COEA428 Lecture Notes: Week 4 10of9

COE428 Notes Week 4 (Week of Jan 30, 2017)

Table of Contents

ANNOUNCEIMEIIES. ...ttt ettt ettt ettt et sat e et e sae e et e e sateea bt e eate e bt e sate e bt e eaeeebeesateebeeeabeenbeesaseebeeenans
ANSWETS 10 1aSt WEEK'S QUESTIONS. ...ccuviieeiiieeiiieeiie e ettt e eteeeetee et e e stteeesateeeaaeessaeessaeessaeessssaeeaeeenssaeeaens
REVIBW ...ttt ettt et e a bttt s bt et e st e bt et e e st sh e e bt e et e eh e e bt e a bt e bt e e nhteenhbeesateeenbeena
Big-O, Big-Omega and Big-Theta analysis Of TECUITENCES........c.uieriuiieiiiieeciieeciee e e
Prove that T(1) = 2T(1/2) & 1= O(0).ccocueeeeeeeeeeeeeeeeeeeeeeeeeeee et
Prove that T(n) = 2T(1/2) + 1 = O(F IO 1) ..euveeeeeeeeieeeeeeee ettt et seve e e a e e e e e
Prove that T(n) = 2T(1/2) + 1 = QR LOZ 11)..c.ueeeeeeiieeiieieeeeee ettt
Prove that T(1) = 4 T(1/2) + 1= Q) cecueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeenen
Prove that T(n) = 2T(n/4) +T(1/2) + 1 = O(R IO 1).ccuveerieiiieiieeieeeeeeeeeee ettt
Solving recurrences using recursion tree: More EXAMPIES......veeecveeeecuieeriiieeriieerreeeseeeeeeeeereeesreeeeeeeeeees
T(1) = 2T(N/2) F Lottt et h ettt s bt e bt et e e bt e bt et sat e e s ateeenteeeanees
2GS (01] OO UUPUUTPPRP
QUESLIONS. ...ttt et ettt e ettt e et e e e etaeeetaeeetaeeeasaeeessaeeeasaeeeaseeeeasasesseeensseesnnseeensseesnsseesnsseeansaeeareeeaeas
SUGEESLEA PIODICINS.ecueiiiiiiie ettt et e et e et e et eeetaeeesbeesssaeesssaeessseeessseeeeesssssaaeesensssneenns
References (text bOOK and ONIINE)........c.oooiiiiiiiiiiiieiieeieese ettt et eeseaeeebeeaee e
Appendix: SOmME Basic Math........ccc.oiiiiiiiiie e e e e e e e e araaaaeas

DRAFT 0.9 (Updated February 1, 2017)

COEA428 Lecture Notes: Week 4 2 of 9

Announcements

* Midterm: Wednesday, March 8, 2017
* Midterm material (Subject to change!):
o From CLRS textbook:

= Chapter: 2 (Getting Started , 3.1 Insertion sort, 3.2 Analyzing algorithms, 3.3
Designing algorithms)

= Chapter 3 (Growth of functions, 3.1 Asymptotic notation, 3.2 Standard notations and
common functions)

= Chapter 4 (Divide-and-Conquer, (4.3 The substitution method for solving recurrences,
4.4 The recursion-tree method for solving recurrences)

© My lecture notes: Week 1-6

o Labs: lab 1-5

© My book:
= Chapter 1 (Algorithms)
= Chapter 2 (Recursion)
= Chapter 4 (Complexity)

Answers to last week's questions

1. Fill in the columns labelled f(n) = O(g(n)), f(n) = Q(g(n))and f(n) = ©(g(n)) as true or

false.
f(n) 9(n) | f(n) = 0(g(n))?| f(n) = g(n))? f(n) =O(g(n))?
2lem 4 5 n true true true
1.001™ + 6n? 1.2" true false false
1.001™ + 6n? n 1000 false true false
3x 48" 4500 |n'd false true false
3x 48" +5n/n |n? true true true
logn! nlogn+n |true true true

DRAFT 0.9 (Updated February 1, 2017)

COE428

Lecture Notes: Week 4 30f9

2. Determine the Big-Oh complexity of 7'(n) = 27'(n/2) + n/lgn. (You may find this

challenging!) (Note: valid only for n > 2. You may assume any convenient base case. You
may also assume that # is a power of 2.)

Answer: See below where we examine this case in detail in Friday's lecture.

