
COE 628 (Operating Systems) Lab 6 (2017) Page 1 of 3

Operating Systems (coe626) Lab 6
March 6, 2017

Duration 1 week

Table of Contents
1. Lab Description
2. Lab Objective
3. Exercises
4. Deliverable

Description

In this lab, you will learn how to synchronize the actions of multiple threads. Synchronization is a
means to ensure correct flow of execution between two or more threads working with shared data. We
cover two types of synchronization: locking and waiting.

Locking is used to prevent race condition between two or more threads to access shared data. It is used
to ensure that only one thread that can access shared data at a time (to prevent race conditions).

Waiting is used to enforce the correct sequence of execution. In this lab, we will use mutexes in order
to handle these two type of synchronization.

Objectives

Learn how to synchronize threads in a POSIX compliant operating system using C. (i.e. Identical
source code should work in Linux, Solaris, Windows with cygwin, Mac OSX, etc.)

A mutex, which stands for mutual exclusion, is the most basic form of synchronization. A mutex is used
to protect a critical region, to make certain that only one thread at a time executes the code within the
region. Since only one thread at a time can lock a given mutex, this guarantees that only one thread at a
time can be executing the instructions within the critical region. Although we talk of a critical region
being protected by a mutex, what is really protected is the data being manipulated within the critical
region. That is, a mutex is normally used to protect data that is being shared between multiple threads.
Mutexes are for locking and cannot be used for waiting.

Condition variables are used in combination with mutex in situations when waiting is needed.

Version 1.1(March 6, 2017)

COE 628 (Operating Systems) Lab 6 (2017) Page 2 of 3

What you have to do
Steps to perform (Part 1)

1. Download the code lab6.c. In the code, each of the placeholders should be replaced with one or
more C instructions in order to complete the program. The required libraries are included but
you may need to include more libraries if you follow a different approach. In this program, the
goal is to have five threads each of which generates 2000 random numbers and adds them to the
shared variable sum. The generator threads have been implemented in
generator_function. Read this function and make sure you understand what it is doing.

2. It is probably convenient to replace the random number added with the constant 1 and to reduce
the number of loops to 20 instead of 2000. Thus each thread should increment 20 times; with 5
threads the total should be 5*20 = 100.

3. Replace placeholder A with the code for creating five generator threads and variables for
keeping them as you learned in Lab 5.

4. Replace placeholder B with the code for making sure the all five threads have been finished
before the main function finishes.

5. Now your program should work and at the end of its execution the sum of generated value is
stored in the sum variable. In order to verify if the program is working correctly, every
generator function also sums its generated values and prints it when it finished generating
numbers. Run the program and check if the program has performed correctly also include your
program output in the report. Most probably, the sum of separate generator classes is not equal
to total sum. This is because the access to shared variable has not been synchronized. The
region of code working with sum variable is a critical section and only one thread should be
able to execute it at a time. Mutex can be used to ensure exclusive access to critical section of
the code working with sum.

6. A mutex is a variable of type pthread_mutex_t. A static mutex can be initialized by a
constant PTHREAD_MUTEX_INITIALIZER. A static mutex works most of the time. Replace
placeholder C with static declaration of a mutex and initialize it.

7. Lock function (pthread_mutex_lock function) should be called on the mutex just before
the region of the code that is considered critical section. If a thread tries to lock a mutex that is
already locked by some other thread, pthread_mutex_lock blocks until the mutex is unlocked.
Place the appropriate call to mutex lock in the correct location on the code.

8. After the critical section is finished the thread should unlock the mutex (by calling
pthread_mutex_unlock function) in order to allow other threads to enter the critical
section. Place appropriate call to mutex unlock in the correct location of the code. Make sure all
generators can run interleavably but in a safe manner. Now your program should run correctly,
run the program again and verify its correctness.

9. The print_function prints the value of the sum variable. This function is called after all
generators have finished. (This ends part 1.)

Steps for Part 2
10. We will try to create a new thread instead of calling it as a function from the main thread.

Version 1.1(March 6, 2017)

http://www.ee.ryerson.ca/~kclowes/628/lab6.c

COE 628 (Operating Systems) Lab 6 (2017) Page 3 of 3

Remove print_function call from the main function and replace placeholder D with the
code for creating a thread that runs the print thread and a variable for accessing it.

11. Replace placeholder E with the code for making sure the print thread has finished before the
main function finishes.

12. Now the printing function will run as a thread too, but we need to make sure that printing the
value of sum is executed after all random numbers have been generated. In other words, the
print function should wait until all generators have finished generating numbers. Therefore, a
waiting mechanism is needed to ensure this synchronization. Condition variables can be used
for this purpose. pthread_cond_wait and pthread_cond_signal are two main
functions of condition variables. The pthread_cond_wait puts a thread into sleep until a
pthread_cond_signal call is made on the same variable. Replace placeholder F with
declaration and initialization of a condition variable, which is a variable of type
pthread_cond_t. A condition variable can be initialized by assigning
PTHREAD_COND_INITIALIZER to it.

13. The program uses finished_producers to store the number of generator threads that have
finished their work. Replace placeholder G with the correct instructions to put the thread into
sleep if all generators have not finished working yet. Notice that it is possible that the wrong
signal may be fired on a condition variable and hence it’s highly recommended to use while
instead of if for checking a condition.

14. Replace placeholder H with needed code so the producer thread fires a signal on the condition
variable if all generators have finished working.

*Run you program in order to make sure it works correctly. Include the output of the program in
the report.

And Finally: Submit your lab
To submit your lab do:

1. Zip your source code files (*.c, *.h) into a file called lab6.zip

2. Submit the zip file with the command: submit coe628 lab6 lab6.zip

That's all folks....

Copyright © 2013 Ebrahim Bagheri. Copyright © 2016 Ken Clowes. This work is licensed under the
Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

Version 1.1(March 6, 2017)

http://creativecommons.org/licenses/by/3.0/

	Description
	Objectives
	What you have to do
	And Finally: Submit your lab

