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Note 
	
  

Assignment problems shown in this document are from the 3rd Edition of 
the course reference text.  Mapping of assignment problems from this earlier 
edition to problems in the 4th Edition is shown on pages (iii)–(viii).  
 
 
 



Problems from the 3
rd

 edition 

(2.1-1) Find the energies of the signals: 

a) sin t, 0≤t ≤π 

b) –sin t, 0≤t ≤π 

c) 2 sin t, 0≤t ≤π 

d) sin (t-2π), 2π≤t≤4π 

Comment on the effect on energy of sign change, time shifting or doubling of the signal. What is 

the effect on the energy if the signal is multiplied by k? 

(2.9-2) of the 3
rd

 edition is the same as (2.9-2) of 4
th

 edition with the following change: 

                                      

 

(2.9-3) Figure below shows the trigonometric Fourier spectra of a periodic signal g(t). 

a) By inspection of the figure, find the trigonometric Fourier series representing g(t). 

b) By inspection of the figure, sketch the exponential Fourier spectra of g(t). 

c) By inspection of the exponential Fourier spectra obtained in part (b), find the exponential 

Fourier series of g(t). 

      Show that the series found in parts (a) and (c) are equivalent. 

 

 

(3.1-5) of the 3
rd

 edition is the same as (3.1-4) of the 4
th

 edition 

(3.1-7) of the 3
rd

 edition is the same as (3.1-6) of the 4
th

 edition with the following changes: 

Figure (a): bandwidth = π/2; Figure (b): bandwidth=   . 

(3.2-2) Show that the Fourier transform of rect (t-5) is      
 

 
      . 
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(3.3-6) of the 3
rd

 edition is the same as (3.3-6) of the 4
th

 edition with the following changes: 

 Figures (b) and  (c): Frequency range is from π to 3π 

 

(3.3-7) Using the frequency-shifting property, find the inverse Fourier transform of the following 

spectra: 

a)            
   

 
) +      

   

 
) 

b)         
   

 
) +   

   

 
) 

 

(3.3-10) of the 3
rd

 edition is the same as (3.3-9) of the 4
th

 edition with the following change: 

 Bandwidth of the filter is W rad/sec 

(3.4-1) = (3.4-2) 4
th

 edition 

(3.5-3) Determine the maximum bandwidth of a signal that can be transmitted through the low-

pass RC filter in fig. 3.28a with R=1000 and C=10
-9 

if, over this bandwidth, the amplitude 

response (gain) variation is to be within 5% and the time delay variation is to be within 2%. 

(6.1-1) = (6.1-1) 4
th

 edition with the following change: 

 Figure (b) bandwidth = 15,000 Hz 

(6.1-2) Determine the Nyquist sampling rate and the Nyquist sampling interval for the signals: 

(a)             ; (b)             ; (c)                          ; (d)              

             ; (e)                        . 

(6.1-4) A signal                  is sampled (using uniformly space impulses) at a rate of (i) 

5 Hz; (ii) 10 Hz; (iii) 20 Hz. For each of the three cases: 

a) Sketch the sampled signal. 

b) Sketch the spectrum of the sampled signal. 

c) Explain whether you can recover the signal g(t) from the sampled signal. 

d) If the sampled signal is passed through an ideal low-pass filter of bandwidth 5 Hz, sketch 

the spectrum of the output signal. 

(6.2-2) = (6.2-1) 4
th

 edition 

(6.2-9) = (6.2-10) 4
th

 edition with the following change: 
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Sample rate = 50% higher than the Nyquist rate 

(6.2-10) = (6.2-11) 4
th

 edition with the following change: 

 10-bit quantizer;  

(4.2-1) For each of the following baseband signals: (i)                (ii)      

                    (iii)                       : 

a) Sketch the spectrum of m(t). 

b) Sketch the spectrum of the DSB-SC signal                . 

c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra. 

d) Identify the frequencies in the baseband, and the corresponding frequencies in the DSB-

SC, USB, and LSB spectra. Explain the nature of frequency shifting in each case. 

(4.2-2) Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] if: (i)                  (ii)      

       ; (iii)              . Observe that                   delayed by 1 second. For the last case 

you need to consider both the amplitude and the phase spectra. 

(4.2-3) Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] for             if the carrier is 

            
 

 
 .  

 

(4.2-4) = (4.2-3) 4
th

 edition 

(4.2-6) = (4.2-5) 4
th

 edition 

(4.3-1) Show that coherent (synchronous) demodulation can demodulate the AM signal  

                

regardless of the value of A. 

(4.3-2) = (4.3-3) 4
th

 edition 

(4.3-3) For the AM signal in Prob. 4.3-2 with      : 

a) Find the amplitude and power of the carrier. 

b) Find the sideband power and the power efficiency η. 

 

(4.3-4)  

a) Sketch the DSB-SC signal corresponding to            . 
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b) This DSB-SC signal is applied at the input of an envelope detector. Show that the output 

of the envelope detector is not     , but       . Show that, in general, if an AM signal 

               is envelope-detected, the output is         . Hence, show that the 

condition for recovering m(t) from the envelope detector is          for all t. 

