ words" for those that are grammatically
correct or "Bad" otherwise. The noun phrases

(zero or more) are read from stdin, one phrase per line.
Empty lines are ignored.

The noun phrases are described by the following BNF:

<pre>
<noun_phrase> ::= <article> { <adjective> } <noun>
<article> ::= ’the’
| ’a’
<adjective> ::= ’hungry’
| ’black’
| ’white’
| ’cute’
<noun> ::= ’cat’ | ’dog’

</pre>
The exit code is zero unless any of the words are too long.
If this file is compiled with either "TEST_TOKENIZER" or

"TEST_TOKENIZER_TWO" defined, a different executable is created.
To find out more about these: UTSL (i.e. "Use The Source, Luke")...

O X X K X K K K XK X X X X K K K K ¥ X ¥ *

*
~

#include <stdio.h>
#include <ctype.h>

#define MAX_WORD_LEN 100 /* Any word longer than this will cause an
immediate exit with a "1" exit code */

DRAFT April 8, 2004

310

Source code

#tifndef TEST_TOKENIZER
#tdefine DEFAULT
#tendif

/* *x typedefs ** */
typedef char * token_t;

/* %% Globals ** */
token_t token;

/** getNextToken() reads the next word from stdin and returns a pointer
* to it. Whitespace (spaces and tabs) are ignored. If the end of file
* is encountered, an empty string is returned. The end-of-line
* indicator is returned as the string "\n".

*
* Qreturn a pointer to the string or "" or "\n" for EOF and newline.
*/

token_t getNextToken(void)

{
static char t[MAX_WORD_LEN + 1];
int ch, i;
/* Skip white space */

while((((ch = getchar()) != ’\n’) && isspace(ch)))

H

switch (ch) {

case EOF:
t[0] = °\O’;
break;
case ’\n’:
t[0] = ch;
t[1] = °\0’;
break;
default:
t[0] = ch;
for(i = 1; ((ch = getchar()) != ’\n’) && 'isspace(ch); i++) {

if (i >= MAX_WORD_LEN) {
fprintf(stderr, "Aborting: cannot tokenize words longer "

DRAFT April 8, 2004

E.3 Parsing 311

"than %d characters\n", MAX_WORD_LEN);

exit(1);
}
t[i]l = ch;
}
if (ch == ’\n’)
ungetc(ch, stdin);
tlil = ’\0’;
break;
b
return t;
}
/** article() parses an article as defined by:
* <pre>
*<article> ::= ’the’ | ’a’
*x </pre>
* ENTRY CONDITIONS: The next unprocessed token must be already
* available in the token global variable.
* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.
* @return 1 if the token is an article; otherwise O.
*/
int article(void)
{
if ((strcmp(token, "a") == 0) || (strcmp(token, "the") == 0)) {
token = getNextToken() ;
return 1;
}
return O;
}

/* isAdjective returns 1 if "word" is a valid adjective; 0 if not. */
int isAdjective(char * word)
{

static char * adjs[] = {"white", "black", "hungry", "cute"};

int found = O;

DRAFT April 8, 2004

312

Source code

int i;
for(i = 0; i < sizeof(adjs) / sizeof(char *); i++) {
if (strcmp(word, adjs[i]) == 0) {

found = 1;
break;
}
}
return found;
}
/*x adjective() parses an adjective as defined by:
x <pre>
*<adjective> ::= ’white’ | ’black’ | ’hungry’ | ’cute’
*x </pre>
* ENTRY CONDITIONS: The next unprocessed token must be already
* available in the token global variable.
* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.
* @return the number of adjectives parsed.
*/
int adjective(void)
{
int r;
r = isAdjective(token);
if (r == 1)
token = getNextToken() ;
return r;
}
/** noun() parses an noun as defined by:
* <pre>
*<noun> ::= ’cat’ | ’dog’
*x </pre>
* ENTRY CONDITIONS: The next unprocessed token must be already
* available in the token global variable.
* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.
* Q@return 1 if the token is an noun; otherwise O.

DRAFT April 8, 2004

E.3 Parsing

313

*/
int noun(void)
{
if ((strcmp(token, "dog") == 0) || (strcmp(token, '"cat") == 0)) {
token = getNextToken();
return 1;
}

return O;

3

/** noun_phrase() parses a noun phrase defined by the BNF:
* <pre>

* <noun_phrase> ::= <article> { <adjective> } <noun>
* </pre>
*
* ENTRY CONDITIONS: The next unprocessed token must be
* already available in the token
* global variable.
* EXIT CONDITIONS: The next unprocessed token will be placed
* in the token global variable.
* @return The number of words in the noun phrase
* (must be at least 2) or a negative number
* if a parse error is detected.
*/
int noun_phrase(void)
{

int nWords;

nWords = article();

if (nWords == 0) {
return -1;

}

while(adjective())
nWords++;

if ('noun()) A{
return -2;

}

return nWords+1;

DRAFT April 8, 2004

314 Source code

#ifdef DEFAULT
int main()
{
int nWords;
while(strcmp(token = getNextToken(), "")) { /* while NOT end-of-file */
if (!strcmp(token, "\n")) /* Ignore empty lines */
continue;
if ((nWords = noun_phrase()) > 1)
printf("Good: %d words\n", nWords);
else {
printf ("Bad\n");
/* Skip rest of line */
while(strcmp(token, "\n") != 0)
token = getNextToken();
}
}
exit(0);
}
#tendif

#ifdef TEST_TOKENIZER
int main()

{
while(strcmp((token = getNextToken()), "")) {
printf("Next token: %s\n", token);
}
exit (0);
}
#tendif

E.4 ADTs

Source code for Chapter 5. This source code can also be found in the directory
src/ADT.

DRAFT April 8, 2004

E.4 ADTs 315

E.4.1 README

This directory contains the source code for programs
discussed in Chapter 5---Abstract Data Types---of the book
"Engineering Algorithms and Data Structures".

