
Chapter 1

MULTI-TASKING SYSTEMS
- I: RYMOS

In the previous sections, we have examined how high-level languages are
compiled down to machine language. And, since practically all applications
for 32-bit microprocessors are written in HLLs, it is important to know how
well the processor architecture supports the data types and kind of stack-
based addressing required by HLLs in evaluating different microprocessors.

We have also seen how a language like C can give us some of the ad-
vantages of a HLL and also offer us access to machine features usually only
accessible with assembly language.

However, before looking at additional architectural and hardware fea-
tures found in 32-bit machines (and not found in 8-bit machines), we have
to address another “high-level” question: the operating system environment
advanced processors work under.

In a very broad sense, computers can be used in two types of applications:

1. Computationally intensive applications requiring vast number-crunching
capability;

2. Performing various tasks in response to real-time events such as inter-
rupts from a keyboard, printer buffer, disk controller or various sensors
in a control environment.

In the first case—which includes problems like weather forecasting on a
CRAY supercomputer— the processor is completely occupied for consider-
able lengths of time in solving the problem. (Note “considerable time” may

1

mean anything from 10 seconds to several hours.) These applications can
be solved in batched mode, running each job until completion and then load-
ing and running another job. This straightforward approach maximizes the
utilization of the processor.

In the second broad range of computer applications, however, the situa-
tion is quite different. Suppose, for example, that a computer is being used
as a text editor. Each keystroke will generate an interrupt and the text ed-
itor will process the next character. Assuming that processing a character
requires an average of 100 machine instructions, that the operator types at
50 words per minute (or about 5 characters per second) and that the com-
puter operates at 100 MIPS, then the character processing program will be
invoked every 20 ms and run for 1 µsec. In other words, the computer will
be only be used 0.005% of the time! This is not a cost-effective use of such
a powerful processor.

With so much idle time available, the processor’s resources should be
exploited to perform other tasks. You have already seen a very rudimentary
way of accomplishing a kind of multi-tasking in the third year course using
interrupt-driven code. This is an extremely limited and inflexible way of
achieving “multi-tasking”, however, and we shall examine a much better
way—using a multi-taking operating system—in this chapter.

We shall see later that multi-tasking, real-time operating systems offer
more than mere switching between tasks. They can substantially reduce
software complexity in, for example, industrial or process control applications
with their inter-process communication features. These features also make
it easier to divide a large programming project among independent groups
who need only agree on the protocol of “inter-task communication” rather
than on the details of of implementation.

We shall develop our own tiny multi-tasking system, RYMOS (Ryerson
Multi-tasking Operating System), to be run on the 68000 SBC. This will
bring out the principles involved in such systems and the architectural sup-
port needed to implement them. And although our system will work, we shall
encounter a “brick wall” when it comes to making the system absolutely se-
cure. In particular, we will see that the 68000 (and other machines of the
same generation such as the 8086 as well as most small microcontrollers such
as the 6809 or 68hc11) lack essential memory management hardware to make
a secure system. Furthermore, we shall see that when tasks may be invoked
unpredictably, hardware for virtual memory support is required for efficient,

2

cost-effective operation1.
Operating system theory, like another subset to this course— compilers,

easily merits one or two courses all by itself. The objective here, however,
is not to look at all the aspects of operating system theory; rather, we give
an overview of a the various components of an operating system and then
concentrate on those features that are closely related to architectural and
hardware features of advanced microprocessors. For example, when we look
at memory management, our final concern is how hardware features to im-
plement segmented or virtual-paged memory can vastly enhance an operat-
ing system’s performance and capabilities; but we leave aside such issues as
the Deutsch-Schorr algorithm for efficient garbage collection and compaction
which is purely a software performance issue2.

We approach multi-tasking operating systems as follows:

• First, we develop a very simple operating system, RYMOS, with a
minimum of fancy features. Our primary focus here is on the context
switch, the routine that actually performs the change from one process
to another in the the processor. Later we shall examine how some
advanced microprocessors simplify this task.

• Next we extend our overview of RYMOS to include some generic inter-
process communication facilities common in commercial operating sys-
tems. At the same time, we introduce the specific features of real-time
operating systems so important in industrial and process control appli-
cations.

• We then examine some popular commercial real-time multi-tasking op-
erating systems.

1Note that, with additional memory-management hardware, the 68000-based multi-
tasking system can be made secure while the 8086 is inherently insecure. For true virtual
memory support, the 68000 processor hardware in insufficient.

2Nor do we consider such traditional subjects in operating system theory as file struc-
tures. At the hardware level, the performance of file systems depends on the maximum
data-transfer rate on the bus, the amount of hardware caching of the disk, etc. These con-
siderations are essentially independent of the software used to access disk files insofar as a
bad software file organization will will be simple “less bad” with good hardware whereas
good hardware performance will enhance better software techniques. Of course, if and
when it becomes common (and it is already done on some LISP machines) to implement
such algorithms in hardware, you will have to learn about them.

3

1.1 Multi-tasking: An overview

We first consider the limitations of interrupt-driven code. If we have several
tasks to run and each is invoked by an interrupt, we can simply make the
Interrupt Service Routine be the task for the corresponding interrupt. By
assigning priorities to the interrupts, we can control the relative importance
of tasks.

This approach lacks flexibility, however. For example, it is extremely
difficult to change priorities on the fly. The source of this problem is the
way in which a tasks state is saved when an interrupt occurs. As tasks are
suspended by higher-priority interrupts, their state is saved on the stack.
Normally, when a higher-level task is completed, control is returned to the
next higher task with a Return from Interrupt instruction which returns
control to the task whose state has been saved on top of the stack. If priorities
change, however, the pending task with the highest priority may no longer
be on top of the stack. We would have to determine where it was on the
stack, and swap its state with the state of the task (of now lower priority)
currently on top of the stack. This is unacceptably complex and inefficient.

Additional problems arise when different tasks use the same interrupt.
Consider the problems involved in the following very simple multi-tasking
situation. Suppose that we have two equal priority tasks that never have to
wait for I/O and we wish to switch between the two every 10 msec. We can
use a timer chip to generate an interrupt every 10 msec and then swap the
tasks in the interrupt service routine. If task 1 is running, then the task 1
state will be placed on the stack when the interrupt occurs (the contents of
the registers, the value of the PC where it was interrupted). We now want
to continue with Task 2 (which presumably was running 10 msec earlier).
Somehow or other we reset the registers to their values when Task 2 was
last executing and then transfer control to it. However, before doing so, we
must pop the Task-1 state information off the stack and save it somewhere.
Otherwise, when Task-2 resumes the stack will not be the same as it was
when it was executing previously.

This is much more complex than elementary interrupt-driven code and
the proper method for solving it is not to hack away at various tricks; rather
a multi-tasking operating system is required.

In a multi-tasking operating system, we want to be able to write each
task as if it had a microprocessor all to itself (if it did it would be called a

4

multi-processing environment). In essence, a multi-tasking operating system
simulates a multi-processor environment (one processor per task) in software.

To simulate a multi-processor environment, the single processor must
make a model of all of the other processors. We call the single processor the
real machine and all of the modelled processors the virtual machines. Each
of the tasks to be run is assigned to a separate processor. One task will be
loaded into the real processor while all the other ones are loaded into virtual
processors. Since the real processor is the only one that can actually do any
work, only the task loaded on it will run. The job of the operating system
is to swap tasks between the real processor and one of the virtual processors
in response to real-time events.

To see how this is done, consider a processor as a gigantic state machine.
At any point in time, this “gigantic state machine” is in a unique state
determined by the contents of all registers and all memory. If we duplicated
this state in distinct, but identical, hardware and started it running the task
would continue as before, albeit on a different machine.

The trick to obtaining multi-tasking is to switch the real processor from a
state corresponding to one task to that corresponding to another on a virtual
machine. In theory, switching the state involves changing both memory and
registers. Changing registers should be easy; the difficult (or at least time-
consuming) part seems to be changing memory. We shall see later that
memory mangement hardware makes this quite simple and secure. Lacking
such hardware, we make some assumptions.

First, we assume that each task has program code in non-overlapping
regions of memory. Hence no swapping of program code memory is required,
switching the program counter will suffice. Next, we assume that each process
can dynamically obtain parcels of memory (that will not be used by any other
processes) by using the operating system’s memory allocation routines. The
operating system ensures that such memory blocks do not overlap (through
software checking) and hence no switching of this memory is required. Each
task may also require some memory for global variables. Again, such memory
may be allocated at load time by the operating system such that it does not
overlap with any other task’s memory space. Finally, each task requires its
own stack space. Again non-overlapping stack space can be allocated at
load time and switching from one task’s stack to another is done by simply
changing the stack pointer.

In short, we divide real memory amongst the various virtual machines

5

so that the memory allocated to one machine does not overlap with that of
another. Hence the only things we need save to define the state of a machine
are the contents of registers. By enforcing the above rules on memory usage,
we can switch the processor state from one process to another merely by
saving the current value of the registers (corresponding to the state of the
process that is about to be suspended) and setting each of the registers to
the values saved the last time the new process was running.

The routine that actually switches the computer from one task to another
is called the context switch. We will examine how it works in detail later on
and you will have to write a context switch routine as one of your projects.

A multi-tasking operating system needs much more than a context switch,
however. It needs routines to determine what task to switch to, to allocate
memory, to bootstrap the system, to allow intertask communication, etc.

Many of these routines will need some global information about the var-
ious tasks on the system. One of the important pieces of information is a
process’s state.

At any given time exactly one task will be running and we say that the
state of this task is current. Other tasks may be in one of several states: they
may be ready in which case there is nothing to prevent them from executing
other than the fact that some other task is current; they may be waiting for
some external event before they can become “ready” (let alone current); they
may be suspended in which case they will not become “ready” again until
some other process explicitly “unsuspends” them; or they may be sleeping
until some predetermined time elapses. There may be several other kinds of
states depending on the particular multi-tasking operating system. Often,
for example, there are various special states associated with inter-process
communication.

The state of a process and other vital information about each task is
maintained in a process table. The operating system kernel3 routines will use
the information in the process table in deciding what to do and ensure that
the information is kept up-to-date and accurate.

One of the central routines in a multi-tasking operating system is the
task scheduler or dispatcher. It may be invoked in a variety of ways including
interrupts or explicit calls and its job is to select a task from among all those

3The kernel is the set of primitive routines and data structures that implement the
operating system. The kernel does not include utility programs, compilers, loaders, etc.

6

that are ready to become current. The scheduler does not actually make that
task current; the context switch does that but the scheduler is the context
switch’s “boss”.

As an absolute minimum, a multi-tasking operaing system needs the fol-
lowing routines and data structures:

• A process table containing global information about the tasks in the
system;

• A scheduler to determine which ready task to make current;

• A context switch to perform the actual switching from one task to
another;

• Memory management routines to allocate and release memory.

• A bootstrap routine to bring the system to life;

• Various miscellaneous routines such as interrupt handlers, peripheral
device initialization routines, etc.

With these routines we can put together a rudimentary kernel. Note that
several useful features are missing from this list. For example, there are
no routines to create or destroy tasks. In our initial, primitive RYMOS we
shall dispense with such apparent necessities by creating immortal processes
directly within the bootstrap routine. (We make them immortal to avoid the
need of a routine to kill a task). You will, however, have to add create and
kill routines as part of your first project.

RYMOS is strongly patterned after the XINU operating system described
in Douglas Comer’s book Operating Systems: The XINU Approach published
by Prentice-Hall. This is an excellent book if you want to explore operating
systems in greater depth than offered in this course. (Note that XINU is a
[recursive] acronym for “XINU Is Not Unix”.)

We now consider each of these items for primitive RYMOS.

7

1.2 Primitive RYMOS

1.2.1 The Process Table

Any multi-tasking operating system must have a process table where it main-
tains the information about a task required to schedule and re-start it. Some
of the information in the process table can often be examined by the user with
the process status command. In UNIX, for example, the ps command gives
this information. Running ps from within this editing session, for example,
produces the following:

F UID PID PPID CP PRI NI SZ RSS WCHAN STAT TT TIME COMMAND

80003 0 0 0 0 -25 0 0 0 runout D ? 6:28 swapper

20088000 0 1 0 0 5 0 52 0 child IW ? 0:05 /sbin/init -

80003 0 2 0 0 -24 0 0 0 child D ? 2:15 pagedaemon

88000 0 44 1 0 1 0 68 0 select IW ? 0:19 portmap

20088000 0 126 1 1 3 0 40 0 Sysbase IW co 0:00 - std.9600 c

a0488201 142 17071 17061 1 15 0 80 240 kernelma S p0 0:00 -sh (csh)

20000001 142 17100 17071 27 31 0 152 384 R p0 0:00 ps -agxl

a0488200 142 17070 17062 0 15 0 96 0 kernelma IW p1 0:00 -sh (csh)

20008000 142 17094 17070 0 3 0 192 0 Sysbase IW p1 0:03 vi hll.tex r

This information indicates for example that the ps program is currently
running (obviously!) and that all the other tasks are waiting. We illustrate
this not to examine the type of process table maintained by UNIX (we will
do that later in the course) but rather to show what kind of information
about tasks is kept in process tables by a typical operating system.