. Determine the simplest Big-Theta complexity of each the functions below by inspection.

a) 324 nlogsn+n?y/n=0(n"?) ‘
b) 10000001 + 5 x 2" + 123 x 3" = ©(2"°)

n 2

¢) 5n®+ (Zﬁ) +20n°= O(n°)
=1

d) log,on! +n?lgn= 0(n?logn)

n 1.2
e) (Z 1/2’) + 151gn=O(In"?n)
1=1

Review

Growth of functions

It is easy to find the fastest growing term for polynomials.
The following list shows examples from slowest growing to fastest growing functions:

o 5=0(1)
o 23+ Tloglogn = O(loglogn)
o Tlnn+8lgn + 3loglogn + 8 = O(logn)

o Zl/i+loglogn:®(logn)
i=1
o logn + loglogn + log® n = ©(log” n)
o nlogn! 4+ nlogn = O(n*logn)
o p' 4 1.01" = ©(1.01")

DRAFT 0.9 (Updated February 1, 2017)

COEA428 Lecture Notes: Week 4 4 of 9

Big-O, Big-Omega and Big-Theta analysis of recurrences

Prove that T(n) = 2T(n/2) + n = O(n?)

* (Yes, this seems silly. We have already rigorously proved that T'(n) = 2T(n/2) +n =nlgn
so we already know that T'(n) = O(n?); indeed we know that T'(n) = O(nlogn) and
T(n) = ©(nlogn)) But this simple example illustrates the technique for using mathematical
induction to prove an inequality instead of an equality as done previously.)

* We start with:
© Abase case: T'(1) = O(1)
o Our hypothesis: T'(n) < cn® Vn > nq for some ¢, ng
* Our Inductive Hypothesis is T'(m) < ¢m? for all m < n.
o So:T(n) =2T(n/2) + n (by definition)
o Using the hypothesis, we get: T'(n) < 2(c(n/2)? +n
o Simplifying we get: T'(n) < cn*/2 +n
o We wish to prove our hypothesis: T'(n) < cn?
© So we need to prove: cn? /24 n < cn? for all n > ng for some constants ng, ¢
o Let's re-write this as: cn*/2 4+ en?/2 — en? /2 +n = en? —n < en?
o Or, show that cn? —n < en?
© Or, show that we have to prove: hypothesis — extra < hypothesis
© Or, simply prove that extra > 0.
o In this case, find some ng such that for all n > ny.
o This is clearly true if ng = 0
Prove that T(n) = 2T(n/2) + 1 =O(N109 1) | o
* We start with:
o Abase case: T'(1) = O(1)
o Qur hypothesis: T'(n) < ¢'nlogn Yn > nq for some ¢, ng
* Our Inductive Hypothesis is T'(m) < ¢/'mlogm = emlgm for allm < n.
o So:T(n) =2T(n/2) + n (by definition)
» Using the inductive hypothesis, we get:

DRAFT 0.9 (Updated February 1, 2017)

COEA428 Lecture Notes: Week 4 50f9

T(n) <2(cn/2lgn/2) +n
=cnlg(n/2)+n
=cn(lgn —1g2) +n
=cn(lgn—1)+n
=cnlgn—cn+n
=cnlgn — (cn —n)
* Recall we wish to prove 7'(n) < cnlgn so we must prove:
T(n)=cnlgn—(cn—n) <cnlgn
© OR hypothesis — extra <= hypothesis
o In short, prove “extra >= 0"
o Here “extra”iscn —n =n(c—1)
o So we need to show that n(c — 1) > 0.

© Anyc > land anyn > 0 will do.
o QED!

Prove that T(n) = 2T(n/2) + n = Q(n log n)

* We start with:
o Abase case: T'(1) = O(1)
o Qur hypothesis: T'(n) > cnlgn Yn > ng for some ¢, ng
* Our Inductive Hypothesis is T'(m) > cmlgm for all m < n.
o So:T(n) =2T(n/2) + n (by definition)
» Using the inductive hypothesis, we get:
T(n) > 2(cn/21gn/2) +n
=cnlg(n/2)+n
=cn(lgn —1g2) +n
=cn(lgn—1)+n
=cnlgn—cn+n
=cnlgn — (cn —n)
* Recall we wish to prove T'(n) > cnlgn so we must prove:
o cnlgn—cn+n>cnlgn orn(l—c¢) >0

o This is clearly true if 0 < ¢ < 1
« QED

DRAFT 0.9 (Updated February 1, 2017)

COEA428 Lecture Notes: Week 4 6 of 9

Prove that T(n) =4 T(n/2) + n = O(n?)

