COE428

Lecture Notes: Week 3 (January 23 — 27, 2017) 1of 13

COE428 Lecture Notes Week 3 (January 23, 2017)

Table of Contents

TOpiIcS (frOM COUTSE OULIINE). ... .eoiuiiiiiiiieeii ettt ettt et e et e bt e s e e e b e e ssaeenbeessseenseeeennsaeeensseeas 1
203 03 (SRR RPTPRRN 2
REVIBW ...ttt ettt et e a bt et s h et e st e e bt et e st sh e et e e et e eh e e bt e at e e bt e e bt e e nhbeesabeeenbeena 2
ANSWETS 10 1aSt WEEK'S QUESTIONS. ...ccuviieeiiieeiiieeiieeetieeetee e etee et e e eeeseaeeesaeeesaeessaeessaeesssssaeaeeenssseeaens 3
Preamble: Week 3 and 4 TECTUTES. ....couviiiiriiiiiiieteeieetes ettt sttt et et esiteesiaee e 4
SOME MALN......eiiii ettt et h e et e bt e bt e bt e e bt e bt e e bt e sateebe e abeenbeenaneas 4
®  ATTERIMIETIC SETICS...eutetientieiteitieteete ettt ettt ettt ettt et s at e st e e e et e bt e ateeae e s bt ea b e e st e b e enbeeatenbeenbeenbenseentenas 4
® (GEOIMEIIIC SETICS. ... eeuveerureeuieautiantteauteestteenseasseeaateesueeenteasaeaaseeseeenbeeaseeeabeanneeembeesbeeembeanneeenbeasnbeeesnsneeennns 4
® JOGATTERIMS. ..ttt ettt et e e et e st e e bt e s b e e baeeabeenbeeesbeenseeenbeenbeeenbeentaeeanbeeeenns 4
®  HATTIIOMNIC SEIIES. ..eeuuttiutieiitetieeite et ettt et ettt et e ettt et e eat e et e esateeabeesaeeeabeesaeeenbeessbeeabeesaseanbeesneeanbeeeanneeeaans 5
* Notes on eXponential fUNCHONS. ........ccuiiiiieiiieiieeitere ettt ettt et seeebeesteesbeessaeesseeeensseeeenens 5
Asymptotic ( Big-O, Big-O, Big-£2) NOtatiON........ccccvviiiiiieeeiieeiiiieeiiee et sieeesieeesteeesreeesvreea e e e sraeeee s 5
® Big-O (UPPET DOUNA).....ccuviiiiiiiieiieeieeiie ettt ettt et st e e beestaeesbeessaeeseesaneenseeeensseeeensseeennns 5
* Big-Omega (IoWer DOUNG).........oooiiiiiiiieeiie ettt ettt e et eesbe e e saeeesaeesnsaeesnseaensses 5
e Big-Theta (tiht DOUN)......ccoiiiiiiiiiieiieie ettt et et e esbeessaesnsaessaeensaaeeans 5
RECUITENCE TTEES. .. iuetviieeeiiiiee ettt ettt e e ettt e e ettt e e e bt e e e eabaeeeeesstaeeeeansseeeeennssaeesassaeeeeanssaeeaeeeeeennn 6
o Different ways t0 draW T@CUISION-TIEES. ... .cecvierieeitierieeitiesieeteeete et eseeeebeesteeeaeessaessseeesssaeesnssaeeennnes 6
* T(n) =2T(n/2) + k1*n + k2 recurrence tree and analysiS..........ccceeevuererrieeririeeiieeeiieeeeeeiieeeeeeeiraeeean 6
Big-O analysis of T(n) = T(1/2) + 2 T(1/4) F Neeeuriiriiieiieeiieeiteete ettt ettt e e e e aveeeeneaee s 6
* Analyzing T(n) =2T(n/4) + T(/2) + n uSING BIiZ-O....ooeioriiiiiieie et 7
* Analyzing T(n) =2T(n/4) + T(1n/2) + n using Big-Omega...........cccueeruieriiriiieniieiierie e eiee e 8
L 23 Tl I 1 1<) - PSPPI 8
More about ASYMPLOtIC INOTALION. ....c..eieiieriiieiieitieetterite et eeite et eseteeteestaeebeessaesseesaeessseesssesnsaesseessseesnnses 8
* Big-Theta by inspection: some “rules of thumb™.............ccooviiiiiiiiiiiiii e 9
QUESTIONS. ...ttt eeitie ettt e ettt e ettt e et e e eteeeetbeeeeaaeeesaseeeaseeeeaseeensseeeasseeansseesssseeanseseassaeeasseeensseeesseeeeeaannes 11
References (text book and ONIINE)........cccvieiiiiiiiiieiiieeee e e e e e 12

Topics (from course outline)

The following table shows the topics for this course week by week.