The simplest form of process table is an array of records where each
record contains global information about a process. More complex forms use
the per process stack(s) and per process global memory in addition to the
basic array of records. There are definite advantages to these more complex
organizations, especially when the processor supports virtual memory and
has separate user and kernel stacks; however, RYMOS uses the simple “array
of records” process table format.

The process table contains the following information about each process:

Registers: The contents of all the registers the last time the task was running
(or the initial values if it has not yet run). The context switch is

8

responsible for updating these values when it switches to a new task as
well as making the machine registers equal to the stored values for the
new task it is switching to.

State: The state of the task. In primitive RYMOS we consider only three
states: current when the task is running; ready if it is ready to run;
and free if the entry in the process table is not in use (i.e. contains no
information related to any active task). The scheduler is responsible
for changing the state information from current to ready when it stops
a task and for setting the state of the new task to current. When you
add a routine to create new tasks dynamically, it is useful to add a new
state, SUSPENDED, as well. When a process is created, its state is
set to suspended. It can then be “unsuspended” when the programmer
decides it is time to make it ready for execution.

Priority: This number indicates the relative importance of the task. When
the scheduler selects a new task to make current, it will select the ready
one with the highest priority. Note that the priority can be changed
during the task’s lifetime. Initially, we will run all processes at the
same priority.

Stack area: These fields give the size of the stack and its starting address.
When a task is created this area is allocated by the system memory
allocator. When the task dies, this information is used to release the
stack area back to the pool of free memory.

ID Number (PID): The PID uniquely identifies tasks. It is assigned at
task creation time and the number is not re-used until the global “PID
counter” turns over (i.e. > 65,000 processes later with a 16-bit counter
or > 4,000,000,000 processes later with a 32-bit counter).

Name: This “user-friendly” task identifier need not be unique. It is used
only as a convenience to the user.

Starting Address: This records the starting address of the routine.

Note that not all of the information is absolutely necessary. For example,
the starting address is not really required since the “old PC” must be set to
this address when the process is created and it is only when the process starts

9

running the first time that this address is of any importance. Nonetheless
keeping this kind of information along with the task’s name can be helpful
in debugging and in supplying snapshot information about processor activity
to a user.

The precise format of a process table entry is shown below.

/*

* The proc.h include file defines the structure of process entries in the

* RYMOS process table.

*/

typedef struct process { /* type definition for entry in process table */

long regs[17]; /* prev. register values d0-d7, a0-a6, SP, PC */

int cond_reg; /* condition code/status register */

int *initstk; /* initial value of stack pointer */

int stksize; /* size of stack area */

int *text; /* initial value of program counter */

short priority; /* process priority */

short state; /* state of process (FREE, ReaDY, or CURrent */

struct process *pnext; /* pointer to next process in ready list */

short pid; /* process id number */

char name[8]; /* process name */

} PROCESS, *PROCPTR;

#define SP 15

#define PC 16

1.2.2 The Task Scheduler

The scheduler must select the highest priority task among all the those that
are ready and make it current. To make it current, the state field in the
process table entry has to be updated; then the context switch is called to
switch the tasks.

The scheduler must also behave correctly when the current task has a
higher priority than any ready task. In this case, the current task should be
allowed to continue.

In primitive RYMOS, the scheduler is usually called when the time-slice
allocated for the current process has elapsed. However, the scheduler can

10

also be called in other situations. In our initial, bare-bones RYMOS the
scheduler is also called from the bootstrap routine to start up the very first
task. In this case, there is no current task (i.e. the “task” that called the
scheduler is non-existent) and the scheduler should not set the state of this
“non-existent task” to ready! When a process is killed, the last thing it will
do is to call the scheduler to select a new task. This is another example of the
calling task not really being the current task. In later versions of RYMOS,
we shall encounter other situations where the calling task is not still current
and should not be made ready.

The scheduler, of course, should operate quickly and, since selecting the
highest priority ready task is its main function, the way the selection is done
should be looked at closely.

The most simple-minded way of selecting the highest priority ready task
is to step though each entry in the process table looking for it. If the process
table had 100 entries, however, this simplistic approach would take a lot of
time.

A better method is to link together all the process table entries for ready
tasks in a sorted linked list with the highest priority task at the beginning
of the list. If such a list is maintained, the scheduler simply deletes the first
task on the list and makes it current.4.

In order to maintain such a list we need link fields in the process table
entry structure and primitive routines to insert and delete elements from the
list. The required link field is the:

structprocess *pnext;

The utility routines rdy del and rdy ins are used to delete and insert
routines respectively in the ready list. Note that the rdy del routine returns
a pointer to the process table entry that was deleted—i.e. a pointer to the
task that is about to be made current. Hence the selection function of the
scheduler can be done with one line of C code:

4This “better method” is in fact the most “simple-minded” approach to organizing a
priority queue. While a linked-list implementation of a priority queue is appropriate for
a small number of items (e.g. number of tasks in our system), other approaches (such
as tree structures) perform better for insertions. We do not consider such issues in this
course; they are the proper domain of a computer science course on operating systems or
data structures.)

11

curproc = rdy del();

The following pseudo-code gives a formal description of the scheduler.
if the last running process is still in CURRENT state then

if the current process’s priority > highest priority ready task then
return Just keep it current

else
Set state of current process to READY
Insert it in READY LIST

endif
endif
old current process := current process
new current process := deleted highest priority task on “ready list”
set the state of that task to CURRENT
call context switch(old current process, new current process)
return
The C code for the scheduler is shown below. below. (Note that certain

features of the pseudo-code have not been implemented; you will have to do
this as part of an assignment):

/* YOU HAVE TO MODIFY THIS ROUTINE SO THAT IT

* RETURNS IMMEDIATELY IF THE CALLING PROCESS IS CURRENT

* AND HAS A HIGHER PRIOIRTY THAN ANYTHING ON THE READY LIST

*/

#include "magic.h"

#include "proc.h"

extern PROCPTR curproc;

extern PROCPTR rdyhead; /* Pointer to ready list of processes */

extern PROCESS proctab[NPROCS];

extern int dummy(), ctxsw();

resched()

{

PROCPTR oldproc;

if (curproc->state == CURRENT) { /* Is "current process REALLY current */

12

curproc->state = READY;

rdy_ins(curproc);

}

/* Force context switch to first on ready list */

oldproc = curproc;

curproc = rdy_del();

curproc->state = CURRENT;

ctxsw(oldproc->regs, curproc->regs);

}

1.2.3 The Context Switch

The context switch (ctxsw) simply saves the current values of registers in
the save area for the process that is being suspended and re-initializes the
registers with the values from the save area of the process being switched to.

Thus, D0 would, for example, first be saved in the area reserved for it in
the old task’s process table entry. Then it would be loaded with the value
it used to have the last time the new process was executing; this value is
obtained of course from the save area reserved for that task.

This all looks extremely trivial! It may, perhaps, be “trivial”, but it is
also quite subtle.5 Although the problem is “trivial” for most of the registers,
things get tricky when it comes to the Program Counter and Stack Pointer.

The Stack Pointer is the simpler one. We just have to make sure that we
don’t switch to the new stack until we’re finished with the old one.

But what value should be saved for the program counter? After all,
the current value of the program counter changes with every instruction.
Before we entered the context switch, we were in the environment of the task
that is being switched out. As each instruction within the context switch is
executed, we get ever closer to the environment of the task we’re switching
to. In this ambiguous never-never land between two tasks with a continually
changing PC , what is the current value of the program counter of the task

5One has to be careful about how the register contents are saved. The addresses of
the register save areas are passed to the context switch on the stack; i.e. these addresses
are in memory. In order to move the contents of any register to the proper area, the save
area pointer has to be loaded into an address register. Doing this, of course, destroys the
previous contents of the address register before we we have the means of storing it in its
save area. Proper use of the stack for temporary storage can avoid this problem.

13

being suspended?
To answer this question, we step back from the inner workings of the

context switch and recall that the scheduler called the context switch. The
scheduler was running in the pristine environment of the task now being
suspended. The call to the context switch within the scheduler, however, is
written in the same way as any other call to a function in C. In particular,
the scheduler expects that the context switch function call will return. We
know of that it doesn’t return at all (at least not in the normal way); rather
it starts up a new task! But eventually there will be some future context
switch back to the task that was suspended. If we restart the task as if it
had just returned from ctxsw the original task that was suspended and is
now being restarted will have no hint of the shenanigans that went on within
the context switch. As far as it is concerned, the context switch will have
behaved itself and returned!

So the saved value of the suspended task will simply be the return address
to resched and this can be taken off the stack (before switching stacks, of
course).

A final consideration is how to change the program counter to that of
the new current task. We can get the right value from the save area but
we can’t simply move it into the PC since there is no instruction for that.
The only instructions that can change the PC to arbitrary values are the
(conditional) jump and branches, jump to subroutine, and return from sub-
routine or interrupt instructions. Since changing the PC must be the last
register that is set to the new environment and since we want ctxsw to look
like a “normal” subroutine that ends with an tt rts, we use the return from
subroutine instruction to change the PC. Hence we must get the old PC for
the task that is about to become current and put it on the new stack prior
to executing the tt rts.

In primitive RYMOS, tasks are switched at interrupt time. Since all tasks
have the same priority, this means that the processor time slices between all
the tasks with each one receiving identical treatment.

Consider the following switching between 3 tasks. Assume that Task-1
is running when the first interrupt occurs. This causes the PC and status
register to be saved on the Task-1’s stack and the timer interrupt service rou-
tine is entered in Task-1’s environment. Then the ISR re-enables interrupts
and calls resched which in turn calls ctxsw. Task-2 is then initiated. It runs
with its own stack and Task-1’s stack is frozen. Note that there has been

14

no Return from Interrupt for the first interrupt that resulted in switching to
Task-2 yet. Eventually Task-2 is interrupted and a similar sequence results
in a switch to Task-3. Now two interrupts have occurred without any Return
from interrupt instructions. We know that interrupts cause the stack to grow
and that we must eventually return from interrupt to avoid stack overflow.
There is no danger of that happening here, however, since each interrupt has
happened with a different stack.

A third interrupt results in a context switch from Task-3 back to Task-1.
Task-1 picks up in the kernel’s resched routine as if it had just returned from
ctxsw. Reshed returns to its caller, the timer ISR in this case. Finally, the
timer ISR does execute a Return from Interrupt and the processor is back
in Task-1’s main routine in precisely the same condition it left when it was
interrupted three timer tics earlier.

The astute reader may wonder why the PC has to be stored in the process
table save area since it is already on that task’s stack. Indeed, why not save
all the registers on the task’s stack and simply keep the SP in the process
table? This makes the context switch easier to write and makes the process
table smaller. This approach does create problems, however, when we move
to a virtual memory system. In particular, if task overflows its stack area or
generates a page fault when pushing something onto the stack, it will have
to be suspended while the operating system fixes the problem. But where
do we store the registers in such a case!

1.2.4 Memory Management

Requests for memory are honoured by the kernel’s memory management rou-
tines by searching for some unused memory in the globally allocated heap.
The management routines maintain a linked list of unused memory blocks
within the heap. The list is kept in sorted order by increasing starting ad-
dresses of the blocks. Each block contains a link to the next block and the
length of the block.

When the memory allocator receives a request for some number of bytes
of memory, it marches through the list of free blocks until it finds one that
is large enough to honour the request. It chops off the number of bytes
requested from this block, rearranges the linked list of free blocks accordingly
and returns the starting address of the block it found to the caller.

The structure of the linked list is defined in memory.h as shown in below:

15

/*

* Memory.h is an include file defining the characteristics of the memory

* heap used by the memory management routines in RYMOS.

*/

#define HEAPSIZE 1500 /* Size of heap in units of MBLCK (i.e. = 8 bytes) */

typedef struct mblock { /* Structure of the free memory list */

struct mblock *mnext;

unsigned int mlen;

} MBLCK, *MBLKPTR;

The heap is initialized as a single block in the meminit routine shown
below:

/* Meminit initializes the memory heap.

*

* Arguments:

* none

*

* Returns:

* nothing

*/

#include "magic.h"

#include "memory.h"

MBLCK memory[HEAPSIZE]; /* Allocate actual heap */

MBLCK memlist; /* head of free memory list */

meminit()

{

MBLKPTR p;

printf("Initializing memory ...\n");

memlist.mnext = memory;

memlist.mnext->mlen = HEAPSIZE*sizeof(MBLCK);

memlist.mnext->mnext = 0;

}

16

The pseudo-code for the memory allocator is shown below.
getmem(n bytes)
Routine to find n bytes of memory and return the starting address
for each block on the free list

if block is an exact fit for n bytes then
delete it from the free block list
return(its starting address)

else if block size > n bytes then
chop off extra bytes at end of block
insert this chopped off block in free list
return(starting address of block found)

endif
endif

endfor
if we don’t return from within the for loop,
there are no free blocks large enough
to honour the request, so crash system
abort
The actual C code follows. Note the use of the comma operator in the

for loop to obtain two loop variables.

/*

* Gets a block of memory of a specified number of bytes and returns

* its starting address.