README --- this file

Makefile --- the Makefile (what else)

IntLLBag.c --- A linked list (LL) implementation
of a Bag containing ints.

IntLLBag.h --- User header file for the implementation.
IntVBag.c —-—- A resizeabe array (vector, V) implementation
of a Bag containing ints.

IntVBag.h --- User header file for the implementation.
IntBag.c --- A general implementation of a Bag of ints.
IntBag.h --- User header file for the implementation.
IntBagP.h --—- The private header file for the implementation.
IntLLBag2.c ——— An ADT implementation of IntLLBag
simpleTestIntLLBag.c --- A very simple test of IntLLBag.
simpleTIntBag.c --- A very simple test of IntBag,

IntLLBag2 and IntVBag2.

testlIntLLBag.c
testIntBag.c
testIntLLBag.c
testIntVBag.c

DRAFT April 8, 2004

316 Source code

E.4.2 Makefile

CFLAGS=-Wall -g -ansi -pedantic -I../../include

EXECS=testIntLLBag testlIntLLBag testIntVBag testIntBag \
simpleTestIntLLBag simpleTIntBag

CC=gcc

all: ${EXECS}

testIntLLBag: testIntLLBag.o IntLLBag.o eprintf.o
gcc -o testIntLLBag testIntLLBag.o IntLLBag.o eprintf.o

testlIntLLBag: testlIntLLBag.o IntLLBag.o eprintf.o
gcc -o testlIntLLBag testlIntLLBag.o IntLLBag.o eprintf.o

testIntVBag: testIntVBag.o IntVBag.o eprintf.o
gcc —o testIntVBag testIntVBag.o IntVBag.o eprintf.o

testIntBag: testIntBag.o IntBag.o IntLLBag2.o0 eprintf.o
gcc -o testIntBag testIntBag.o IntBag.o IntLLBag2.o eprintf.o

simpleTestIntLLBag: simpleTestIntLLBag.o IntLLBag.o eprintf.o
gcc -o simpleTestIntLLBag simpleTestIntLLBag.o IntLLBag.o eprintf.o

simpleTIntBag: simpleTIntBag.o IntBag.o IntLLBag2.o eprintf.o
gcc -o simpleTIntBag simpleTIntBag.o IntLLBag2.o IntBag.o eprintf.o

clean:
-@rm -f *~ *.dvi *.log *.ps *.log *.aux *.o ${EXECS} junk*

E.4.3 IntLLBag.h

#ifndef _IntLLBag_H
#define _IntLLBag_H
typedef void * IntLLBag;

DRAFT April 8, 2004

E.4 ADTs

317

/** Create a new IntLLBag (i.e. a "bag" of ints implemented as a

* Linked List.)
*

* @return - A new IntLLBag or NULL if one cannot be created.

*/
IntLLBag newIntLLBag(void);

/** Add an integer to an IntLLBag.
*

* @param b The Bag that will be added to.
* @param i The integer to add.

*/
void addIntLLBag(IntLLBag b, int i);

/** Remove an integer from an IntLLBag. If the Bag is empty,
the program exits with a non-zero status.

@param b The Bag that an int will be removed from.
@return The removed integer.

*/
int removeIntLLBag(IntLLBag b);
/** Determine the number of elements in an IntLLBag.

@param b The Bag whose size is determined.
* @return The number of elements in the Bag.
*/
unsigned int getSizeIntLLBag(IntLLBag b);
/** Destroy a previously created IntLLBag, releasing all its

* resources.
*

* @param b The Bag to delete.
*/
void destoryIntLLBag(IntLLBag b);

DRAFT April 8, 2004

318

Source code

#endif /* #ifndef _IntLLBag_H */

E.4.4 IntLLBag.c

#include <stdio.h>
#include <stdlib.h>
#include "IntLLBag.h"
#include "eprintf.h"

typedef struct _LList _LList, *_LListPtr;

struct _LList {
int data;
_LListPtr next;
};

typedef struct _IntLLBag _IntLLBag, *_IntLLBagPtr;

struct _IntLLBag {
_LListPtr head;
int size;

};

/** Create a new IntLLBag (i.e. a "bag" of
* Linked List.)

*

* @return - A new IntLLBag or NULL if one
*/
IntLLBag newIntLLBag(void)
{

_IntLLBagPtr b;

b = malloc(sizeof (_IntLLBag));

if (b == NULL)

return NULL;

b->head = (_LListPtr) NULL;

b->size = 0;

return (IntLLBag) b;

DRAFT April 8, 2004

ints implemented as a

cannot be created.

E.4 ADTs 319

/** Add an integer to an IntLLBag.
*
* @param b The Bag that will be added to.
* @param i The integer to add.
*/
void addIntLLBag(IntLLBag b, int i)
{
_LListPtr item;
_IntLLBagPtr _b = (_IntLLBagPtr) b;

item = malloc(sizeof (_LList));
item—>data = i;

item—>next = _b->head;
_b->sizet++;
_b->head = item;
return;

}

/** Remove an integer from an IntLLBag. If the Bag is empty,
* the program exits with a non-zero status.
*
* @param b The Bag that an int will be removed from.
* Qreturn The removed integer.
*/
int removeIntLLBag(IntLLBag b)
{
int r;
_LListPtr item;
_IntLLBagPtr _b = (_IntLLBagPtr) b;

if (_b->size <= 0) {
eprintf ("Fatal error, removing from empty bag\n");

}

_b->size——;

item = _b->head;
r = item->data;

DRAFT April 8, 2004

320 Source code

_b->head = item—->next;
free(item);
return r;

3

/** Determine the number of elements in an IntLLBag.
*

* @param b The Bag whose size is determined.

* Q@return The number of elements in the Bag.

*/
unsigned int getSizeIntLLBag(IntLLBag b)
{

return ((_IntLLBagPtr)b)->size;
}

/*x Destroy a previously created IntLLBag, releasing all its
* resources.