The topics in bold is for this week.

The topics in

have been covered.

Other topics are for the future....
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Week| Date Topics

11 Jan9

2 Jan 16

3| Jan 23 Complexity analysis.

4 Jan 30 Recurrence equations. Data Structures.

5 Feb 6 |Stacks and Queues.

6/ Feb 13 |Heapsort. Hashing.

Feb 20 |Study week.

7| Feb 27 |Trees and Priority Queues.

8 March 6 |Binary Search Trees (BST).

9| March13 |Balanced BSTs (including Red-Black Trees)
10 March 20| Graphs.
11|/ March 27 Elementary graph algorithms.
12 April 3 |Elementary graph algorithms. (continued)
13| April 20 Review

Review

* The time to perform recursive algorithms is often expressed as a recurrence.

* Example: Merge Sort: T'(n) = 27(n/2) + n (time to merge sort n items = time to sort each half

+ time to merge two sorted lists where merging is a linear algorithm.)

* Closed-form exact solution to 7'(n) = 27'(n/2) 4+ n is T'(n) = nlgn which can be proven by

mathematical induction.

* The algorithms so far:
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Name Description Complexity
Selection Sort Sort by selecting minimum (over and over) quadratic
Merge Sort Sort by splitting in 2, sorting each half, then merging |Linear logarithmic
Binary search Search an ordered list logarithmic
Euclid's algorithm | Greatest common divisor between “big” and “small” logarithmic
Towers of Hanoi | Move disks from one tower to another respecting rules | Exponential (2")

Answers to last week's questions

1.

An algorithm with complexity ©(/n) takes 6 ms to solve a problem of size 1600. Estimate the
time to solve a problem of size 10,000.

Answer: —Vllo\/%o(? = 100/40 = 2.5. So it takes 2.5 x 6 = 15 ms to solve a problem of size

10,000

Draw a recursion tree for 7'(n) = 27'(n/2) + kin + ka. Guess the exact solution and prove it
by mathematical induction.

Answer: Discussed in class (see below)

3. Draw a recursion tree for T'(n) = 2T (n/4) + T(n/2) + n. Guess the solution. Try to prove it.

Answer: We will look at the recursion tree below. A reasonable guess would be T'(n) = nlgn.

Unfortunately, it is wrong! The table below calculates a few values bottom up assuming that 7'(1) = Q.

n ] T(n) = 2T(n/4) + T(n/2) + n | nlgn
1 0 0
2 0+0+2=2 2
4 0+2+4=6 8
8 2¥2 +8+8=20 24
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Preamble: Week 3 and 4 lectures

* The topics for this week and the next are mainly mathematical.

* The techniques used will be used to analyze algorithms studied in the rest of the course.

Some math

*  You are expected to know certain mathematical facts. (Usually, no formula sheet or calculators
are allowed in tests/exams.)

¢ Some of these basic formulas:

Arithmetic series

. Zi:1+2+~--+n:n(n—1)/2

1=1

Geometric series

n

* Y d=1+a+a®+--+a" =" -1)/(a-1)
=0

logarithms

* logab=loga+ logb
+ loga® =bloga
1
* log,z = 3 R
log, a

. T = blogb x

Harmonic series

n

1 1 1 1 1

*  Harmonic numbers are defined as H,, = Z a1 + 3 + 3 + o+ -
i=1

* The Harmonic series is divergent, but it diverges slowly.
e Forlargen, H, ~Inn <Ilnn+1

* Hence any multiple of H,, is a logarithmic.

Notes on exponential functions

1+4+€

* Any function n" " (where € > 0) ultimately grows faster than any polynomial.
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1.00001 1000000

* For example, n grows faster than n . (This is easy to prove using L'Hopital's rule.)

* Consider a" compared to b" where a > b. Then a" grows “infinitely” faster than b".

Asymptotic ( Big-O, Big-0, Big-Q) notation

Big-O (upper bound)

*  We say that f(n) = O(g(n)) if there exist constants ¢ and ¢ such that:
f(n) <cg(n)foralln > ng

Big-Omega (lower bound)

*  Wesay that f(n) = (g(n)) if there exist constants ¢ and 7:g such that:
f(n) > cg(n)forallm > ng

Big-Theta (tight bound)
*  Wesay that f(n) = ©(g(n)) if there exist constants ¢y, cp and 11 such that:
c1g(n) < f(n) < e
*  Equivalently, f(n) = ©(g(n))iff f(n) = O(g(n)) and f(n) = Q(g(n)).

g(n)for allm > ng

How to “guess” a recurrence solution

Finding a guess by “unfolding” (aka “substitution”)

* Previously we calculated 7(n) from the bottom up.