*

* Arguments:

* nbytes - number of bytes to allocate

*

* Returns:

* pointer to start of block

*

* BUGS:

* The number of bytes requested must be a multiple of the size of

* MBLCK (8 bytes at this time).

* Just issues a message and stops if no more memory.

*/

17

#include "magic.h"

#include "memory.h"

extern MBLCK memlist;

int

*getmem(nbytes)

int nbytes;

{

/* Adapted from Comer */

MBLKPTR q, p, leftover;

for (q = &memlist, p = memlist.mnext; p != NULL; q = p, p = p->mnext)

if (p->mlen == nbytes) { /* Exact fit? */

q->mnext = p->mnext; /* Unlink it from free list */

return((int *) p); /* Return its starting address */

} else if (p->mlen > nbytes) { /* More than enough ? */

/* Get address of leftover block */

leftover = (MBLKPTR) ((unsigned) p + nbytes);

q->mnext = leftover;

leftover->mnext = p->mnext;

leftover->mlen = p->mlen - nbytes;

return ((int*) p);

}

printf("Out of memory\nABORTING\n");

stop();

}

The pseudo-code for the memory release routine is given below:
freemem(starting address, size)
Routine to free “size” bytes of memory
starting at “starting address”
while bf not at end of list bf and block start < starting address

step to next block on list
endwhile

determine ending address of previous block
if new block abuts with end of previous block then

18

coalesce both blocks into a single bigger block
else

create a new block and insert after previous block
endif
if end of new block abuts with beginning of next block then

join them both into a single bigger block
endif
return
The actual C code for freemem is:
../kernel/src/freemem.c

1.2.5 Bootstrapping the System

The bootstrap routine is the first program to begin execution when RYMOS
is loaded into the ECB. At this point there is no process table, no interrupt
service routine vectors, no memory heap, etc. There is nothing but the raw
68000 machine and all the structures required for the successful operation of
RYMOS have to be set up.

The bootstrap calls various routines to perform the necessary initializa-
tion and then puts some entries into the process table. It fills in the process
table to run two tasks called “hello” and “bye”. It also fills in the table
for a third process, the null process. This task is an infinite loop that does
absolutely nothing. We need it because the rest of the system is easier to
write if we assume that there is always at least one process that can run
and the null process is there to ensure that this assumption is always true.
Hence the null process can never die, has the lowest possible priority so that
it will only run if there is nothing else to run and has a smaller stack area
than regular tasks so that it consumes the minimum of computer resources.
Finally it calls resched and the real RYMOS takes over.

There is a problem in calling resched the first time. Resched assumes
that RYMOS is already running but for the first call to resched RYMOS is in
the final stages of being born. In particular, this call to resched must never
return. We achieve this by telling resched that the “last running process”
(which obviously cannot exist yet) does in fact exist as a FREE entry on the
process table with minimum priority. This ensures that resched will switch
to a task on the ready list and that it will not put this non-existent current

19

task back on the ready list. Hence it will never return to it which is just
what we want.

The bootstrap routine also allocates storage for some global data. In
particular, it allocates space for the process table and for pointers to the
ready list and to the current process and a pointer to the first block of free
memory. It also allocates and initializes the PID counter to 0. Pseudo-code
for the bootstrap routine is given below.

bootstrap
Tell the operator the bootstrap routine has started
Initialize the memory heap
Initialize the timer chip and interrupt vector
for each process table entry

table entry.state := FREE
endfor
Fill in the 0th entry in the process table for the “nullproc” process
Set the priority of the nullproc to lowest possible value
Fill in the next entry in the process table for the (“hello(” process
Fill in the next entry in the process table for the (“bye(” process
Link these two entries into the ready list
Set the current process to point to a non-existent process
Enable interrupts
call resched

The C code for the bootstrap routine is:

/*

* Boot.c brings RYMOS to life. It initializes the memory heap, the

* timer chip and interrupt vectors for the 68000, puts the null process

* as well as two real processes on the ready list

* and invokes resched to start RYMOS.

*

* Arguments:

* none

*

* Returns:

* nothing

*/

#include "magic.h"

20

#include "proc.h"

#include "memory.h"

extern int ctxsw();

/* Global variable allocation */

MBLCK memhead; /* Pointer to head of free memory list */

PROCESS proctab[NPROCS]; /* Actual process table */

PROCPTR rdyhead; /* Pointer to ready list of processes */

PROCPTR curproc; /* Pointer to current process */

short next_pid = 0; /* Process id number to be given to next process created */

extern int meminit();

extern int hello();

extern int bye();

extern int nullproc();

extern int *getmem();

extern int resched();

extern int stop();

main()

{

int i;

printf("Booting RYMOS...\n");

meminit(); /* Initialize heap for memory allocation */

timeinit(); /* Initialize the PIT and interrupt vector */

/* Make all entries in process table FREE */

for(i = 0; i < NPROCS; i++)

proctab[i].state = FREE;

/* Insert the null process in the process table as RDY */

strcpy(proctab[0].name, "null");

proctab[0].pid = next_pid++;

21

proctab[0].pnext = &proctab[1];

proctab[0].state = READY;

proctab[0].text = nullproc;

proctab[0].stksize = 32;

proctab[0].initstk = getmem(32);

proctab[0].cond_reg = STDCCSR;

proctab[0].regs[SP] = (long) proctab[0].initstk + proctab[0].stksize ;

proctab[0].regs[PC] = null;

proctab[0].priority = 0;

strcpy(proctab[1].name, "hello");

proctab[1].pid = next_pid++;

proctab[1].pnext = &proctab[2];

proctab[1].state = READY;

proctab[1].text = hello;

proctab[1].stksize = STDSTKSZ;

proctab[1].initstk = getmem(STDSTKSZ);

proctab[1].cond_reg = STDCCSR;

proctab[1].regs[SP] = (long) proctab[1].initstk + proctab[1].stksize ;

proctab[1].regs[PC] = hello;

proctab[1].priority = STDPRI;

strcpy(proctab[2].name, "bye");

proctab[2].pid = next_pid++;

proctab[2].pnext = NULL;

proctab[2].state = READY;

proctab[2].text = bye;

proctab[2].stksize = STDSTKSZ;

proctab[2].initstk = getmem(STDSTKSZ);

proctab[2].cond_reg = STDCCSR;

proctab[2].regs[SP] = (long) proctab[2].initstk + proctab[2].stksize ;

proctab[2].regs[PC] = bye;

proctab[2].priority = STDPRI;

rdyhead = &proctab[0];

curproc = &proctab[3]; /* "Non-existent" process to fool resched */

strcpy(proctab[3].name, "Start");

proctab[3].priority = 0; /* Ensure it will be swapped out */

22

enable(); /* Enable processor interrupts */

resched();

stop();

}

1.2.6 Utility Routines

Ready List Insertion and Deletion

Recall that the list of ready tasks is maintained in order of decreasing priority
so that the first one on the list is the next one that should become current.
Hence only the first element on the list need ever be deleted which makes
the deletion routine particularly simple. Its listing is given below.

/*

* Deletes the first process on the ready list and returns a pointer

* to the table entry of the deleted process. (The calling program then

* either makes the process current or kills it.)

*

* Arguments:

* none

*

* Returns:

* pointer to deleted entry

*

* BUGS:

* Does not detect if ready list is empty (although this should "never"

* happen).

*/

#include "proc.h"

extern PROCPTR rdyhead;

PROCPTR

rdy_del()

23

{

PROCPTR gone;

gone = rdyhead;

rdyhead = rdyhead->pnext;

return gone;

}

Unlike the delete routine, the insert routine must be able to follow the list
and its code is slightly more complex (although not nearly as complex as the
memory management routines). The list must be maintained in decreasing
priority order; but where should a process be inserted if it is equal to another
one on the list? Should it go just before or just after the existing entry or
does it matter? It does indeed matter. If it went before another entry on
the list with the same priority, that equal-priority task would take second
place to the one that has just been inserted. This hardly seems fair as the
newly inserted task may just have finished executing and will get to execute
again before the other task which has been patiently waiting its turn. The
solution to this unfairness, of course, is to insert an equal-priority task after
any other tasks of the same priority.

Pseudo-code and the C routine for ready-list insertion are given below.
Note that the C routine does not incorporate all of the pseudo-code. This is
easy to fix and will be part of one of your assignments.

rdy ins(p)
Inserts the process table entry pointed to by p just before
the a lower priority task.
We assume that global variable ready head points to the
first entry on the ready list

insert priority := priority of task p points to
next ready task := ready head
Step though list until point where task should be inserted
while not at end of list and insert priority > priority of task on list

do
next ready task := next task on list
endwhile
insert task pointed to by p in ready list here
return

24

/*

* !!!! YOU HAVE TO ADD TO THIS ROUTINE !!!!

*

* Rdy_ins inserts the specified process in the ready list just before

* the first process having lower priority or just before the tail.

*

* Arguments:

* p - pointer to entry to insert

*

* Returns:

* nothing

*/

#include "magic.h"

#include "proc.h"

extern PROCPTR rdyhead;

rdy_ins(p)

PROCPTR p;

{

PROCPTR q;

short ins_pri;

ins_pri = p->priority;

q = rdyhead;

/* Mindlessly go through list till end ignoring priority */

while ((q->pnext != (PROCPTR) NULL))

q = q->pnext;

p->pnext = q->pnext;

q->pnext = p;

return;

}

25

Timer Chip Initialization and Interrupt Routine

In primitive RYMOS, the only event that will result is a task switch is a
periodic interrupt generated by a programmable chip on the ECB. So nothing
will work unless this chip is properly programmed and the interrupt service
routine interfaces correctly with RYMOS.

The chip used to generate the interrupts is the Motorola 68221 Parallel
Interface and Timer (PIT) chip. This is a very complex peripheral chip and
since you probably had your fill of peripheral chips last year we will keep the
discussion of this chip down to an absolute minimum. You’ve probably also
had your fill of assembly language programming as well, so we program the
chip, set up the interrupt vector and write the interrupt service routine in C.

The only thing we may want to change from time to time is the frequency
of timer interrupts. The time between interrupts is specified in milliseconds
in the constant symbol INT TIME defined in the timer.h header file repro-
duced below. So if you want tasks to switch 10 times a second instead of 5
times simply redefine INT TIME in timer.h as 100 msecs and recompile the
cooperating system.

/*

* The timer.h include file contains information of the Motorola

* Parallel Interface/Timer (MC68230 PIT) which is used to generate

* the clock interrupts for RYMOS.

*/

#define ECB YES

#define CLOCK 4000/32 /*Clock freq (kHz) for ECB divided by PIT prescaler*/

#define INT_TIME 1000 /* in units of milliseconds */

#define COUNT (INT_TIME*CLOCK) /* Preload timer counter with this */

/* Split 24 bit COUNT into 8 bit pieces (high, middle, low) */

#define COUNTHI (COUNT/(256*256))

#define COUNTMID (COUNT/256 - COUNTHI*256)

#define COUNTLO (COUNT%256)

#ifdef ECB

#define PIT 0x10001 /* Base address of PIT on Motorola ECB */

#define PITINC 2 /* Registers are 2 locations apart */

26

#endif

#define TCR *((char *)(PIT + PITINC*16)) /* Timer control register */

#define TIVR *((char *)(PIT + PITINC*17)) /* Timer Interrupt C_Vector Register

#define CPRH *((char *)(PIT + PITINC*19)) /* Counter Preload Register High */

#define CPRM *((char *)(PIT + PITINC*20)) /* Counter Preload Register Mid */

#define CPRL *((char *)(PIT + PITINC*21)) /* Counter Preload Register Low */

#define TSR *((char *)(PIT + PITINC*26)) /* Timer Status Register */

#define TIME_IVECT (70) /* Interrupt vector number used by timer */

#define T_CNTRL 0xa1 /* Internal clock, use preload regs */

The chip is programmed to generating periodic interrupts by setting the
on-chip Timer Control Register to 0xA1. The chip then uses an internal
24-bit counter which is decremented to zero at which time an interrupt is
generated. The counter is then reloaded with its preload-register and the
sequence repeats. So the preload register has to be initialized with with a
count that will decrement to 0 every INT TIME msecs.

The counter divides the system clock by 32 and decrements at that rate.
Since the ECB system frequency is 4 MHz, the counter decrements every 8
µs. Hence the value of the preload register can be calculated as:

preload=Int time(inmsecs)×System clock(inkHz)
32

These calculations are done by the C pre-processor and defined in the
timer.h file. The PIT chip only has an 8-bit data bus; hence the 24-bit
preload register is actually loaded as 3 8-bit pieces. Again the splitting or
the 24-bits into 3 bytes is done by calculations defined in timer.h.

The PIT is memory-mapped in the ECB starting at location 0x10001.
This address information is included in timer.h. We also see statements like:

#define TCR *((char *)(PIT + PITINC*16))

This statement indicates that the PIT control register (register 16) is
memory mapped to location 0x10021. Specifically, the define statement tells
the C compiler to treat the symbol TCR as “the contents of the byte at
location 0x10021”, i.e. as the contents of the control register mapped to this
address. Hence we can write a statement like:

TCR = 0xA1;

to initialize the control register.
The actual code for the PIT initialization is reproduced below.

27

/* Timeinit initializes the hardware timer to generate

* periodic interrupts.