%k
* @param b The Bag to delete.
*/

void destoryIntLLBag(IntLLBag b)

{
_IntLLBagPtr _b = (_IntLLBagPtr) b;

while(_b->size > 0) {
removeIntLLBag(b) ;

}
free(_b);
return;

E.4.5 IntVBag.h

#ifndef _IntVBag_H
#define _IntVBag_H
typedef void * IntVBag;

/** Create a new IntVBag (i.e. a "bag" of ints implemented as a

DRAFT April 8, 2004

E.4 ADTs 321

* Linked List.)
*

* @return - A new IntVBag or NULL if one cannot be created.

*/
IntVBag newIntVBag(void);

/** Add an integer to an IntVBag.
*

* @param b The Bag that will be added to.
* @param i The integer to add.

*/
void addIntVBag(IntVBag b, int i);

/** Remove an integer from an IntVBag. If the Bag is empty,
the program exits with a non-zero status.

@param b The Bag that an int will be removed from.
* Q@return The removed integer.
*/
int removeIntVBag(IntVBag D) ;

/*% Determine the number of elements in an IntVBag.

@param b The Bag whose size is determined.
* @return The number of elements in the Bag.
*/
unsigned int getSizeIntVBag(IntVBag b);
/**x Destroy a previously created IntVBag, releasing all its

* resources.
*

* @param b The Bag to delete.
*/
void destoryIntVBag(IntVBag b);

DRAFT April 8, 2004

322 Source code

#endif /* #ifndef _IntVBag H */

E.4.6 IntVBag.c

#include <stdlib.h>
#include "IntVBag.h"
#include "eprintf.h"

typedef struct _IntVBag _IntVBag,* _IntVBagPtr;
struct _IntVBag {

int * data;

int size;

int maxSize;

};

/*x Create a new IntVBag (i.e. a "bag" of ints implemented as a
* Linked List.)
%

* @return - A new IntVBag or NULL if one cannot be created.

*/

IntVBag newIntVBag(void)

{
_IntVBagPtr b;

b = malloc(sizeof (_IntVBag)) ;
if (b == NULL)
return NULL;
b->size = 0;
b->maxSize = 0;
b->data = NULL;
return (IntVBag) b;

/** Add an integer to an IntVBag.
*

* @param b The Bag that will be added to.
* @param i The integer to add.

DRAFT April 8, 2004

E.4 ADTs

323

*/

void addIntVBag(IntVBag b, int i)

{
_IntVBagPtr _b = (_IntVBagPtr) b;

if (_b->size >= _b->maxSize) {
_b->maxSize = _b->maxSize==0 ? 1 : 2%_b->maxSize;
_b->data = erealloc(_b->data, _b->maxSize*sizeof(int));
}
_b->datal[_b->size] = i;
_b->size++;
return;

3

/** Remove an integer from an IntVBag. If the Bag is empty,
* the program exits with a non-zero status.
*
* @param b The Bag that an int will be removed from.
* Q@return The removed integer.
*/
int removeIntVBag(IntVBag b)
{
_IntVBagPtr _b = (_IntVBagPtr) b;

if (_b->size <= 0) {

eprintf ("Fatal error, removing from empty bag\n");
}
return _b->data[--_b->size];

3

/** Determine the number of elements in an IntVBag.
*
* @param b The Bag whose size is determined.
* Qreturn The number of elements in the Bag.
*/
unsigned int getSizelIntVBag(IntVBag b)
{

DRAFT April 8, 2004

324 Source code

_IntVBagPtr _b = (_IntVBagPtr) b;
return _b->size;

3

/*x Destroy a previously created IntVBag, releasing all its
* resources.

*
* @param b The Bag to delete.
*/

void destoryIntVBag(IntVBag b)

{
_IntVBagPtr _b = (_IntVBagPtr) b;
free(_b->data);

_b->size = 0;
_b->data = NULL;
free(_b);
return;

E.4.7 IntBag.h

#ifndef _IntBag_H
#define _IntBag_H
typedef void * IntBag;

/** Create a new IntBag
* (i.e. a "bag" of ints--default implementation)
£ 3

* @return - A new IntBag or NULL if one cannot be created.

*/
IntBag newIntBag(void);

/** Create a new IntLLBag (i.e. a "bag" of ints implemented as a
* Linked List.)
*

* @return - A new IntLLBag or NULL if one cannot be created.

*/

DRAFT April 8, 2004

E.4 ADTs 325

IntBag newIntLLBag(void);

/** Add an integer to an IntBag.
*

* @param b The Bag that will be added to.
* QOparam i The integer to add.

*/
void addIntBag(IntBag b, int i);

/** Remove an integer from an IntBag. If the Bag is empty,

* the program exits with a non-zero status.
*

* @param b The Bag that an int will be removed from.
* Q@return The removed integer.

*/
int removeIntBag(IntBag b);

/** Determine the number of elements in an IntBag.
*

* Q@param b The Bag whose size is determined.
* @return The number of elements in the Bag.
*/

unsigned int getSizeIntBag(IntBag b);

/** Destroy a previously created IntBag, releasing all its
* resources.
*

* @param b The Bag to delete.
*/
void destoryIntBag(IntBag b);

#endif /* #ifndef _IntBag H */

DRAFT April 8, 2004

326 Source code

E.4.8 IntBagP.h

#include "IntBag.h"
#ifndef _IntBagP_H
#define _IntBagP_H 1

#define private static
#define public

enum {
addMethod = O,
getSizeMethod,
removeMethod,
destroyMethod
I

typedef struct _IntBag _IntBag, * _IntBagPtr;
typedef void * (*_method) (IntBag b, ...);

struct _IntBag {
void * data;
union {
void * ptr;
int intVal;
} state;
_method *methods;
};

#endif /% #ifdef _IntBagP_H */

E.4.9 IntBag.c

#include <stdio.h>

#include <stdlib.h>
#include "IntBagP.h"
#include "eprintf.h"

DRAFT April 8, 2004

E.4 ADTs 327

/** Create a new IntBag
* (i.e. a "bag" of ints--default implementation)
*
* @return - A new IntBag or NULL if one cannot be created.
*/
public IntBag newIntBag(void)
{
return (IntBag) newIntLLBag();
}

/** Add an integer to an IntBag.
*
* @param b The Bag that will be added to.
* @param i The integer to add.
*/
void addIntBag(IntBag b, int i)
{
_IntBagPtr _b;

_b = (_IntBagPtr) b;
_b->methods [addMethod] (b, i);
return;

}

/** Remove an integer from an IntBag. If the Bag is empty,
the program exits with a non-zero status.