*  We can “unfold” it from the “top down” as follows:
T(n)=2T(n/2)+n=22T(n/4) +n/2) +n

)+
=4T(n/4) 4+ 2n
=8T'(n/8) + 3n
= 16T'(n/16) + 4n

etc...
» If we assume that # is a power of 2, we would eventually obtain: T'(n) = nT'(n/n) + nlgn

* Since we have assumed T(1) = 0, this implies
T(n)=nT(n/n)+nlgn=nT(1)+nlgn=nx0+nlgn=nlgn
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Finding a guess by drawing a recursion-tree

»  We start by representing 7'(n) = 27'(n/2) + n =T(n/2) + T (n/2) + n as a graph where we
put the non-recursive part (» in this case) on the top row and put each recursive part on a row
below.

T(n/2)  T(n/2)

*  We now expand the tree diagram downwards:

/ // \

/

T(n/4) T(n/4) T(n/4)

Different ways to draw recursion-trees

* The textbook (CLRS) starts with a diagram with a single node: T(n).

» It then expands each node isolating the non-recursive part and adding child nodes for each
recursive part.

* For example, to draw the recursion-tree for 7'(n) = 27°(n) + n, start with:

T(n) = 2T(n/2) + k1*n + k2 recurrence tree and analysis

Guess: T'(n) = kinlgn +ko(14+2+4+...4+n)=kinlgn+ k2(2n — 1)
Assuming 7 is a power of 2 and that 7'(1) = ko

We need to prove that 7'(2n) = 2kinlg 2n + ka(4n — 1)
o By definition: T'(2n) = 27'(n) 4+ 2kin + ko
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o Using the inductive hypothesis, we have: T'(2n) = 2(kynlgn + ko(2n — 1)) + 2k1n + ko
o Simplifying, we obtain: T'(2n) = 2kyn(lgn + 1) + ko (4n — 1)

o Noting that1 = lg 2, we get: T'(2n) = 2k1n(lgn +1g2) + ko(4n — 1)

o Using the identity log a + log b = log ab, we obtain: T'(2n) = 2kinlg 2n + ko(4n — 1)

o QED

Big-O analysis of T(n) = T(n/2) + 2 T(n/4) + n

*  We start by drawing a recursion tree:

T

I

T(n/2) T(n/4)  T(n/4)

* Expanding the second row, we get:

ML - > 5

_—
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n/2 n/4  nJ4d- n

N\ /]

T(n/4)T(n/8)T(n/8) T(n/8)T(n/16)T(n/16) T(n/8)T(n/16)T(n/16)

If we continue the expansion, we will see that the sum of the non-recursive elements for each
level is n.

Alas, the sum of the non-recursive elements is not » for all levels.
First, note that the leaves of the tree are for 7'(1) = 0

Hence the left-most branch of the tree has depth log, n whereas the right-most branch has depth
10g4 n—= log22 n

Hence for all levels below log, n contribute less than 7.

Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-O

Recall that f(n) = O(g(n)) if there exist constants ¢ and 7t such that:
f(n) < ecg(n)foralln > ng

Now, suppose we “pretend” that every level of the T'(n) = 2T'(n/4) + T'(n/2) + n recursion
tree contributed n. (Of course, this is not true for levels greater than log, n(i.e. for the bottom
half of the tree.)

But we can now say that all levels contribute < nto the total.
Furthermore, the leaves (the bottom nodes on the tree) are 7'(1) = 0, so they contribute nothing.

The maximum depth of the tree is 1g n and since each level contributes at most n, we can say
that T'(n) < nlgn.

Consequently, T'(n) = O(nlgn)

Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-Omega

When we say that an algorithm has O(g(n)) complexity, this means the algorithm is no worse
than g(n). In other words, Big-Oh gives an upper bound on the complexity.

It is also possible to define an asymptotic lower bound called Big-Omega. When we say an
algorithm has (g (n)) complexity, we guarantee that the algorithm is no better than g(n)
asymptoticly (i.e. for large enough n).
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We define Big-Omega as follows: f(n) = 2(g(n)) if there exist constants ¢ and 7.q such that:
f(n) > cg(n)foralln > ng

Consider the recursion-tree for T'(n) = 27(n/4) + T(n/2) + n.