*

* Arguments:

* none

*

* Returns:

* nothing

*/

#include "timer.h"

#include "magic.h"

extern int timintrpt();

timeinit()

{

long *j;

/* Initialize counter preload register */

Printf("Initializing timer for %d msec interrupt time\n", INT_TIME);

CPRH = COUNTHI;

CPRM = COUNTMID;

CPRL = COUNTLO;

TIVR = TIME_IVECT; / *Timer interrupt vector register */

TCR = T_CNTRL; /* Timer control register */

j = TIME_IVECT*4; /* Address of interrupt vector */

*j = timintrpt;

}

The 68000 uses automatic vectoring of interrupts. When a device gen-
erates an interrupt, the 68000 generates an interrupt acknowledge bus cycle
during which the interrupting device must place a vector number on the data
bus. Here vector 70 is used for timer interrupts and the timer vector number
register of the PIT is initialized with:

TIVR = TIME IVECT;

After reading the interrupt vector number, the 68000 then obtains the
starting address of the routine for that kind of interrupt from its vector table.
The table is located at the low end of memory with each entry containing an

28

address. Since addresses are 32-bits long, each entry is 4 bytes long. Hence
the vector entry for interrupt #70 will be at address 4 × 70. This address
is calculated in the timer initialization routine and vector entry is set to the
address of the proper interrupt service routine: timintrpt.

The timer interrupt service routine is very simple. It acknowledges the
interrupt by writing to the status register (TSR = 1;), re-enables processor
interrupts, and calls resched. It is reproduced below:

/* Timintrpt is the interrupt service routine for timer interrupts.

* It invokes the scheduler.

*

* Arguments:

* none

*

* Returns:

* nothing

*/

extern int enable();

#include "timer.h"

timintrpt()

{

TSR = 1;

enable();

resched();

}

You may wonder how a C routine can possibly generate a Return from
Exception instruction. After all, the compiler assumes that functions are
called as subroutines not as interrupt service routines. The truth is the C
compiler cannot put in RTE instructions. To get around this, we stop the
compilation process after the symbolic assembly language program has been
produced. This file is then edited and the tt rts is replaced with an tt rte
instruction. The compilation process then continues with the edited version
of the assembly language program. All of this can be done automatically
using using some features of UNIX as we shall see in the next section.

29

The Hello, Bye and Null Tasks

These processes simply print out ”hello” or ”bye” endlessly; the null process
does absolutely nothing.

A dummy delay loop is included in both the hello and bye tasks to slow
them down so that context switching can be observed.

The source code is given in Figures ?? and ?? below:

/* Hello prints "hello " endlessly.

* Arguments: none

* Returns: nothing

*/

#include "magic.h"

hello()

{

int i;

while(1) {

printf("hello ");

for (i = 0; i < DUMDEL ; i++) /* Empty loop to slow down output */

;

}

}

Figure 1.1: The Hello Task (kernel/src/hello.c)

1.3 A Digression on UNIX Features to Help

Maintain RYMOS

NOTE: This section is intended to give you a brief glimpse at a useful UNIX
facility—make. You are not responsible for knowing this material although
the more you understand the UNIX system, the more shortcuts you will find
to doing your work at the terminal. The section gives a very brief overview

30

#include "magic.h"

bye()

{

int i;

while(1) {

printf("BYE ");

for (i = 0; i < DUMDEL ; i++) /* Empty loop to slow down output */

;

}

}

Figure 1.2: The Bye Task (kernel/src/bye.c)

/*

* Nullproc is the null process that runs if nothing else runs.

* It does nothing.

* Arguments: none

* Returns: nothing

*/

#include "magic.h"

nullproc()

{

while(1)

;

}

Figure 1.3: The Null Task (kernel/src/null.c)

31

of how a Makefile is written, but you will be supplied with a Makefile for
your projects.

The source code for RYMOS has been organized in several different files.
Most of these are C code, some are assembler (ctxsw, stop, enable and disable)
and some are header files. This modular organization is the proper way to
approach large software projects. It raises questions, however, as to precisely
how all these files are to be compiled into a single executable program.

Other questions arise with the cross-development approach we are using.
RYMOS runs on the ECB, not on the Sun workstation. machine. But the
ECB is not a convenient machine to develop complex programs on. For
example, it has no C compiler!

Let’s first see how this can be done manually.
Suppose we have a single C program , prog.c, that we want to run on the

ECB. We first compile it and stop the compilation process after the symbolic
assembly language file has been produced as follows:

gcc68k -S prog.c

We now assemble prog.s (the assembler language translation produced by
the C compiler) into object code with

gas68k -m68010 -o prog.o prog.s

Object code contains a position independent machine-language transla-
tion of the assembler. Thus no absolute addresses have been assigned yet
and the code may contain calls to subroutines that were not in the original
code (these are called external routines). These external references may be
contained in other object code files on in a library of such files. Putting the
pieces of object code together, resolving external references and producing
an executable file is done by the linker as follows:

ld68k -T 1000 -e _main -s -d -N prog.o

The options here tell the linker to produce a file that starts execution
at address 0x1000 (where we run the program on the ECB) and to use the
standard library for unresolved externals. We also don’t want the linker to
produce a real executable file since the only execution environment it knows
about is UNIX and the ECB does not run under UNIX. The -ns option tells
the linker to stop just before this final step and produce a file called a.out.
The -e main option tells the linker to use the first instruction of the routine
called main as the entry point. The -d option indicates that unintialized

32

data should be allocated space in the object code. The -S option strips the
symbol table from the output. The -N option allows the text portion to be
writable.

To load this program into the ECB we first have to convert its format to
S-records which is the only file format the ECB understands. This is done
with the srec command as follows:

srec a.out > prog.ecb

Finally, the file prog.ecb can be downloaded and run on the ECB in the
normal way.

The sequence of commands, then, to create a downloadable file is:

gcc68k -S prog.c

gas68k -m68010 -o prog.o prog.s

ld68k -T 1000 -e _main -s -d -N prog.o

srec a.out > prog.ecb

This looks like a royal pain. A straightforward solution is to write a shell
script command to this all for you.

Now suppose that the program was split into three parts with two parts
in C and one section in assembler in the following files: sect1.c, sect2.c and
sect3.s. To make a downloadable file, each of the C modules would be sepa-
rately compiled to assembler; each assembler file assembled; all three object
files linked and the S-record file created as follows:

gcc68k -S sect1.c

gcc68k -S sect2.c

gas68k -m68010 -o sect1.o sect1.s

gas68k -m68010 -o sect2.o sect2.s

gas68k -m68010 -o sect3.o sect3.s

ld68k -T 1000 -e _main -s -d -N sect1.o sect2.o sect3.o

srec a.out > prog.ecb

We again avoid typing such a ghastly sequence of commands by putting
them in a shell script command file and executing it instead.

33

This approach however can be wasteful. Suppose an initial version of
prog has already been made and a bug is found in sect2.c. This is edited and
a new prog must now be generated. If the above command sequence were
executed, there would be needless re-compilation and assembly of sections 1
and 3. All that is really necessary is to re-compile sect2, re-link everything
and re-generate the S-record file.

Another problem with the above command sequence if stored in a shell
script is that it will mindlessly continue even if compiler syntax errors are
detected early in the process. All of these problems and many others can be
solved with the UNIX make utility.

1.3.1 Make: Painless Program Maintenance

The make utility allows the programmer to specify all the actions that are
required to generate some target in a file usually called Makefile. As well as
describing the actions to generate a target, the Makefile also indicates which
files depend on which other files. In addition to telling the make utility what
order to perform the actions in, this information is used to determine which
actions are not required to generate the target.

To make these ideas clearer, let’s look at the Makefile for the prog target
discussed above:

The first line, prog.ecb: a.out, tells make that the file prog.ecb depends on
(that’s how to read the semi-colon) a.out. In order to generate the target file
prog.ecb the command line(s) that follow (up to the first blank line) should
be executed.

The other entries in the Makefile state the other dependencies. Thus,
a.out depends on all the object files and the link command should be used
to regenerate a.out from them.

Make does not just blindly follow the generation rules, however. It looks
at the modification dates of the files to determine which tasks should be
done. Consider again the example posed earlier where one version of prog.ecb
has already been created and then sect2.c is edited to fix a bug. The make
utility is then invoked by typing the command make. Make sees that prog.ecb
depends on a.out which in turn depends on the object files that are themselves
dependent on the source code files. Make starts out at the bottom layer
of dependencies. It notices that the object file sect1.o was modified more
recently than the source code sect1.c that it depends on. Hence it knows

34

prog.ecb : a.out

srec a.out > prog.ecb

a.out: sect1.o sect2.o sect3.o

ld68k -T 1000 -e _main -s -d -N sect1.o sect2.o sect3.o

sect1.o: sect1.c

gcc68k -S sect1.c

gas68k -m68010 -o sect1.o sect1.s

sect2.o: sect2.c

gcc68k -S sect2.c

gas68k -m68010 -o sect2.o sect2.s

sect3.o: sect3.s

gas68k -m68010 -o sect3.o sect3.s

Figure 1.4: Makefile for Prog.ecb as Target

35

there is no need to re-compile sect1.c. Similarly it figures out that there is
no need to re-assemble sect3. It sees, however, that the source code sect2.c is
newer than its target sect2.o. Hence it recompiles sect2.c to bring the object
code up to date. Should the compiler detect any errors, make will not waste
any time by going any further. But if the compilation is successful, make
will recognize that a.out should now be re-generated since one of the things
it depends on, sect2.o is now newer than it. After re-linking (assuming it is
successful), make will generate an updated S-record file prog.ecb.

Dependencies can be more complex and more deeply nested than indi-
cated here. For example, several files may include the same header file. If the
header file is changed, then all the files that include it should be re-compiled.
By stating such dependencies in the Makefile, this will all be done automat-
ically when make is invoked. There is no limit to the number of rules or
dependencies in a Makefile.

The Makefile that maintains RYMOS (not the incomplete one in /u/public/elt048/kernel
that you have access to but the real, complete one), for example, contains
all the dependencies to generate different versions of RYMOS. Simply typing
make does it all. Not only is RYMOS regenerated but all the course notes
that refer to source code files are also updated automatically.

36

Chapter 2

EXTENDED RYMOS
PSEUDO-CODE

2.1 Pseudo-code for Basic Routines

2.1.1 Create

function create(name, stack_size, priority, text, nargs, args)

disable interrupts

find a free entry in process table

if no free entries then

enable interrupts

return ERROR

endif

Allocate stack space

for i = nargs downto 1

push argument i onto new stack

endfor

37

Fill in each field in process table record

enable interrupts

Return &process_table_entry

2.1.2 Kill

procedure kill(address of proc_table entry)

disable_interrupts

Free stack area

if process is CURRENT then

proc_table entry state := FREE

call resched

endif

if process is WAITing on a semaphore then

signal the semaphore

endif

if process is SLEEPing then

delete it from delta list

endif

if process is READY then

delete it from ready list

endif

proc_table entry state := FREE

enable_interrupts

return

38

2.1.3 Suspend

suspend(address of proc_table entry)

disable interrupts

if process is READY then

delete it from ready list

state := SUSPENDED

else

state := SUSPENDED

call resched

endif

enable interrupts

return

2.1.4 Unsuspend

unsuspend(address of proc_tab entry)

disable interrupts

insert process in ready list

call resched

enable interrupts

return

2.2 Semaphore routines

Semaphores are a common method of process synchronization. They can be
used, for example, to mediate requests for limited resources that cannot be
shared by different tasks.

39

Semaphores have an integer value (positive, zero, or negative). A simple
way to interpret semaphores is to consider their value as the number of
resources available minus the number of requesters.

2.2.1 Semaphore Use Examples

Mutual Exclusion

Suppose we have a semaphore called “Printer available”. The following code
would be used to to reliably gain access to the printer:

wait(Printer_available);

/* Use printer */

signal(Printer_available);

Process synchronization

Suppose we have two tasks, prod and cons , where prod produces data for
cons. We use two semaphores, consumed and produced, to coordinate
the two tasks as follows:

prod(consumed, produced)

{

int i;

for(i = 1; i <=2000; i++) {

wait(consumed);

n++; /* n is a global variable shared by both tasks */

signal(produced);

}

}

cons(consumed, produced)

{

int i;

for(i = 1; i <= 2000; i++) {

wait(produced);

printf("n is %d\n", n);

signal(consumed);

40

}

}

The signal and wait routines are described here in pseudo-code. Note
that additional routines to create and delete semaphores and data structures
to support them (e.g. the semaphore array) are also required.

Each record in the semaphore array contains 3 fields: a flag indicating if
the record is being used or not; the value of the semaphore; a pointer to the
head of the list of tasks waiting for the semaphore. Semaphores are identified
as an index into this array of semaphore records.

The process table is alos modified to include a field identifying which (if
any) semaphore the task is waiting for.