@param b The Bag that an int will be removed from.
* Q@return The removed integer.
*/
int removeIntBag(IntBag b)

{
_IntBagPtr _b;

_b = (_IntBagPtr) b;

return (int) _b->methods[removeMethod] (b);
}

DRAFT April 8, 2004

328 Source code

/** Determine the number of elements in an IntBag.
*

* @param b The Bag whose size is determined.
* @return The number of elements in the Bag.
*/

unsigned int getSizeIntBag(IntBag b)

{
_IntBagPtr _b;

_b = (_IntBagPtr) b;
return (unsigned int) _b->methods[getSizeMethod] (b);
}

/** Destroy a previously created IntBag, releasing all its
* resources.

*
* @param b The Bag to delete.
*/

void destoryIntBag(IntBag b)

{
_IntBagPtr _b;

_b = (_IntBagPtr) b;
(void) _b->methods[destroyMethod] (b);
return;

}

E.4.10 IntLLBag2.c

#include <stdio.h>

#include <stdlib.h>
#include "IntBagP.h"
#include "eprintf.h"

/* The _IntBag data structure is interpreted as follows:
* struct _IntBag {

DRAFT April 8, 2004

E.4 ADTs 329

* void * data; —--— the "head" of the list of ints
* union {

* void * ptr;

* int intVal; -—- the "size" of the list

* } state;

* _method *methods; --- the array of functions

* operating on the list

* };

*/

typedef struct _LList _LList, *_LListPtr;
struct _LList {

int data;

_LListPtr next;
};

public IntBag newIntLLBag(void);

private void _addIntLLBag(IntBag b, int i);
private int _removeIntLLBag(IntBag b);
private int _getSizeIntLLBag(IntBag b);

private _method theseMethods[] = {
(_method) &_addIntLLBag,
(_method) &_getSizeIntLLBag,
(_method) &_removelIntLLBag

3

private void _addIntLLBag(IntBag b, int i)
{

_LListPtr item;

_IntBagPtr _b = (_IntBagPtr) b;

item = malloc(sizeof (_LList));
item—>data i;

item->next = _b->data;
_b->state.intVal++; /* _b->state.intVal IS size */
_b->data = item; /*_b->data IS head of list */

DRAFT April 8, 2004

330 Source code

return;

3

/** Remove an integer from an IntLLBag. If the Bag is empty,
* the program exits with a non-zero status.
*
* @param b The Bag that an int will be removed from.
* Q@return The removed integer.
*/
private int _removeIntLLBag(IntBag b)
{
int r;
_LListPtr item;
_IntBagPtr _b = (_IntBagPtr) b;

if (_b->state.intVal <= 0) { /* _b->state.intVal IS size */
eprintf ("Fatal error, removing from empty bag\n");

}
_b->state.intVal--; /* b->state.intVal IS size */

item = _b->data; /* _b->data IS head of list */

r = item—>data;

_b—>data = item—>next; /* _b->data IS head of list */
free(item);

return r;
3
private int _getSizeIntLLBag(IntBag b)
{
_IntBagPtr _b = (_IntBagPtr) b;
return _b->state.intVal; /* _b->state.intVal IS size */
3
/** Create a new IntBag using a Linked List implementation
*
* @return - A new IntBag or NULL if one cannot be created.
*/

DRAFT April 8, 2004

E.4 ADTs 331

public IntBag newIntLLBag(void)
{
_IntBagPtr b;
b = malloc(sizeof (_IntBag));
if (b == NULL)
return NULL;
b->data = NULL; /* b->data IS head of list */
b->state.intVal = 0; /* b—>state.intVal IS size */
b->methods = theseMethods;
return (IntBag) b;

E.4.11 IntVBag2.c

#include <stdio.h>

#include <stdlib.h>
#include "IntBagP.h"
#include "eprintf.h"

typedef struct _IntVBag _IntVBag,* _IntVBagPtr;
struct _IntVBag {

int * data;

int size;

int maxSize;

};
public IntBag newIntVBag(void);
private void _addIntVBag(IntBag b, int i);

private int _removeIntVBag(IntBag b);
private int _getSizeIntVBag(IntBag b);

DRAFT April 8, 2004

332 Source code

private _method theseMethods[] = {
(_method) &_addIntVBag,
(_method) &_getSizeIntVBag,
(_method) &_removeIntVBag

};

private void _addIntVBag(IntBag b, int i)
{

return;

/** Remove an integer from an IntVBag. If the Bag is empty,
the program exits with a non-zero status.

@param b The Bag that an int will be removed from.

* Q@return The removed integer.

*/
private int _removeIntVBag(IntBag b)
{

int r;

_VistPtr item;
_IntBagPtr _b = (_IntBagPtr) b;

if (_b->_state._intVal <= 0) {

eprintf("Fatal error, removing from empty bag\n");
}
_b->_state._intVal--;

item = _b—->_data;

r = item->data;
_b->_data = item->next;
free(item);

return r;

private int _getSizeIntVBag(IntBag b)
{

DRAFT April 8, 2004

E.4 ADTs 333

_IntBagPtr _b = (_IntBagPtr) b;

return _b->_state._intVal;

3

/*x Create a new IntVBag (i.e. a "bag" of ints implemented as a
* Linked List.)
*
* @return - A new IntVBag or NULL if one cannot be created.
*/
public IntBag newIntVBag(void)
{
_IntBagPtr b;
b = malloc(sizeof (_IntBag));
if (b == NULL)
return NULL;
b->_data = NULL;
b->_state._intVal = 0;
b->_methods = theseMethods;
return b;