Suppose we only consider the top half: i.e. the first log, n levels.

Since more than half of the tree is neglected, the total contributions from these levels will be
less than the real total.

But we have already seen that each of these levels contributes n.
Consequently, we can say T'(n) > nlog, n = (1/2)nlgn
Therefore, T'(n) = Q2(nlogn)

Big Theta

We say that f(n) = ©(g(n)) if there exist constants ¢y, ¢o and 7t such that:
c19(n) < f(n) < cag(n)foralln > ng

Equivalently, f(n) = ©(g(n))iff f(n) = O(g(n)) and f(n) = Q(g(n)).

Since T'(n) = 2T (n/4) + T'(n/2) + nis both T'(n) = Q(nlogn)and T'(n) = O(nlgn), we
can also say that 7'(n) = O(nlgn)

More about Asymptotic Notation.

Another way to determine whether functions are Big-O or Big-Omega is to use limits.

We assume that all functions are monotonically increasing and non-negative for sufficiently
large n.

In particular, ifnli_)lgo f(n)/g(n) < oc, then f(n) = O(g(n))
However, ifnli_)ngo f(n)/g(n) = oo, then f(n) = Q(g(n))

Finally, 0 < nh_)rrgo f(n)/g(n) < oc, then f(n) = O(g(n))

Big-Theta by inspection: some “rules of thumb”

If f(n)is the sum of terms, find the term that grows fastest. That gives you
O(fastest growing term). And ignore anything that multiplies this term (or any other term).

Examples:

f(n) =lgn+5n*+/n=0(n?) ‘
o f(n)=6n+5x10%n% + 12134 x ()" = O(n?)
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nlogn! +n? = ©(n*logn)
1284 1,017 = ©(1.017)

o nf(Zl/z)+15nlgn—@(n2logn)
o 4n!4 5" = O(5")

Solving T'(n) = 2T (n/2) + lglwheren > 2
n

e Start with the basic recursion tree:
T

lgn

/\

T(n/2) T(n/2)
* Now expand the 7'(n/2) layer noting that

n/2  n/2
lgn —1g2 lgn—1

T(n/2) = 2T(n/4) + (n/2)/1g(n/2) =

n
lgn
n/2 n/2
lgn —1 lgn —1

T(n/4) T(n/4) T(n/4) T(n/4)

* Let's expand one more layer noting that:

T(n/4) = 2T(n/8) + (n/4)/1g(nja) = — L2 — 1/

lgn —1g4  lgn—2

*  We get:
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T

lgn
n/2 n/2
%_1\ /lgn_l\
n/4 n/4 n/4 n/4
lgn — 2 lgn —2 lgn — 2 lgn — 2

T) T(8) T8 T(8) T(8) T(8) T8  T(8)

* Let's add up the (non-recursive) contributions of each layer:

* Let's add up the (non-recursive) contributions of each layer:

n -------------------»L (LCVCIO)
lgn

Ign
/2/\/2
n/4 n/4 n/4 n
A\ ”/\ ZANVAN
T(8) T(8 S (L3)

lgn—

* How many levels are there?
* Assuming n = 2", there will be m — 1 levels.
* Adding up the contributions from each level, we get:
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m—2 n m—2 n m—2 1
T = = oy e Hm_ =~ l .
(n) ;lgn—i Z,:Om—i n;i+1 " L nm
But m = Ign.

So,T(n) = nlnlgn = O(nloglogn)

Questions
. Fill in the columns labelled f(n) = O(g(n)), f(n) = Q(g(n))and f(n) = O(g(n)) as true or
false.
f(n) 9(n) [ f(n) = 0(g(n))?| f(n) = Ag(n))? | f(n) = Og(n))?
2'8n 45 n
1.001™ + 6n?® L.2"
1.001™ + 6n? nto00

3x48m 4 5nyn  ntd

3x 48" £ 5nyn |n?

log n! nlogn +n

2. Determine the Big-Oh complexity of T'(n) = 27'(n/2) + n/lgn. (You may find this

challenging!) (Note: valid only for n > 2. You may assume any convenient base case. You
may also assume that # is a power of 2.)

. Determine the simplest Big-Theta complexity of each the functions below by inspection.

a) 32+ nlogsn+n’yn=6( )

b) 1000000n + 5 ><22”Z 1123 x 3= O )

c) 5n’ + (Zﬁ) +20n° = O( )
i=1
d) log;,n!+ ?zlgn: o )

e) (il/z) + 151gn= O( )

References (text book and online)

CLRS: Chapter 3.1, 3.2
kclowes book: Chapter 4
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