2.2.2 Semaphore pseudo-code

Semaphore signal

signal(semaphore_id)

disable interupts

increment semtab[semaphore_id].count

if count < 0 then

delete first task on semaphore wait list

insert it into ready list

call resched

endif

enable interrupts

return

Semaphore Wait

wait(semaphore_id)

disable interrupts

decrement semtab[semaphore_id].count

41

if count < 0 then

current_process.state := WAIT

current_process.semaphore := semaphore_id

insert it into semaphore list

call resched

endif

enable interrupts

return

2.3 Message Passing Routines (Synchronous)

These routines assume that the process table has been modified to include
two additional fields: a flag to indicate if a message is available; a 4-byte
message field.

2.3.1 Send

send(address of destination proc_tab entry, message)

disable interrupts

if message already waiting at destination then

enable interrupts

return NOT_SENT

else

destination msg_avail flag := TRUE

destination message = message

if destination state = RECEIVING then

insert destination task in ready list

call resched

endif

endif

enable interrupts

return OK

42

2.3.2 Receive

receive

disable interrupts

if msg_avail = FALSE then

state = RECEIVING

call resched

endif

msg = message in process table entry

msg_avail = FALSE

enable interrupts

return msg

43

Chapter 3

Cache Memory

3.1 Improved Performance with Cache Mem-

ory

Since the first computers were built over 40 years ago, CPU speed has always
been faster than the speed of inexpensive memory. For example, in the days
of vacuum tube CPUs, economical delay-line memory was slower than the
CPU; similarly, magnetic core was slower than transistorized CPUs; today,
20 MHz (and faster) VLSI CPUs are faster than economical dynamic RAM.

A solution to this problem is to make some of the memory system with
very high speed, but expensive, components (eg. static RAM). This high
speed portion of the memory system is called the cache. But how big should
the cache be and how should it be organized?

Suppose we may have 16 Mbytes of 200 ns RAM and a 64 K cache of 50
ns RAM. If we naively assume that all memory locations are equally likely to
be accessed, then the chances of hitting the cache are the same as the fraction
of memory that is cached. Hence, we calculate that the average access time
is:

16000×200+64×50
16064

= 199.4ns

This hardly seems an improvement!
The trick is to organize the cache so that it is accessed much more fre-

quently than random chance would indicate. The percentage of memory
accesses that involve the cache is called the cache hit ratio. Assuming, for
example, that we have a hit ratio of 90% with the above sizes, the average

44

access time becomes:
avg.accesstime = main access timetimes(1−hit ratio) + cache access timetimes hit ratio

avg.accesstime = 200 × .1 + 50 × .9 = 65ns.

3.2 Locality of Reference

Hit ratios approaching 100% are achieved by exploiting the fact that, within
a short time period, most memory references are clustered around the same
part of memory. This is obviously true in the case of fetching instructions
from a loop 100 bytes long that is executed 100,000 times. Clearly the next
10 million instruction bytes fetched from memory will comes from a small
addressing space only 100 bytes long. If these 100 bytes are not in the
cache initially, we put them in the cache the first time through the loop and
hence hit the cache the other 99,999 times through the loop achieving a very
respectable hit ratio of 99.999%.

Since all programs contain loops (or, equivalently for our purposes, re-
cursion), which is where most of the execution time is spent, we will achieve
locality of reference very often.

Locality of reference also applies to data fetches; within a loop the same
data locations will the accessed over and over again. Furthermore, in com-
piled code for block structured languages, data references are often made to
local variables and passed parameters which are all clustered together on the
stack.

Hence high hit ratios are achieved by mapping entries in the cache to the
most recently used addresses.

When the CPU initiates a memory access, hardware determines if that
address is currently in the cache; if so, the contents are returned immediately
and no wait states need be inserted in the CPU. Otherwise, main memory is
accessed and wait states are inserted until the data has been fetched. This
data is now placed in the cache so that it will be found quickly the next
time it is accessed.1 When a hit is not achieved, the cache hardware usually
anticipates that the CPU will soon read the next location in memory and
tries to transfer a few of the following locations in main memory to the cache

1Note that the access to main memory is initiated concurrently with searching the
cache. The external bus cycle to memory is then aborted if a hit is found. Hence, if a hit
is not found, the system is not slowed down.

45

before the processor actually needs them. (This is especially useful when the
access involved program memory.)

The two basic problems in cache design are:

1. How to determine very quickly if the address is currently in the cache;

2. When new data is brought into a full cache, which old data should be
removed.

3.3 Determining a hit

3.3.1 Fully associative cache

We first consider a fully associative cache.
The cache is usually organized in 2n blocks with each cache block con-

taining a copy of 2m contiguous bytes of main memory. In other words, the
bottom m bits of the address from the CPU correspond to an index into a
byte of a block.

The upper bits of the address (i.e. the 32-m bits of a 32-bit address
machine) are stored in the tag field of the cache entry. A cache entry, then,
looks like (m = 4):

=.5in figures/cache.fass.eps

Figure 3.1: Fully associative cache memory entry format

An address produced by the CPU is considered to be in the format:

=.5in figures/cache.fassaddr.eps

Figure 3.2: Fully associative cache memory entry format

Hence, to determine if an address is in the cache, the upper bits of the
address are compared with the tag bits of all cache entries.

46

Obviously, this comparison must be done in parallel. Detecting equality
of two bits requires an exclusive-NOR gate; hence, the circuitry to detect a
cache hit in a 1 K cache organized as 64 blocks of 16 bits each would require
28×64 = 1792 exclusive-NOR gates and 64 28-input AND gates. This would
require around 20,000 transistors or about the same as the 32,000 transistors
required to implement the cache itself.

The organization of this a fully-associative cache is shown in Fig. ??
below.

=2.5in figures/cache.fass.org.eps

Figure 3.3: Fully associative cache memory organization

3.3.2 Direct Mapping Cache

The amount of hardware required to detect a match can be reduced by us-
ing the direct-mapping cache approach. Unlike the fully-associative scheme
where a cache block can be mapped to any block in main memory, the direct
mapping scheme allows cache blocks only to be mapped to certain memory
blocks and no memory block can be mapped to more than one cache block.

This is achieved by numbering the cache blocks form 0 to N-1 (where N
is the number of blocks) and only allowing a cache block i to be mapped to
memory block j where j ≡ i (mod N). For example, with N = 64, cache
block 2 could only map one of memory blocks 2, 66, 130, etc. Similarly, those
memory blocks could only be mapped to cache block 2. Since cache block
#2 can hold main memory blocks 2, or 66, or 130, or 194, etc., we still need a
tag field in the cache block to indicate which, if any, of these memory blocks
are actually cached. The tag field need only be 22 bits now, however; the
lower 4 bits of the address field are used to index into the particular byte of
the block we want to access and the 6 bits before these are used to determine
which cache block is eligible to hold the particular block we are looking for.
(In general, of course, the number of bits in the tag field of a direct mapped
cache is 32 − m − n when the block size is 2n bytes and there are 2m blocks
in the cache. In this case m and n are 6 and 4, respectively.)

47

The disadvantage of this method is obvious; it is now impossible to cache
blocks 2 and 66 simultaneously even if the rest of the cache is empty. The
advantage is that far less hardware is required to detect a hit. Only 22
exclusive-NOR gates (instead of 1792) would be required and a single 22-
input AND gate. This would require only about 200 transistors (instead of
20,000).

The overall organization of a direct-mapped cache with 64 16-byte blocks
is shown in Fig. ??.

=3.5in figures/cache.dir.org.eps

Figure 3.4: Direct mapped cache memory address format

Using the same cache parameters as previously, we view a memory address
in the format shown in Fig. ??.

=.5in figures/cache.diraddr.eps

Figure 3.5: Direct mapped cache memory address format

The middle six bits of the address (the block bits) are used to select the
only possible cache-block that can be used for this address. To determine if
the block is cached, we need only compare the tag field of this cache block
only with the tag field of the CPU address. Hence no parallel comparison of
tag fields is required

3.3.3 Block set-associative cache

The fully-associative cache is clearly the most flexible while the direct-mapping
cache is the easiest and cheapest to implement. The desirable combination
of flexibility and low cost can be achieved by combining the direct mapping
and fully associative methods into the block set-associative cache.

In this case, groups of cache blocks are grouped into sets; like direct
mapping, a memory block can only appear in specific sets and, like associative
blocking, all blocks in the set must be compared in parallel.

48

Suppose, for example, that the 64 blocks are organized as 32 sets of two
blocks each. Each block in set i can map into any main memory block j
where j ≡ i (mod S) (where S is the number of sets).

The organization of a 2-way set associative cache is shown in Figure ??
below.

=3in figures/cache.set.org.eps

Figure 3.6: 4-way set-associative cache organization

Note that the other two forms of cache organization—fully associative and
direct mapped—are simply special (extreme) cases of set-associative. Fully
associative caching is set associative with a set size equal to the number of
cache blocks while direct mapping is set-associative with a set size of 1.

3.4 Block replacement policy

The most commonly used block replacement policy (i.e. which block should be
overwritten when a new block is required) is the least recently used algorithm.
The hardware selects for replacement the block least recently used. This is
implemented by adding several bits to each block indicating the length of
time that has elapsed since a hit on it occurred. This is easily done by
clearing this field whenever a hit occurs and incrementing it periodically.

When the old block is overwritten, it may be necessary to first write it
back to main memory if a hit on it has occurred during a write cycle. If hits
only occurred during read cycles, then, of course, there is no need to write
it back to main memory before overwriting it. This is clearly faster than
writing it back. In order for the hardware to determine if memory write-
back is required when discarding a block, a bit each cache entry is used to
indicate if a hit occurred on a write cycle. (This bit is cleared by hardware
when the cache block is discarded.)

49

3.5 Instruction, Data and General caches

We have considered that a cache is used for any memory access in our discus-
sion so far. However, there are often advantages to having separate caches
for data and instruction accesses. The reason is simply that locality of ref-
erence is separate for instructions and data and, more importantly, that an
instruction-only cache does not have to deal with writes to the cache contents
(since most operating systems do not allow self-modifying machine language
instructions). If the cache contents cannot be modified, the complexities in-
volved in updating the main memory when the cache has been changed are
eliminated from the cache controller design. This also simplifies the cache
replacement policy.

Indeed, some machines only cache instructions for this reason. Others,
like the Motorola 68030, have separate 4K caches for data and instructions.
Note that if separate instruction and data caches are built external to the
chip, the CPU chip must give some hardware indication of whether a program
or data reference is in progress so that the correct cache is enabled.

3.6 Cache controller programming

We have considered that cache memory is a hardware only improvement
to system performance and requires no intervention from the programmer.
This is not entirely true, however. For example, suppose that I/O devices
are memory mapped and a program waits for a status register mapped to
address 0xff001003 to become negative with the following code:

loop: tstb 0xff001003

bpl loop

If the status register is initially not in the cache and is positive, it will
be brought into the cache and, of course, remain positive. We will then have
an infinite loop even though the actual memory location 0xff001003 becomes
negative because the cache copy will remain positive.

Consequently, the cache controller must be programmable at least to
the extent that we can configure certain addresses or address ranges to be
ineligible for caching.

50

More complex issues arise when we consider multi-processing systems.
Typically these systems will have a large main memory system shared by
all processors and each processor will also have its own cache. (Note that
local cache memories are essential because all processors use the same single
bus to communicate with main memory. To avoid making the memory bus
a huge bottleneck and have all the processors continually waiting their turn
to use it, it is essential that each processor achieve a very high hit-ratio on
their local caches.)

A problem arises when a processor modifies it cache copy and the con-
troller writes this value back to main memory. If another processor has the
same address cached, it has to recognize that it is no longer valid. Cache-
controller hardware to do this is called bus-snooping circuitry and is essential
in multi-processor systems (or even in systems where DMA controllers can
write to addresses eligible for caching).

51

Chapter 4

Memory Management
Hardware/Software

Cache memory is purely a hardware technique used to enhance system per-
formance. It does not make the memory subsystem more reliable, allow
virtual memory (typically used to allow a program to use more memory than
is actually available), or require any software support1. We will now consider
memory management hardware/software for a virtual memory environment.
Some of the hardware techniques used in cache memory are used here too;
in particular, as we shall see, fast hardware is required to determine if a
CPU address matches a known address. In addition, translation tables which
are nominally maintained in main memory (from the programmer’s point
of view) often have a special cache called the translation look aside buffer
associated with them.

In general, memory management hardware translates the address gen-
erated by the processor (called the logical address) into a physical address
or indicates a fault situation if the translation is unsuccessful. Operating
system software controls the method of translation and handles unsuccessful
translations. (It is often possible to “repair” such unsuccessful translations
but this is done by software and may require disk access, context switches,
etc. involving a delay of hundreds of milliseconds rather than the 100 ns
required to “fix” an unsuccessful translation in the case of a cache miss.)

1Some software support may be necessary to disable caching of memory-mapped I/O
locations. This is a small amount of software support, however and would not be required
for chips like the Intel 80x86 family which have separate I/O instructions

52

Before looking at advanced virtual memory management hardware/software
like that found in the 80486, 68040, or Sparc chips, we first consider the
general principles and examine a simple MMU whose underlying hardware
is relatively easy to understand—the Motorola 68451 memory management
unit (MMU) in a 68000-based system2.