E.4.12 simpleTestIntLLBag.c

#include <stdio.h>
#include "IntLLBag.h"

int main(int argc, char * argv[])
{
IntLLBag b;

b = newIntLLBag();

DRAFT April 8, 2004

334 Source code

addIntLLBag(b, 3);
addIntLLBag(b, 1);
addIntLLBag(b, 4);
addIntLLBag(b, 1);

while(getSizeIntLLBag(b))
printf ("Removed: %d\n", removeIntLLBag(b));
exit(0);

E.4.13 simpleTIntBag.c

#include <stdio.h>
#include "IntBag.h"

int main(int argc, char * argv[])

{
IntBag bl, b2;

bl = newIntBag(); b2 = newIntLLBag();

addIntBag(bl, 3); addIntBag(b2, 3);
addIntBag(bl, 1); addIntBag(b2, 1);
addIntBag(bl, 4); addIntBag(b2, 4);
addIntBag(bl, 1); addIntBag(b2, 1);

while(getSizeIntBag(bl))
printf ("Removed: %d (from bl) and %d (from b2)\n",

removeIntBag(bl), removeIntBag(b2));
exit (0);

E.5 Trees

Source code for Chapter 7. This source code can also be found in the directory
src/trees.

DRAFT April 8, 2004

E.5 Trees 335

E.5.1 README

This directory contains the files associated with
Chapter 7---Trees—-—-in the book "Engineering
Algorithms and Data Structures".

README —-- this file
Makefile -- the makefile (what else)

myFamily.c -- Initilaizes data structs for "my family"
traverse.c -- pre- and post-order traversal
trees.h -- header file for tree data structures

E.5.2 Makefile

CFLAGS=-Wall -g
EXECS= myFamily
CC=gcc

all: ${EXECS}

myFamily: myFamily.o traverse.o
gcc -o myFamily myFamily.o traverse.o

clean:
-@rm -f *

*x.dvi *.log *.ps *.log *.aux *.0 ${EXECS} *.exe

E.5.3 trees.h

typedef struct TreeNode TreeNode, * TreeNodePtr;
typedef char * NodeInfo; /* For example */

#tdefine MAX_KIDS 10
struct TreeNode {
NodeInfo info;

int nKids;
TreeNodePtr kids[MAX_KIDS];

DRAFT April 8, 2004

336 Source code

};

extern void postOrder(TreeNodePtr t, int depth);
extern void preOrder(TreeNodePtr t, int depth);

E.5.4 myFamily.c

#include <stdio.h>
#include "trees.h"

TreeNode me, mom, dad, momsMom, momsDad, dadsDad, dadsMom;
TreeNode me = {"ME", 2, {&mom, &dad}};

TreeNode mom = {"Mom", 2, {&momsMom, &momsDad}};
TreeNode dad = {"Dad", 2, {&dadsMom, &dadsDadl}};
TreeNode momsMom = {"Mom’s mom", 2, {NULL, NULL}};
TreeNode momsDad = {"Mom’s dad", 2, {NULL, NULL}};
TreeNode dadsMom = {"Dad’s mom", 2, {NULL, NULL}};
TreeNode dadsDad = {"Dad’s dad", 2, {NULL, NULL}};

int main()

{
printf ("Post Order:\n");
postOrder (&me, 0);
printf ("\nPre Order:\n");
preOrder (&me, 0);
exit (0);

E.5.5 traverse.c

#include <stdio.h>
#include "trees.h"

void postOrder(TreeNodePtr t, int depth)

DRAFT April 8, 2004

E.6 Source code listings for Digital Simulator

337

{
int i, k;
if(t != NULL) {
for(k = 0; k < t->nKids; k++)
postOrder (t->kids[k], depth+1);
for(i = 0; i < depth; i++)
printf (" ");
printf ("%s\n", t->info);
}
}

void preOrder(TreeNodePtr t, int depth)
{

int i, k;

if(t !'= NULL) {
for(i = 0; i < depth; i++)
printf (" ");
printf ("%s\n", t->info);
for(k = 0; k < t->nKids; k++)
preOrder (t->kids[k], depth+1);

E.6 Source code listings for Digital Simulator

E.6.1 A sample main function

The following C source code shows you how to write a main driver function
for a specific circuit. You can use this as a template fro writing your own
main function. The only things that should change are the declarations of
the wires and blocks, their instantiation, and any specific events you want to

add to the queue before performing the simulation.

The circuit implemented in this example is the simple clock generator
circuit in Figure 14.3. This file is available as mainClock.c.

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

DRAFT April 8, 2004

338

Source code

/**REVISION HISTORY:

*

*/

Created: March 13, 1999 (kclowes@ee.ryerson.ca)

#include <stdio.h>
#include <string.h>

#include "wire.h"
#include "eventQ.h"
#include "nand.h"

/* **x* Global variables **x */
char * programName; /* The command used to invoke the program */

int

verbosity = 0; /% Additional info to <stderr> if non-zero */

EventQ_t eventQ; /* The event queue used by the simulator */

void usage(void)

{
fprintf(stderr, "Usage: %s [-vl\n", programName);
exit(1);
}
/%%
* The main driver for the simulator. It sets up the circuit and invokes
* the main simulation loop.
* The only command line option that is recognized is "-v'". If this
* option is present, the global variable "verbosity" is set to 1.
* Other modules may use this value to print additional information to
* <stderr>.
*
* The circuit set up here is a simple clock generator using an
* inverter.
*
* Q@param argc-—the number of command line arguments
* @param argv--the actual arguments
* @return Normally exits with an error code of O unless incorrectly
* invoked or a run time error occurs.