* Basecase: T(1) = O(1)
 Hypothesis: T'(n) < cn”

o T(n)=4T(n/2) +n < 4(c(n/2)* +n = cn® — (—n)
* Oops! The “extra” is -n which cannot be greater than zero!
* Try a stronger hypothesis: 7'(m) < ¢cm? — em Ym <n
* Then
T(n) =4T(n/2) +n < 4(c(n/2)* —en/2)+n=cn® —2cn+n=cn* —cn— (c—1)n
* Now “extra”isn(c — 1).
* Ifc > Ithe “extra” is non-negative and the hypothesis is proven. QED
* (See also the example T'(n) = T'(|n/2|) + T(|n/2]) + 1 on page 85 of the MIT text book.)

Prove that T(n) = 2T(n/4) +T(n/2) + n = O(n log n)

* Inductive hypothesis: T'(m) < emlgm for all m < n.
» Using this hypothesis, we get:
T(n)=2T(n/4)+T(n/2)+n
T(n) < 2(cn/4lgn/4) +c(n/2)lgn/2+n
S l8(n/4) + S lgn/2+n

cn cn
len —lgd) + =
2(gn g)+2(

lgn —1g2) +n
cn cn
= 7(lgn —2)+ 7(lgn —1)+n
=cnlgn —3cn/2+n
=cnlgn —n(3¢/2 —1)
= hypothesis — extra
The “extra” must be non-negative. This is assured for all n if ¢ > 2/3.
* QED

Solving recurrences using recursion tree: more examples

T(n) = 2T(n/2) + 1

* This is similar to the merge sort recurrence (7(n) = 2T(n) + 1).
* Except, only a constant (1) is added as the non-recursive part.
* Drawing a recursion tree, we would get the non-recursive part totals for each row as 1, 2, 4, 8,

16, etc.

DRAFT 0.9 (Updated February 1, 2017)

COE428

Lecture Notes: Week 4 7 of 9

The depth of the tree would be m = Ign, so the total would be

i=m=lgn
d o o= —1=2n-1
i=0

Yes, this is an exact solution, but let's prove rigorously that 7'(n) = O(n)

First, let's prove that T'(n) = O(n), i.e. that T'(n) < cn

o True for base case: i.e. assume 7'(1) < ¢

o Inductive hypothesis: 7'(n) < cn

o Now prove that 7'(2n) < ¢2n

o By definition: 7'(2n) = 27(n) + 1

o Substituting our inductive hypothesis, we must prove 7'(2n) < 2cn + 1

© Oops!

o Try a stronger inductive hypothesis: T'(n) = cn — k

o Now we need prove (for suitable constants) that 7'(2n) < 2(cn — k) +1 =2cn — (k — 1)

Exercises
. Prove that T'(n) = 4T(n/2) +n = O(n?).
. Prove that T'(n) = 4T (n/2) + n = Q(n).

Questions

. Draw a recursion tree for T'(n) = /nT(y/n) + n forn > 2 and determine its © () complexity.

(Hint: assume n = 22")

Suggested problems

CLRS: 3-1, 3-2 (but not small-o and small-omega), 3-3, 3-4, 4-1, 4-3
My book: 4.1, 4.2,4.3,4.4,4.7

DRAFT 0.9 (Updated February 1, 2017)

COE428

Lecture Notes: Week 4

8 0of 9

References (text book and online)

* CLRS: Chapter 4.3
* kclowes book: Chapter 4
Appendix: Some Basic Math
logy,
log, x =
log;, a
aloga n_n

alogb n _ nlog,7 a

Inn <)Y 1/i=H, <lnn+ lorH, = O(logn)
=1

n

Zizn(n—kl

=1

)/2

n) ,r,n—l—l -1 1 — rn+1

1=0

ZTZ: r—1 1-r

logn! = ©(nlogn)

Copyright © 2017 Ken Clowes. This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International License.

DRAFT

0.9 (Updated February 1, 2017)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

COEA428 Lecture Notes: Week 4 9 0of 9

DRAFT 0.9 (Updated February 1, 2017)

	Announcements
	Answers to last week's questions
	Review
	Big-O, Big-Omega and Big-Theta analysis of recurrences
	Prove that T(n) = 2T(n/2) + n = O(n2)
	Prove that T(n) = 2T(n/2) + n = O(n log n)
	Prove that T(n) = 2T(n/2) + n = Ω(n log n)
	Prove that T(n) = 4 T(n/2) + n = O(n2)
	Prove that T(n) = 2T(n/4) +T(n/2) + n = O(n log n)

	Solving recurrences using recursion tree: more examples
	T(n) = 2T(n/2) + 1

	Exercises
	Questions
	Suggested problems
	References (text book and online)
	Appendix: Some Basic Math