We will use this MMU to make a multi-tasking operating system reliable.
Without such hardware support, it is absolutely impossible to make RYMOS
secure in the face of a malicious or careless assembly language programmer.
In particular, the simple context switch of RYMOS will only work if all tasks
use separate memory areas. But there is nothing to prevent a task from
writing to memory used by another task (perhaps overwriting the machine
code of the other task or even of the kernel). When such events occur, they
will cause the operating system to crash.

4.1 General principles of memory manage-

ment

In this section, we explore the general principles of memory management and
examine what special features on the CPU are required to take advantage of
memory management.

The memory management unit sits between the CPU and main memory.
as shown in Figure ??. Its function is to translate the logical address furnished
by the CPU into a physical address passed onto the memory subsystem or to
indicate that it is unable to translate the given logical address.

=1.5in figures/mmu-gen.eps

Figure 4.1: Memory management unit generic connections

The MMU has access to a translation table that it uses to perform the
translation (or decide that the given logical address is illegal). Conceptually,

2This was used in the department’s first UNIX machine—the Charles River system to
reliably implement UNIX. It is now obsolete but is easier to understand than the more
sophisticated memory management units used in today’s machines.

53

the translation table consists of a number entries giving logical and corre-
sponding physical addresses as well as status information such as whether
the translation is valid. When the CPU initiates a memory access, the log-
ical address it places on the bus is compared by the MMU to all the logical
addresses it knows how to translate. If it succeeds in finding one, the cor-
responding physical address is placed on the memory system address bus;
otherwise, a signal is asserted indicating unsuccessful translation.

4.1.1 CPU requirements

The CPU is responsible for recognizing the “address translation error” signal
(usually called a bus error). This is done in software with a “bus error
service routine” that is invoked when such an error occurs, much like an
interrupt service routine. There is, however, a very important difference
between a bus error and an interrupt. Interrupts are only recognized by the
CPU after an instruction has completed execution. Bus errors, however, must
be recognized as soon as they occur because the instruction cannot continue
if a bus error occurs. Note, for example, that the execution of a memory-to-
memory move instruction involves at least three memory accesses: one (or
more) to read the instruction; one to read the source operand; and one to
write to the destination.

Consequently, the CPU in a system with memory management needs
to be able to abort an instruction before it has completed. Simple 8-bit
processors, for example, do not have this capability. Nor does the Intel 8088,
used in the IBM PC and XT. Consequently, computers based on these chips
cannot use memory management systems.)

The situation is actually more complicated than this once we consider
what we may want the “bus error service routine” to do. The simplest way
to use memory management hardware is to protect the address space used by
one task from being corrupted by another task. In this situation, an address
translation fault means that the instruction causing it was doing something
“illegal”; the operating system then summarily kills the offending task (and
prints an error message like “Bus error”).

However, more sophisticated use of memory management allows the op-
erating system to provide each task with a virtual address space that may be
larger than the actual physical RAM on the system. Only some portions of
a task’s logical memory spaced is mapped to physical memory at any time.

54

If a translation error occurs, it may be due to an “illegal” access (as in the
protected system) or it may be that the logical address is legal but is not
mapped to physical memory (in which case, the actual memory contents will
be stored on a disk drive). In the latter case, the operating system will have
to “repair” the condition that led to the bus error by reading in the memory
location from disk to physical memory and mapping the logical address to
this location. Once this is done, the instruction that originally caused the
bus error will be re-executed from the beginning or continued from the point
where it was aborted.

To re-execute or continue an instruction is a complicated operation, how-
ever. Re-executing requires that any partial effects of the instruction be
undone. (For example, if the 680x0 instruction move -(a0),(a3) results in
a bus error when (a3) is accessed and a0 has already been decremented,
the CPU would have to increment a0 before re-executing the instruction.)
Instead of re-executing an instruction that caused a bus error, some proces-
sors save enough information on the stack to allow it to be continued from
whatever point in its execution it had reached when the fault occurred.

In short, a more sophisticated processor is required to implement either
instruction re-execute or instruction continuation. For example, the 68000
does recognize bus errors and aborts the current instruction. However, it is
incapable of re-execute or continuing the instruction. Consequently, while it
can be used in a protected memory management system, it cannot be used
in a virtual memory system.

Which is better, instruction re-execute or continuation? Instruction con-
tinuation may seem superior because we will not waste time repeating that
portion of the instruction that has already been executed. However, a lot
of information has to be pushed onto the stack to implement instruction re-
execute which may consume more time than the time saved. Which method
is better really depends on overall CPU architecture and the interplay of
complex tradeoffs in chip design. The “best method” is ultimately a subject
of debate. The Motorola 680x0 family uses instruction continuation while
the Intel 80x86 family uses instruction re-execute.

There is one additional feature that the CPU must have when memory
management is used. The MMU must, of course, be programmable and the
operating system programs it to perform the mapping of logical to physical
space that is desired. Obviously, the benefits of memory protection are com-
pletely lost if any task can re-program the MMU; nothing but the operating

55

system must do this. Consequently, the CPU must have at least two dif-
ferent modes of operation: one mode that the Operating system alone can
use and that allows the MMU to be reprogrammed and another mode for
ordinary tasks in which any attempts to re-program the MMU are prevented
by hardware. For example, the 680x0 family has two operating modes: User
and Supervisor. The 80x86 implements a more sophisticated system with
four modes of operation.

The protection possible when the MMU knows the operational mode of
the CPU is greater than this, however. It was mentioned earlier that each
translation table entry has status information associated with it. Besides
indicating that a particular translation table entry is valid, the status often
indicates if the translation is only legal in supervisor mode. In this way,
the kernel can program the MMU so that user-level tasks cannot access
mapped areas that correspond to private kernel memory. To summarize, a
CPU must have the following features in order to take advantage of memory
management:

• Ability to run in at least two operational modes (e.g. user and super-
visor).

• Ability to abort an instruction and execute a “bus error service routine”
whenever an address cannot be translated.

• If virtual memory is to be implemented, the CPU must also be able to
continue or re-execute a previously aborted instruction.

4.1.2 Types of MMUs

There are many different types of MMUs. Let us first look at a hypothetical,
simple MMU that has been programmed to translate a 16 Megabyte logical
addressing range into a 8 Megabyte physical memory system as shown in
Fig. ??.

=5.5in figures/genmmu-map.eps

Figure 4.2: Simple memory mapping example

56

Let us first be clear on what the diagram means. The logical address are
produced by the CPU and range in value form 0x000000 to 0xffffff. (i.e. The
logical address space uses 24 bits and is 16 MB in size.) These addresses
are then translated by the MMU into physical addresses in an 8 MB range
(0x000000–0x7fffff).

Looking at the physical address map first, we see that the kernel is loaded
into the lowest 2.5 MB of memory (code in the first 1.5 MB and data and stack
in the next two .5 MB slots). Various portions of memory are then allocated
to sections of Task-A. The code section occupies 1 MB from 0x300000 to
0x3fffff; Its stack and data sections, which are each 512 Kbytes, start at
0x500000 and 0x600000 respectively. The kernel and Task-A account for 4.5
Mbytes of the 8 MB of physical memory. The other 3.5 MB are not accounted
for (yet!).

Advantages of memory management

But what is gained by all this translation stuff? The most important benefit
of address translation is that our multi-tasking operating system can now
be made secure. The operating system programs the MMU at the time it
switches contexts to Task-A, setting up appropriate translation tables. Note
that, although kernel resources are memory mapped so that the kernel can
access them, any attempt by Task-A to access these locations would be denied
by the MMU because the CPU would have to be in supervisor state to enable
those mappings.

Besides making security possible, address translation also makes things
much more convenient. Without memory management, tasks must be loaded
at specific memory locations or be compiled for position independent code
(which usually results in less efficient execution). For example, Task-A has
been compiled so that its program starts at location 0x000000 and its stack
is initialized at the high end of memory (0xffffff). Without memory manage-
ment, Task-A would have had to be loaded at those locations. This would
have been quite a trick since the stack address 0xffffff doesn’t even exist
in physical memory and the low end of memory is already occupied by the
kernel!

Indeed, with memory management hardware, we can compile all tasks so
that they begin at 0x0 have a stack at the high end of memory. We can also
obtain other advantages.

57

Suppose, for example, that Task-A requires more stack space. As cur-
rently mapped, the last logical stack address available is 0xff8000 which is
mapped to 0x480000. We could add another 0.5 MB of logical stack addresses
between 0xf00000 and 0xf7ffff. These would definitely not be mapped to the
physical memory contiguous with the current portion of physical memory
allocated to the stack since this would overwrite the code portion of Task-A.
However, there are spare 0.5 MB sections elsewhere in physical memory that
we could map the increases stack area to. In short, we have the capability of
mapping large contiguous logical address spaces into smaller, non-contiguous
physical sections. This greatly reduces the problem of memory fragmentation
that would otherwise arise.

A final thing to note about the hypothetical MMU of Fig. ?? is that
entire ranges of addresses are mapped, not individual addresses. There are,
in general, two ways to do this depending on whether the size of all the
ranges is fixed and how many different mappings there are. These are called
the paged and segmented approaches to memory management. We examine
them now.

Segmented memory

In segmented memory systems, the MMU translates a relatively small num-
ber of variably sized segments from logical to physical space. A segment is
generally chosen to correspond to a logical division in the program’s address
space such as stack, initialized data, un-initialized data, code, etc.

Segmentation is the primary method used in such processors as the Intel
80286 where the segment size can be as small as 16 bytes or as large as 64
Kb.

The main advantage of segmentation is the relatively small number of
address translation entries that are necessary (hence simplifying the hardware
design of the MMU). Another important advantage is that memory is used
quite efficiently as the size of the segment can be tailor made for the section
of the program that it holds.

There are some serious disadvantages, however, especially in a virtual
memory system. The problem is related to treating an entire section of
the program (e.g. the code segment) as one indivisible unit that is entirely
mapped or entirely un-mapped. In virtual memory systems, logically valid
address regions may be un-mapped and stored on disk until needed. In the

58

case of the code segment, for example, the operating system may want to
un-map part of the section and keep the rest mapped. But partial mapping
of a section can only be done on a segmented system by splitting the section
into two or more different segments. As soon as we begin to do this in
earnest, however, we dramatically increase the number of segments and lose
the advantages associated with segmented systems.

In short, segmented memory management systems are most appropriate
to small systems where virtual memory is not used extensively, the number of
tasks is small and fits into physical memory, and the size of physical memory
is small.

Paged memory

In paged systems, all translatable sections of memory are the same size, called
the page size. Page sizes are small compared to the size of memory, but
usually larger than the smallest segment size. (Typical page sizes are 256
bytes for the VAX, 4K for the 80386, and 8K for the Sun Sparcstations.)

The main advantage of paged systems is their greater flexibility compared
to segmented systems, particularly in virtual memory situations. Suppose,
for example, that a task has a 1 Mb code section. With a segmented sys-
tem, it would occupy one segment and would either be entirely mapped or
entirely un-mapped. With paging, however, it would require 256 4K pages
any combination of which could be mapped at any given time. In an extreme
example, the program may spend almost all of its time in an inner loop that
occupies less than 1 page of memory. With paging, only this single page
would need to be mapped once the program was up and running. In other
words, the “real” memory resources consumed by the program once it was
running would be only 4K for a paging system versus 1 Mb for a segmented
system, an improvement of more than 99%.

There are disadvantages to paging, however. Most important is the sheer
size of the mapping tables. In principle, every addressable page must be
mapped. For 32-bit machines with an 4K page size, the 4 Gbytes of ad-
dressable space can be divided into 1024 K pages. Each page descriptor
would require at least 4 bytes. Hence out page tables would require 4 MB of
memory !

This is a considerable overhead and various techniques are available for
reducing it. Nevertheless, even with reduction techniques, there are almost

59

always far more address translation table entries in a paged system than in
a segmented system. While a segmented system may have a small enough
number of entries in its translation table that they can all be accommodated
in specialized hardware registers, paging systems usually have such large
tables that they must be stored in memory itself. This, in turn, requires that
caching techniques be used so that the most frequently used page accesses do
not require additional memory cycles to retrieve the translation information
from memory. (Note, however, that memory table lookup, when required, is
done by hardware in microcode and is transparent to the programmer.)

Virtual memory

Virtual memory systems add kernel-level software to a memory management
system that allow users to access more memory than physically exists on a
system. This is done in an entirely transparent way so that the program-
mer need have no knowledge of the actual amount of memory present. The
programmer simply assumes that, say, 4 GBytes of memory exist and use as
much of this memory space as required for his application. If the program
requires 64 MByte of memory and there is only 8 MB of physical memory
available, the program will still work. The only difference will be that it will
run somewhat slower when there is less physical memory than required due
to page faults.

The basic idea in paged virtual memory systems is to retain in physi-
cal memory only those pages that are currently being used. As with cache
memory, “locality of reference” tells us that at any given time only a small
proportion of a program’s total address space is in use. When a program
running in virtual memory system accesses a page that is not mapped, the
kernel software (in the “bus error service routine” examines the status infor-
mation in the translation table entry that caused the fault. The kernel can
use bits in the status field to indicate that the page requested is “cached” on
disk. (The kernel could use the physical address field of the translation entry
for other purposes in this case; for example, it could hold the block number
on disk where the page was saved.)