DRAFT April 8, 2004

E.6 Source code listings for Digital Simulator 339

*/
int main(int argc, char * argv[])
{
unsigned long nEvents;
/* Declare the wires and blocks used */
Wire_t clock;
Block_t inverter;

programName = argv[0];

if (arge > 2) {

usage() ;
}
if (argc == 2) {

if (strcmp(argv[1i], "-v") != 0) {

usage () ;

}

verbosity = 1;

fprintf (stderr, "VERBOSE output to <stderr>!\n");
}

eventQ = newEventQ();

/* Create the circuit */
clock = newWire("Clock", 0);
inverter = newNand("inv", 50, clock, clock, NULL);

/* Add any additional events to the queue */

/* Simulate the circuit */
nEvents = simulate(1000);

/* Print the statistics to stderr */

fprintf(stderr, "Simulation terminated after ’%lu events.\n"
"The simulation time was %ld\n"
"There were %d events still in the queue\n",
nEvents, eventQ->currentTime, event(Size(eventQ));

exit (0);

DRAFT April 8, 2004

340 Source code

E.6.2 The simulation algorithm (simulate.c)

The basic simulation algorithm is shown below. It is circuit-independent, so
you should never have to change it.

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)
*/

#include <stdlib.h>

#tinclude <stdio.h>

#include <assert.h>

#include "simulate.h"

#include "eventQ.h"

/**
* '"simulate" impelements the main simulation loop.
* It prints to <stdout> each event that changes a wire’s value
* in the following format:
* <wire_name> <wire_value> "at time" <current_simulation_time>
*
* @param maxTime The maximum simulated time allowable for the simulation
* Q@return The number of events handled.
*/
unsigned long simulate(long maxTime)
{

Event_t event;

unsigned long nEvents = 0;
Wire_t wire;

Value_t value;

Block_t block;

assert(maxTime >= 0);
if (verbosity) {

fprintf (stderr, "\"simulate(%1d)\" invoked: ", maxTime);

DRAFT April 8, 2004

E.6 Source code listings for Digital Simulator 341

fprintf (stderr, "simTime: %1d, ", eventQ->currentTime);
fprintf (stderr, "eventQ: %p\n", eventQ);
fflush(stderr);

}
while((eventQ->currentTime < maxTime) &&
(event = removeNextEvent(eventQ)) != NULL) {
nEvents++;
if (verbosity) {
fprintf(stderr, "Got event %lu: time (%1d), wire (%s), value (%d)\n",
nEvents, getEventTime(event), getWireName(getEventWire(event)),
getEventValue(event)) ;
}
wire = getEventWire(event);
value = getEventValue(event);
if (getWireValue(wire) == value) {
if (verbosity) {
fprintf(stderr, "Ignoring event (time=%ld, wire=Js, value=%d)\n",
getEventTime (event), getWireName(wire), value);
free(event) ;
}
continue; /* Ignore events that change nothing. */
}
free(event) ;
setWireValue(wire, value);
/* #define NO_QUTPUT */
#ifndef NO_OUTPUT
printf("%s %d at time %1d\n", getWireName(wire), getWireValue(wire),
eventQ->currentTime) ;
#tendif
resetWireDependents (wire) ;
while((block = getNextWireDependent(wire)) != NULL) {
evaluateBlock(block) ;
}
}
return nEvents;

}

DRAFT April 8, 2004

342 Source code

E.6.3 value.h

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)

*/

#ifndef VALUE_H
#tdefine VALUE_H
#include "simulate.h"

#define MAX_VALUE (1)
#define MIN_VALUE (0)

extern int isValidValue(Value_t v);

#endif /x VALUE_H %/

E.6.4 wire.h

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)
*/

#ifndef WIRE_H
#tdefine WIRE_H
#include "simulate.h"
#include "value.h"
#include "block.h"
#include "eventQ.h"

/* GENERAL BUGS:

* A1l of the following functions may fail catastrophically at run
time if the Wire_t parameter is NOT a real wire created with the
"newWire" interface. */

DRAFT April 8, 2004

E.6 Source code listings for Digital Simulator

343

~
*
*

K R X K K K X X ¥ X X X ¥ X X

*/

"newlWire" creates a new wire with the specified <name> and initial
value.

The "name" may be a NULL pointer, an empty string or a
user—-defined name (which may not, however, begin with the
characters "0x").

If <name> is is "" or NULL, the actual name of the wire will
be given a name beginning with "Ox" that is guaranteed to be
unique.

If <name> is defined, the wire will be given the defined name;
there is NO GUARANTEE that this name is unique.

@param name --- the name of the wire (possibly "" or NULL)
Oparam initialValue --- the initial value of the wire
@return A reference to the wire.

extern Wire_t newWire(char * name, Value_t initialValue);

/%%
X
X
X

*/

"addWireDependent" adds a BLOCK that has "this" wire as an

input.
@param w --- the WIRE whose dependents are being added to.
@param b —-- the BLOCK that is dependent on this wire.

extern void addWireDependent(Wire_t w, Block_t b);

/**
*
*

*/

"getWireValue" returns the curent value of a wire.
Oparam w ——— the WIRE to examine.
@return --- The current value of the wire.

extern Value_t getWireValue(Wire_t w);

/%%
*

"setWireValue" sets the current value of the wire to the specified
value.

DRAFT April 8, 2004

344

Source code

* @param w --- the WIRE to modify.
* Q@param v --- the new (current) value of the wire.
*/

extern void setWireValue(Wire_t w, Value_t v);

/* The following functions (methods) relate to the collection of
* BLOCKs that are dependent on a WIRE.
*/

/** "resetWireDependents" re-initializes the list of dependent blocks

* 80 that subsequent calls to "getNextWireDependent" will return
* all of the dependents (and then NULL).

*

* @param w --- the WIRE whose dependent BLOCKs are being reset

*

*

*/

extern void resetWireDependents(Wire_t w);

/** "getNextWireDependent" returns the next BLOCK that depends on the
* WIRE. If there are no more dependent blocks, it returns NULL.
*/

extern Block_t getNextWireDependent(Wire_t w);

extern char * getWireName (Wire_t w);

#endif /* WIRE_H */

E.6.5 Dblock.h

/* Copyright (C) 1999 Ken Clowes (kclowes@Qee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)

*/

#ifndef BLOCK_H
#tdefine BLOCK_H
#include "simulate.h"

DRAFT April 8, 2004

E.6 Source code listings for Digital Simulator

345

#include "wire.h"

/** "newBlock" creates and returns a new block with the specified name.
* The rules for specifying a name are the same as those for wires.
*/
extern Block_t newBlock(char * name);
/*x "evaluateBlock" causes the block to re-examine its inputs and generate
* any events on its outputs that are appropriate.
*/

extern void evaluateBlock(Block_t b);

/** "addInputToBlock" adds the specified wire as an input to the block.
*/

extern void addInputToBlock(Block_t b, Wire_t w);

/** "addOutputToBlock" adds the specified wire as an output to the block.
*/

extern void addOutputToBlock(Block_t b, Wire_t w);

#endif /* BLOCK_H */

E.6.6 nand.h

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)

*/

#ifndef NAND_H

#define NAND_H

#include "wire.h"

#include "block.h"

/** "newNand" creates and returns a Block_t that implements a NAND gate
with the specified name, delay, inputs and output.

*
*
* @param name---The name of the block or NULL or the empty string.
* The name may not begin with "Ox".

* @param delay---The propagation delay of the gate.

* @param wl---the first input wire.

DRAFT April 8, 2004

346 Source code

* @param the remainder of the arguments are wires. The last argument must
* be NULL. All the wires are inputs, except for the last one which

* is the gate’s output wire.

* @return---the newly created block.

*/

extern Block_t newNand(char * name, int delay, Wire_t wil, ...);
#endif /* NAND_H */

E.6.7 event.h

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)

*/
#ifndef EVENT_H
#tdefine EVENT_H
#include "simulate.h"
#include "wire.h"
#include "value.h"
extern Event_t newEvent(Wire_t w, Value_t v, long time);
extern Wire_t getEventWire(Event_t e);
extern long getEventTime(Event_t e);
extern void setEventTime(Event_t e, long t);
extern Value_t getEventValue(Event_t e);

#endif /* EVENT_H */

DRAFT April 8, 2004

E.6 Source code listings for Digital Simulator 347

E.6.8 Event Q implementation
E.6.9 eventQ.h

/* Copyright (C) 1999 Ken Clowes (kclowes@ee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowes@ee.ryerson.ca)
*/

#ifndef EVENTQ_H

#define EVENTQ_H

#include "simulate.h"

#include "event.h"
#include "priorityQ.h"

extern EventQ_t newEventQ(void);

extern Event_t removeNextEvent(EventQ_t e);
extern void addEventToQ(EventQ_t eQ, Event_t ev);
extern unsigned int eventQSize(EventQ_t eQ);

#endif /* EVENTQ_H */

E.6.10 priorityQ.h

/* Copyright (C) 1999 Ken Clowes (kclowesQee.ryerson.ca) */

/**REVISION HISTORY:
* Created: March 13, 1999 (kclowesQee.ryerson.ca)

*/

#ifndef PRIORITYQ_H
#define PRIORITYQ_H
#include "wire.h"
#include "value.h"

DRAFT April 8, 2004

348 Source code

PriorityQ_t newPriorityQ(void);

/** "removeMaxFromPQ" returns the event with largest time value
* from the priority queue, or NULL if the queue is empty.
*/

extern Event_t removeMaxFromPQ(PriorityQ_t pq);
extern void addToPQ(PriorityQ_t pq, Event_t e);

#endif /* PRIORITYQ_H */

E.7 Data Structs and pointers (Appendix B)

Source code for Appendix B. This source code can also be found in the
directory src/datStructsAndPtrs.

E.7.1 README

This directory contains the files associated with
Appendix B---Data Structures and Pointers---in the book "Engineering
Algorithms and Data Structures".

Makefile -- the makefile (what else)

celestialBodies.c -- Simple example of linked structs

nameDS.c -- How to initialize data strings from strings
read from stdin.

E.7.2 Makefile

CFLAGS=-Wall -g -ansi -pedantic
EXECS=nameDS celestialBodies
CC=gcc

all: ${EXECS}

nameDS: nameDS.o

DRAFT April 8, 2004

E.7 Data Structs and pointers (Appendix B) 349

gcc -o nameDS nameDS.c

celestialBodies: celestialBodies.o
gcc -o celestialBodies celestialBodies.c

clean:
-0rm -f *~ *.dvi *.log *.ps *.log *.aux *.o ${EXECS} *.exe

E.7.3 celestialBodies.c

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

typedef struct Body Body, * BodyP;
struct Body {

char * name;

BodyP orbits;
+;

Body probe, jupiter, earth, moon, sol,
europa, galacticCentre;

Body probe = {"Probe", &europa};

Body jupiter = {"Jupiter", &sol};

Body earth = {"Earth", &sol};

Body moon = {"Moon", &earth};

Body sol = {"Sun", &galacticCentre};

Body europa {"Europa", &jupiter};
Body galacticCentre = {"Black hole", NULL};

void orbits(BodyP b)
{
assert(b != NULL);

DRAFT April 8, 2004

350

Source code

do {
printf("%s orbits ", b->name);
b = b->orbits;
} while (b != NULL);
printf("nothing.\n");

int main()

{
orbits (&probe) ;
exit (0);

}

E. 7.4 nameDS.c

#include <stdlib.h>

#include <stdio.h>

#include <assert.h>

/* **x typedefs */

typedef struct Name_str Name;

struct Name_str {
char * first;
char * last;

};
##define MAX_LEN 128
enum {MAX_DB_SIZE=20};

int main(int argc, char * argv[])
{

char bufi1[MAX_LEN];

char buf2[MAX_LEN];

int i, j;

Name names[MAX_DB_SIZE];

for(i = 0; scanf("%s %s\n", bufl, buf2) > 0; i++){

DRAFT April 8, 2004

E.7 Data Structs and pointers (Appendix B)

351

printf ("First: %s

names[i] .first = malloc(strlen(bufil)+1);

names[i] .last =
assert(names[i].
strcpy(names [i] .
strcpy (names [i] .