The kernel would then look for a page in physical memory that had not
been accessed recently and write it to disk. The newly freed physical memory
page could then be used to read in the page that had caused the page fault. Of
course, since a multi-tasking operating system is assumed, the kernel could

60

simply schedule these disk transfers and do a context switch to another task
whose current pages were in memory while it waited for the disk controller to
complete the page transfers. Thus the CPU would not necessarily be sitting
idly by while the “page repair” took place.

4.2 The 68451 MMU

The Motorola 68451 Memory Management Unit implements a segmented3

system. The MMU sits between the processor and main memory as shown
in Fig. ??.

=1.5in figures/mmu451-more.eps

Figure 4.3: Basic configuration of 68551 MMU in 68000 system

4.2.1 Some 68000 details

To understand the operation of the address translation mechanism some
preliminary information about how the 68000 works is necessary. Specifically:

• Although the 68000 has 32-bit address and data registers internally,
its external connections only provide a 16-bit data bus and a 24-bit
address bus.

• Address line A0 is missing; rather the address lines A23 to A1 give the
word address. The processor also asserts strobe lines (UDS and LDS)
to indicate if it wants to access the lower or upper byte of the word or
the entire word.

• The 68000 operates in either “user” mode or “supervisor” mode. When
in user mode, certain instructions (such as enabling or disabling inter-
rupts) are disallowed. The processor automatically switches to super-
visor mode when an interrupt, bus error, or software interrupt occurs.

3If all the segments are made the same size, it could be argued that the 68451 imple-
ments paging. There are only 32 translation entries on the chip, however, and most would
consider this too small a number to be considered a paging system.

61

• The 68000 gives an external hardware indication of the type of memory
access it is performing with the function code lines (the 3-bit FC2 to
FC0 code). These indicate if the processor is accessing instructions or
data and whether it is in user or supervisor state as shown in Table ??
below.

Function code Meaning
000 Undefined (reserved)
001 User data
010 User program
011 User defined
100 Undefined (reserved)
101 Supervisor data
110 Supervisor program
111 CPU space

Table 4.1: Function codes for 68x00 processors

• (Note that, in a sense, there are 35 address bits in the 68x00 family
since the Function Code bits can be used to split the address space into
8 different “segments”. Although not all of the segments are predefined,
the MOVES instruction (which is available only in supervisor mode) can
coerce any value onto the FC lines.)

Basic 68451 operation

Inside the chip are 32 translation descriptors that are used to translate a
logical address into a physical address. The physical address is then presented
to the memory system in the normal fashion. Note that only the upper 16-
bits of the 24-bit address are translated. The lower 8 bits are identical in
both the logical and physical addresses.

If the translation of the logical address to physical address does not
succeed, the Bus error signal is asserted and the instruction in progress is
aborted.

In simplified terms, the attempt to translate from logical to physical ad-
dresses proceeds as follows.

62

1. Each descriptor contains a logical address to match with the logical
address from the CPU, a physical translated address, and an address
mask indicating which bits of the logical address have to match.

2. If a match is found between the CPU’s logical address and the un-
masked bits of a descriptor’s logical address, the physical address is
formed from the unmasked bits of the descriptor’s physical address
and the masked bits of the logical address.

3. If no match is found, a berr signal is asserted.

Suppose, for example, that the logical, physical and mask fields of De-
scriptors 0, 1, 2, 3, 4, and 5 are as shown in Table ??. (Note that since
the the 68000 only has a 24-bit address bus and the 8 low order bits of the
logical address are not translated, only the most significant 16 bits remain to
be translated. Consequently, the logical address, physical address and logical
address mask entries in a descriptor are 16 bits.)

The logical mask field effectively indicates the size of the segment being
translated. In the example in Table ??, the 0xF800 logical masks indicate
that only the most significant 5 bits of the logical address need match. Con-
sequently, the least significant 19 bits do not matter; thus, these entries
describe 512 Kb segments. Similarly, the entry with a mask 0f 0xF000 de-
scribes a 1 Mb segment. (Note also that the segments described correspond
to the Task-A code, data and stack segments of Fig.??.)

Simple 68451 descriptors
Descript. 0 Descript. 1 Descript. 2 Descript. 3 Descript. 4 Descript.

Logical 0000 0800 8000 F800 4000 5000
Physical 3800 4000 6000 4800 0000 1000
Mask F800 F800 F800 F800 F000 F800

Table 4.2: Simple example of 68451 descriptors

The mappings defined by Table ?? are described pictorially in Figure ??.
Let us now look at the descriptors in more detail.

Descriptors 2 and 3 map the 512 Kb segments corresponding to Task
A’s data and stack sections. The other descriptors are not as “clean”; they

63

=4.5in figures/map-451-1.eps

Figure 4.4: How Descriptors 0–5 are mapped in Table ??

illustrate some “weaknesses” in the 68451’s design and how these problems
are solved.

Descriptors 0 and 1 are used to map the 1 Mb code segment for Task
A from the logical address range 0x000000–0x0fffff to the physical range
0x380000–0x47ffff. Since 1 Mb descriptors are possible, why not just use 1
descriptor to map the entire range? The reason is that the 68451 chip simply
ignores the bits in the physical address that are masked. Only the unmasked
bit positions are changed. We want to map addresses beginning with 0x00
to addresses beginning with 0x38 which means we want to change the most
significant 5 bits. Hence the mask must begin with 5 1’s, meaning that the
segment size can only be 512 Kb. To do the mapping we want, we are forced
to split what is “logically” a single 1 Mb segment into 2 physical 512 Kb
segments.

In more sophisticated MMUs, it would be possible to do what we want if
the physical address were obtained by adding the descriptor’s physical address
to the logical address instead of just substituting the most significant bits.
Such an MMU, however, would require more circuitry (i.e. an adder) and
would be slower. (As we shall see later, however, this method is used in the
Intel 80x86 family of processors).

The kernel code section occupies the 1.5 Mb logical address space from
0x400000–0x57ffff. It is also split into 2 physical segments: one mapping
the first Mb (Descriptor-4) and the other mapping the remaining 512 Kb
(Descriptor-5). The reason for splitting the “logical” segment in two parts
here is different than it was in the previous case. A segment size of 1.5 Mb
is simply not possible under any circumstances with the 68451. Although
segment sizes can be as small as 256 bytes or as big as 8 Mb, the segment
size must be an exact power of 2; since 1.5Mb = 220 + 219 is not an exact
power of 2, it cannot be mapping with a single segment. Note, however,
that in this case we are at least able to map the lower 1 Mb with a single
descriptor because we are mapping to a physical address space where only
the 4 most significant bits differ from the logical address.

64

As described so far, there is a major problem with the 68451 chip. Specif-
ically, there is no distinction between user space and supervisor space. Fig-
ure ?? shows that the 68000’s Function Code lines are connected to the MMU
chip. Let us look at how these are used.

Besides 32 descriptors, the 68451 chip has 16 8-bit registers collectively
called the Address Space Table. For our purposes, we will only consider the
Address Space Table(AST to have 8 instead of 16 entries, however4. The
AST is programmed by the kernel. When an address access is made, the
MMU uses the 3 Function Code lines as index number (in the range 0–7)
into the AST where it retrieves an Address Space Number ASN. This ASN is
then used to further identify the Descriptors that are eligible to be used in
translating the logical address.

Each descriptor also as an Address Space Number associated with it.
In order for a descriptor to be eligible to translate a logical address, its
ASN must match the ASN retrieved from the Address Space Table from the
Function Code number. The match need not be exact, however, as each
descriptor also has an 8-bit Address Space Mask which specifies which bits
of the global AST must match the descriptor AST in the same way that the
Address Mask indicates which bits of the logical address have to match the
bits of the descriptor’s logical address.

In short, for a descriptor to successfully translate a logical address, two
conditions must be met:

1. The CPU’s address must match the descriptor’s logical address (after
masking by the descriptor’s address mask); and,

2. The ASN derived from the Address Space Table must match the de-
scriptor’s masked ASN.

Finally, if no descriptor matches the CPU’s address as described above,
the Bus Error line is asserted.

The above description of how an address is translated explains how the
ASN is used, but does not provide any details on what the ASN really means
and how its value is set. The MMU hardware simply follows the rules stated

4It is possible to use all 16 entries in more complex situations where more than one
bus master is used on the system. Examining such complex systems is beyond the scope
of the present discussion.

65

above; it is up the operating system software to set up the various fields of
the descriptors and the global Address Space Table.

The Address Space Numbers in the AST are usually chosen by the op-
erating system to prevent tasks from accessing areas that are mapped but
which the operating system a particular task or tasks to gain access to. To
see how this can be done, consider the expanded set of descriptors given in
Table ?? and the Address Space Table layout when each task is running as
shown in Table ??.

Descript. 0 Descript. 1 Descript. 2 Descript. 3 Descript. 4 Descript.
Logical 0000 0800 8000 F800 4000 5000
Physical 3800 4000 6000 4800 0000 1000
Mask F800 F800 F800 F800 F000 F800
ASN 02 02 01 01 82 82
ASN Mask 7F 7F 7F 7F 80 80

Descript. 6 Descript. 7 Descript. 8 Descript. 9 Descript. 10 Descript.
Logical 0000 F800 F800 A800 6800 8000
Physical 2800 7000 5800 1800 2000 3000
Mask F800 F800 F800 F800 F800 F800
ASN 08 04 10 81 81 10
ASN Mask 7F 7F 7F 80 80 7F

Table 4.3: Complete 68451 descriptors

=4.2in figures/map-451-2.eps

Figure 4.5: How Descriptors 0–11 are mapped

When examining Table ??, note that there several descriptors for the
same logical address range. For example, Descriptors 3, 7 and 8 all map the
logical address space 0xf80000–0xffffff. But they are map to different physical
addresses. They are, of course, the stack space descriptors for the tasks A,
B and C.

66

AST Entry Task A Task B Task C
User data (1) 0x01 0x04 0x10
User program (2) 0x02 0x08 0x02
Supervisor data (5) 0x81 0x84 0x90
Supervisor program (6) 0x82 0x86 0x82

Table 4.4: Sample Address Space Table entries for 68451

In short, the descriptors describe the mappings for several different tasks.
It is the Address Space Table that determines which task has active descrip-
tors at any given time. Consequently, the AST is usually re-programmed
at context switch time by the kernel. This is much more efficient than re-
programming the entire MMU every time a context switch occurs.

Since the AST is indexed by the Function Code bits and, in normal
operation, only 4 for the possible FC bit patterns are used (i.e. 1 for user
data, 2 for user program, 5 for supervisor data and 6 for supervisor program),
only those 4 entries in the AST need be reprogrammed at context switch
time. This makes the overhead of implementing memory management in a
multi-tasking environment very low as far as the additional time required to
perform a context switch.

Referring now to the Space Mask entries in the the descriptors, note that
many are 0x7f (i.e. the MSB is 0) while the others have the MSB set. We
see that all segments belonging to the kernel have an ASN and mask with
the most significant bit set. Consequently, only AST entries with this bit
set can possibly match. Examining Table ??, we see that only the entries
accessed in supervisor mode meet this requirement. Consequently, all kernel
segments are protected from being accessed by user tasks. Since the masks
in user descriptors never have the most significant bit set, the kernel can still
access user space as well as its own space.

Figure ?? shows how the descriptors perform the required mappings for
all of the tasks. (The reader should confirm his or her understanding of the
descriptors and address space tables by seeing how they relate to the figure.)

The following sections until ?? in small print are for reference only.

67

4.2.2 Other programmable registers

Segment status register

There is a segment status register associated with each of the 32 descriptors as
shown in Figure ??.

=0.4in figures/451-status.eps

Figure 4.6: 68451 Descriptor Status Register configuration

The bits are used as follows:

U: The Used bit is set when a descriptor is used successfully in translation. The
Operating System can use this information to implement a least-recently
used segment replacement policy. The bit can be cleared by writing to it.

I: The Interrupt bit is used to enable interrupts when the descriptor is used in
a translation. The Operating System could exploit this to set data break-
points or to emulate virtual memory-mapped devices that have not yet been
installed.

IP: The Interrupt Pending bit indicates that this descriptor has generated an
interrupt.

M: The Modified bit is set when data is written to a segment. The Operating
system can use this information to determine if an old segment has to be
re-written to disk when it is replaced.

WP: The Write Protect bit prevents write access to the segment being described.
An attempt to write will generate a FAULT.

E: The Enable bit indicates that the descriptor is valid and can be used in
translation.

Descriptor Pointer

Each descriptor is 9 bytes long; hence all 32 descriptors are 288 bytes long. Rather
than have each descriptor memory mapped, only one descriptor at a time is mem-
ory mapped to the MMU’s accumulator. The 5 low bits of the Descriptor Pointer
indicate which descriptor is currently accessible.

68

Read Descriptor Pointer

If a FAULT occurs, this register is set to the descriptor number that caused the
fault (e.g. write violation).

Local Status Register

Figure ?? shows the layout of the “local” status register. (Note that this “local”
register applies to the status of the entire 68451 chip, not to any “local” condition
in a specific descriptor. It is called “local” because it is possible to design a memory
management unit using several 68451 chips to allow for more than 32 descriptors.
The GAL and GAT fields in the local status register are used for “global” purposes
in a multi-68451 system. Such systems are beyond the scope of these notes.)