}
for(j = 0; j < i;

printf ("Names[%d]: %s, %s\n", j, names[j].last,

exit (0);
}

DRAFT April 8, 2004

malloc(strlen(buf2)+1);
first &&% names[i].last);
first, bufl);
last, buf2);

j++)

Last: %s\n", bufl, buf2);

names[j].first);

352 Source code

DRAFT April 8, 2004

Bibliography

[Ben99] Jon Bentley. Programming Pearls. Addison-Wesley, Reading, Mas-
sachusetts, 1999. Paperback, 256 pages.

[FP95] Jr. Brooks Frederick P. The Mythical Man-Month: Essays on Soft-
ware Engineering. Addison-Wesley, Reading, Massachusetts, July
1995. 322 pages.

[GA97] James Gosling and Ken Arnold. The Java Programming Language.
Addison-Wesley, Reading, Massachusetts, second edition, 1997.

[Hay99] Brian Hayes. Clock of ages. The Sciences, November 1999.

[HJ91] Samuel P. Harbison and Guy L. Steele Jr. C, A Reference Manual.
Prentice-Hall, Toronto, 1991. 392 pages.

[Knu86] Donald Ervin Knuth. The TeXbook: Computers & Typesetting.
Addison-Wesley, Reading, Massachusetts, 1986. 483 pages.

[Knu97a] Donald Ervin Knuth. The Art Of Computer Programming (3 vol-
umes). Addison-Wesley, Reading, Massachusetts, 1997.

[Knu97b] Donald Ervin Knuth. The Art Of Computer Programming
(Vol 1):Fundamental Algorithms. Addison-Wesley, Reading, Mas-
sachusetts, 1997. 650 pages.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming.
Addison-Wesley, Reading, Massachusetts, 1999. 267 pages.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, Toronto, 2 edition, 1988. 272 pages.

DRAFT April 8, 2004

354

BIBLIOGRAPHY

[Lam86]

[Nor90]

[Pik]
[Pin94]
[THC90]

DRAFT April 8, 2004

Leslie Lamport. BTgX: A Document Preparation System. Addi-
son-Wesley, Reading, Massachusetts, 1986. 242 pages.

Donald A. Norman. The Design of Fveryday Things. Doubleday
Books, 1990. 257 pages.

Rob Pike. Notes on Programming in C. 5 pages.
Steven Pinker. The Language Instinct. Morrow, New York, 1994.

Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson. Intro-
duction to Algorithms. The MIT Press, Cambridge, Massachusetts,
1990. 1028 pages.

Index

Abstract Data Type, 101
ADT, 101
algorithm
Add, 174
AddHeap, 176
AddPinkBlue, 28

AddPinkBlueNonRecursive, 31

BalanceLeftRight, 134
CalculateAverage, 252
CalculateTotal, 4
definition, 4, 5
Delete, 174
DeleteHeapMax, 176
Easter, 23
Example, 75
FibonacciLinear, 36
Find, 173
FindDuplicates, 250
FindHeapMax, 176
Merge, 10
MergeSelSort, 11
MergeSort, 11
RecursiveTolterative, 133
ReverseWithStack, 132
SelectionSort, 6
SelectionSortArray, 15
SelectionSortList, 254
TowersOfHanoi, 39
API, 18, 104

DRAFT April 8, 2004

Application Programming Interface,

18

balanced BST, xii
BNF, xii
BST, xii

central processing unit, 132
CPU, 132

data structure, 235

divide and conquer, 27
divide-and-conquer, 133
dynamic programming, 36, 42

encapsulation, 101, 105

Fibonacci numbers, 33
FIFO, 131, 146
First In First Out, 131

garbage collection, 103, 238
ged, 26, 44

generating function, 96
getNumCompares, 18
getNumCopies, 18
getNumSwaps, 18

HTML, 142

information hiding, 101, 105
interface, 101

jsr, 134

356 INDEX

Knuth, 5 recursion tree, 34
ROM, 30
Last In First Out, 131 rts, 134
LIFO, 131
selection sort, 10
mathematical induction, 13 stack, 131
memory leak, 238 get, 144
memory leak, 109 getSize, 144
merge, 9 initStack, 137, 144
merge sort, 89 isEmptyStack, 137, 144
meta-language, xii pop, 137, 144
module, 18 push, 137, 144
myCompare, 18 set, 144
myCopy, 18 ,
mySwap, 18 tail recursion, 31, 133
Towers of Hanoi, 89
newlntBag, 115 tree, xii, 157
newlntLLBag, 104 7pars,e, 157
newIntVBag, 116 recurrence, 157
newQueue, 147 recursion, 157
object oriented, xii Vector, 111
operating system, 113
0S, 113 World Wide Web, xvi

peekable stack, 144
pop, 132

portability, 227
priority queue, 131
Program Counter, 134
pull, 132

push, 132

queue, 131

radix sort, 17

RAM, 30

realloc, 113
recurrence, xii, 12, 89
recursion, 27, 68

DRAFT April 8, 2004

Colophon

The book was written using computers running various operating systems
(Solaris, Linux, and Windows9x) and the following general and freely avail-
able tools:

emacs (or xemacs): The “world’s best editor” was used for typing in all
the text and programs.

BTEX: The IKTEX2e|Lam86] document preparation system (based on Don-
ald Knuth’s|[Knu86] TgX system) was used to format the book. The
bibter and makeinder utility packages were used to generate the bibli-
ography and index.

latex2html: This package was used to convert the TEX2e source code to
HTML.

xfig: This package was used to draw the figures.

gce: The GNU C/C++ compiler was used on all operating systems to com-
pile the C source code.

make: The make utility program was used to keep everything up-to-date.
The UNIX command line environment (using the bash shell, the make

utility, the gcc compiler, etc.) were used under Windows95 with the freely-
availaible cygwin package from www.cygnus.com.

DRAFT April 8, 2004