=0.3in figures/451-lsr.eps

Figure 4.7: 68451 Local Status Register

The bits indicate:

L7-4: describe the cause of the last event (e.g. 1100 = write violation, 1010 =
undefined segment (no successful translation), etc.)

RW: indicates whether a read or write operation was in progress when event
occurred;

LIP: Local Interrupt Pending is set if an interrupt has been generated by any of
the descriptors.

4.3 Programming the 68451

The MMU resides in physical address space and its internal registers are memory
mapped to 64-bytes (32 words) of memory. These are programmed like any internal
registers of a memory-mapped peripheral device. We can program the chip in C
by first setting up define statements setting up the memory-mapped addresses of
the registers:

#define MMU 0x???????? /* Whatever the base address of MMU is */

#define Ast0_altfc3_0 (*((char *) MMU))

69

#define Ast1_user_data (*((char *) MMU + 2))

#define Ast2_user_prog (*((char *) MMU + 4))

. . .

#define Ast5_super_data (*((char *) MMU + 10))

#define Ast6_super_prog (*((char *) MMU + 12))

#define Ast7_intrpt_ack (*((char *) MMU + 14))

. . .

#define Log_base_addr (*((int *) MMU + 32))

#define Log_addr_mask (*((int *) MMU + 34))

#define Phys_base_addr (*((int *) MMU + 36))

#define Addr_space_num (*((char *) MMU + 38))

#define MMU_status (*((char *) MMU + 39))

#define Addr_space_mask (*((char *) MMU + 40))

#define Descriptor_ptr (*((char *) MMU + 41))

#define Intrpt_vector (*((char *) MMU + 43))

#define MMU_global_status (*((char *) MMU + 45))

#define MMU_local_status (*((char *) MMU + 47))

#define MMU_segment_status (*((char *) MMU + 49))

#define Intrpt_descriptor (*((char *) MMU + 57))

#define Result_descriptor(*((char *) MMU + 59))

#define Direct_translate (*((char *) MMU + 61))

#define Load_descriptor (*((char *) MMU + 63))

The outline of some utility routines follow:

4.3.1 Setup descriptor

int setup_descriptor(unsigned int descriptor_number,

unsigned int physical_base,

unsigned int logical_base,

unsigned int address_mask,

unsigned char address_space_num,

unsigned char address_space_mask,

unsigned char status)

{

/* Make MMU accumulator be proper descriptor */

Descriptor_ptr = descriptor_number;

/* Check if this descriptor is already in use */

if ((MMU_status & 1) == 1) { /* In use */

70

ERROR

} else {

disable_interrupts(); /* Disallow interrupts here */

Log_base_addr = logical_base;

Log_addr_mask = address_mask;

Phys_base_addr = physical_base;

Addr_space_num = address_space_num;

MMU_status = status;

Addr_space_mask = address_space_mask;

}

}

4.4 Paged Memory In Motorola Systems

In this section we examine how paged memory management systems are
implemented in the Motorola 68000 series5.

First, let us look at the requirements for paged systems as compared to
segmented systems. The most striking feature is that the translation tables
are much larger in a paging system simply because the page size is much
smaller than the segment sizes used in segmented systems.

In a paged system, all addresses have the format shown in Fig. ??. Basi-
cally, the most significant bits indicate the page number while the lower bits
indicate the offset within a page.

=0.4in figures/page-addr.eps

Figure 4.8: Address format in a paged system

In the 680x0 family, the page size can be any power of 2 between 256
bytes and 16 Kb. However, once the bootstrap routine sets the page size, it
does not change and all pages have the same size. We will assume in most
examples that the page size is 4 Kb (i.e. the 20 upper bits of the address are
the page number and the lower 12 bits are the offset within the page).

5This applies to the 68020 using the separate 68881 MMU chip as well as the 68030
and 68040 which both incorporate the MMU into the same chip as the CPU.

71

We have already seen that the number of page descriptors will be very
large in a paged system. Indeed, it will be so large that the “page tables” will
have to be stored in memory. The Memory Management Unit will contain
a pointer to these page tables as well as a specialized cache memory to hold
the translation information for the most recently used pages. In order to
map all of virtual memory in a single “page table”, we would need 220 or
about 1 million entries! Furthermore, each task should have its own page
table, so a separate million entry page table would be needed for each task.
Assuming each page table entry is 8 bytes and that we have 50 tasks, we
would require 400,000,000 bytes of storage just for the page tables! This
kind of arrangement is shown in Fig. ??.

=2.4in figures/pagetab-huge.eps

Figure 4.9: A hypothetical “huge” page table

These calculations should be enough to convince you that this way of
implementing paged memory is totally impractical. The basic problem is
due to the requirement of mapping all of the logical address space. Very few
applications really need 4 Gigabytes of addressing space! We can dramati-
cally reduce the size of the tables by limiting the number of pages that are
actually mapped in at least 3 ways:

1. Impose a limit on the number of page descriptors.

2. Use a multi-level tree structure in our page tables.

3. Use a form of segmentation to allow several pages that occupy contigu-
ous logical and physical space to be mapped with a single page table
entry.

Let us examine how each of these methods could work. As we shall see,
they are particularly powerful when combined.

In the example of Fig. ??, the “root pointer” simply indicated the starting
address of an array of page descriptors with the assumption that the array
was big enough to translate any logical address. It is a simple matter to add
additional information to the root pointer giving the number of entries in the

72

table it is pointing to. For example, if only the first 80 K of logical address
space is used, then only 20 page descriptors are required since any logical
address outside of this range would be assumed to be illegal. Thus we add a
limit field to the root pointer. In this case, the limit would be 20 as shown
in Fig. ??.

=2.4in figures/pagetab-small.eps

Figure 4.10: A hypothetical “small” page table

This method has the severe disadvantage that it can only map a con-
tiguous region of logical addresses. As in a segmented system, it is often
necessary to map several regions which are far apart in memory. The most
common example is mapping code regions to low memory and stack regions
to high memory.

One way to achieve this is to use a two-level page table. In stead of having
the root pointer give the starting address of the array of all page descriptors,
it points to an array of table descriptors. Each table descriptor in the array
in turn points to another array of page descriptors.

The first few bits of the logical address are used to index into the table of
descriptors. The selected descriptor points to a page table and the reaming
bits in the logical page number are used to index into this table to retrieve
the physical address of the page, or the frame6.

This type of arrangement is shown in Fig. ??. There are 16 entries in the
descriptor tables and one is selected by the most significant 4 bits of the log-
ical address. The remaining 16 bits of the logical page number (A27 −−A12)
are used to index into a page table whose starting address is determined by
the descriptor table pointer found in the first table.

Note that each descriptor in the first level table is like a “mini root
pointer” with its own limit field. We have further specified the limit to be an
upper or lower limit by appending -U or -L to the limit number. The actual
index must be less than or equal to upper limits or higher than or equal to
lower limits. This is particularly useful when only the high addresses of a
section of memory are accessed as is the case for stack accesses.

6The word frame is often used for the portion of physical memory corresponding to a
logical address page.

73

Finally, note that only 12 of the 16 descriptors in the first level table
actually point to page tables. The others have been set up as “invalid”
entries. Similarly, the first entry in the page table pointed to by descriptor
‘A’ has a “bad” status. Only the second entry is mapped.

=3.4in figures/pagetab-2level.eps

Figure 4.11: A hypothetical “2-level” page table

The reader should confirm the tables as set up result in the following
translations shown in Table ??. Any address not in the logical address range
given in the table would result in a Bus Error.

Logical address Physical address
00000000--00000FFF 00AB1000--00AB1FFF

00001000--00001FFF 008BD000--008BDFFF

00002000--00002FFF 00345000--00345FFF

00003000--00003FFF 00451000--00451FFF

A0001000--A0001FFF C0678000--C0678FFF

FFFFE000--FFFFEFFF 00123000--00123FFF

FFFFF000--FFFFFFFF 00067000--00067FFF

Table 4.5: Sample translations for Fig. ??

Note that we have been able to translate a very wide addressing range
with a relatively small table. The total number of entries is 16 in level-1 and
8 in the level-2 tables. Only 24 entries occupying 196 bytes is required for the
entire mapping. This is a very considerable improvement over a single-level
table!

The idea of multi-level tables can be extended to more than 2 levels.
Fig. ?? shows a 3-level configuration. The advantages that we obtain with
the 2-level mapping are obtained at a lower level here. Tables with more than
2 levels are particularly efficient when the application requires many, many
small portions of memory at widely different logical addresses. This is often

74

the situation in artificial intelligence applications or in data base applications.
It would be quite rare in scientific “number-crunching” applications.

Fig. ?? also uses a new “trick” to reduce size of page tables—the early
termination page descriptor. The second level of tables contain pointers to
the third level page tables except for the second entry in the descriptor table
pointed to by entry “A” of the first table. The type entry here indicates
that this is a page descriptor, not a pointer to a third level page table.
Such an “early-termination” page descriptor is used to map the entire logical
addressing range that accesses to a contiguous portion of physical memory
starting at the address indicated by the value field of the descriptor (i.e. the
field that would normally point to a third level page table). In this case,
the entire 1 Mb logical address space A0100000--A01FFFFF is mapped to the
physical memory range B0400000--B04FFFFF. This dispenses with an entire
256-entry third level page table. Of course, it requires that we have 1 Mb
of contiguous physical memory. This kind of mapping would be particularly
useful for mapping I/O space. Note that early termination descriptors could
also be used in the Level-1 tables. In this case, one descriptor would map a
256 Mb contiguous range.

=4.4in figures/pagetab-3level.eps

Figure 4.12: A hypothetical “3-level” page table

4.4.1 Register, Table and Descriptor Formats

We now examine the details of the 680x0 memory management registers and
the format of descriptors. We shall also examine such details as how user
and supervisor spaces are protected from each other.

The Translation Control Register (TTC) is used to set up the main pa-
rameters in the translation process such as page size and number of levels in
the table. The format of the TTC is shown in Fig. ??.

The fields in the TTC have the following meaning:

E This bit enables address translation; if E = 0, the logical addresses are
not translated. The E bit is set to zero on reset.

75

=0.3in figures/ttc.eps

Figure 4.13: The 680x0 TTC Register

S In the preceding discussion, we have assumed a single “root pointer”
register. In fact, it is possible to use two separate root pointers: one
for user mode accesses; another for supervisor mode. If the S bit is set,
both pointers are used. In our examples, we will assume that only a
single root pointer is used for both modes of operation.

F The F bit is used to achieve an extra level of table translation. If set,
the first level of the address translation tree is indexed by the Function
Code bits, not by address bits. In our examples, we assume this bit is
not set.

PS These 4 bits determine the page size: 1000 for 256 byte pages to 1111
for 32 Kbyte pages.

IS This 4 bit field indicates the number of most significant bits to ignore.
For example, if it is set to 8, only the lower 24 bits of the logical address
is used. This field is used in small systems. We will always assume it
is zero.

TIA–TID These four fields give the number of logical address bits used to
index the 4 levels of tables A, B, C, and D. Note that PS+IS+TIA+TIB+TIC+TID
must be 32. Any attempt to load the TTC with values inconsistent
with this result in an exception. In our two-level table example, we
had PS = 12, TIA = 4, TIB = 16, and all the other levels zero. In the
3-level example, we had, PS = 12, TIA = 4, TIB = 8, TIC = 8, and
TIC = 0.

The root pointer register format is shown in Fig. ??.
The meaning of the various fields is:

L/U Indicates if the limit is an upper limit (L/U = 1) or a lower limit (L/U
= 0).

76

=0.3in figures/root-ptr.eps

Figure 4.14: The 680x0 Root Pointer Register

Limit This 15-bit field gives the upper or lower limit on the size of the table
pointed to by the root pointer.

DT The Descriptor Type field indicates what the root pointer is pointing
to. The possible values are:

OO: Invalid.

O1: Page descriptor. If a page descriptor is found earlier than ex-
pected, it is called an “early termination” descriptor and maps a
contiguous space of memory.

1O: Points to a 4-byte descriptor. (Descriptor’s come in 4- and 8-byte
varieties. We consider only 8-byte descriptors here.)

11: Points to an 8-byte descriptor.

Physical Address This 24-bit field gives the starting address of the table
the root pointer is pointing to.

Table descriptors are much like root pointers. Their format is given in
Fig. ??. The primary difference between root and table descriptor pointers
is the meaning of the bits in the status field. These bits are described as
follows:

S: When the Supervisor bit is set, the CPU must be in supervisor mode for
the translation to continue. Otherwise a bus error is generated.

CI: The Cache Inhibit bit is used to inform external hardware that any
addresses matching this descriptor should not be cached. This would be
used, for example. to prevent I/O space from being cached or to disable
caching of shared memory in a multi-processing environment from being
cached if it controlled system-level resources (e.g. semaphores).

Note that table descriptors

77

=0.8in figures/table-descriptor.eps

Figure 4.15: The 680x0 Table Descriptor format

=0.8in figures/page-descriptor.eps

Figure 4.16: The 680x0 Page Descriptor format

4.4.2 Physical operation

4.4.3 Kernel software considerations

78