(4.5-1) A modulating signal      is given by: 

a)              

b)                       

c)                     

In each case: 

i. Sketch the spectrum of       

ii. Find and sketch the spectrum of the DSB-SC signal              . 

iii. From the spectrum obtained in (ii), suppress the LSB spectrum to obtain the USB 

spectrum. 

iv. Knowing the USB spectrum in (ii), write the expression         for the USB signal. 

v. Repeat (iii) and (iv) to obtain the LSB signal        . 

(4.5-2) For the signals in Prob. 4.5-1, determine         and         if the carrier frequency 

       . 

(4.5-3) Find         and         for the modulating signal                   with B= 

1000 and carrier frequency             Following this do it yourself steps: 

a) Sketch spectra of       and the corresponding DSB-SC signal             . 

b) To find the LSB spectrum, suppress the USB in the DSB-SC spectrum found in (a). 

c) Find the LSB signal, which is the inverse Fourier transform of the LSB spectrum found in 

part(b). Follow the similar procedure to find        . 

(4.5-5) An LSB signal is demodulated synchronously. Unfortunately, the local carrier is not 

      t as required, but is               t +    . Show that: 

a) When    , the output y(t) is the signal m(t) with all its spectral components shifted 

(offset) by   .  

b) When     , the output is the signal m(t) with phases of all its spectral components 

shifted by    

In each of these cases, explain the nature of distortion. 

 

(4.5-6) = (4.4-7) 4
th

 edition 
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(4.8-1) A transmitter transmits an AM signal with a carrier frequency of 1500 kHz. When an 

inexpensive radio receiver (which has a poor selectivity in its RF-stage bandpass filter) is tuned 

to 1500 kHz, the signal is heard loud and clear. This same signal is also heard (not as strong) at 

another dial setting. State, with reasons, at what frequency you will hear this station. The IF 

frequency is 455 kHz. 

(4.8-2) Consider a superheterodyne receiver designed to receive the frequency band of 1 to 30 

MHz with IF frequency 8 MHz. What is the range of frequencies generated by the local 

oscillator for this receiver? An incoming signal with carrier frequency 10 MHz is received at the 

10 MHz setting. At this setting of the receiver we also get interference from a signal with some 

other carrier frequency if the receiver RF stage bandpass filter has poor selectivity. What is the 

carrier frequency of the interfering signal? 

 

(5.1-3) = (5.1-4) 4
th

 edition with the following change: 

           

(5.2-1) = (5.2-3) 4
th

 edition with the following change in     : 

                          

(5.2-2) = (5.2-4) 4
th

 edition 

(5.2-3)=(5.2-5) 4
th

 edition 

(5.2-4)=(5.2-6) 4
th

 edition 

(5.2-5) Estimate the bandwidth of        and        in Prob. 5.1-2. Assume the bandwidth of 

     to be the fifth harmonic frequency of     . 

(5.2-7)=(5.2-8) 4
th

 edition with the following change:          
 
 . 

(5.3-1)=(5.3-2) 4
th

 edition 

(5.3-2)=(5.3-1) 4
th

 edition 

(11.1-4) Determine            and           for the random process:                   where ω 

and θ are constants and a is an RV uniformly distributed in the range (-A, A). Also determine 

whether this is a wide-sense stationary process. 

(11.1-8)=(9.1-9) 4
th

 edition 

(11.2-3)=(9.2-4) 4
th

 edition with the following change: 
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(12.2-1) = (10.2-1) 4
th

 edition with the following changes: 

           ; signal bandwidth=4 kHz; SNR>30dB;             . 

(11.5-1)=(9.8-1) 4
th

 edition 

(11.5-2) =(9.8-2) 4
th

 edition with (c)          . 

(11.5-3)=(9.8-3) 4
th

 edition 

(12.1-1) A certain telephone channel has             over the signal band. The message 

signal PSD is             
 

  
              . The channel noise PSD is           . 

If the output SNR at the receiver is required to be at least 30dB, what is the minimum transmitted 

power required? Calculate the value of   corresponding to this power. 

(12.2-2)=(10.2-2) 4
th

 edition 

(12.2-3)=(10.2-6) 4
th

 edition 

(12.2-4)=(10.2-3) 4
th

 edition 

(12.3-1)=(10.3-1) 4
th

 edition with the following changes: 

            . 
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1. ASSIGNMENT 1

1.1 Assignment 1 Problems

• 2.1-1

• 2.1-7: Show that the power of a signal g(t) given by

g(t) =
n∑

k=m

Dke
jωkt ωi 6= ωk for all i 6= k

is (Parseval’s theorem)

Pg =
n∑

k=m

|Dk|2

• 2.1-8: Determine the power and the rms value for each of the following signals:

(a) 10 cos(100t + π/3) (b) 10 cos(100t + π/3) + 16 sin(150t + π/5)

(c) (10 + 2 sin 3t) cos 10t (d) 10 cos 5t cos 10t

(e) 10 sin 5t cos 10t (f) ejαt cos ω0t
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1.2 Assignment 1 Solutions

• 2.1-1 Let us denote the signal in question by g(t) and its energy by Eg. For parts (a)

and (b)

Eg =
∫ 2π

0
sin2 tdt =

1

2

∫ 2π

0
dt− 1

2

∫ 2π

0
cos(2t) dt = π + 0 = π

(c) Eg =
∫ 4π

2π
sin2 tdt =

1

2

∫ 4π

2π
dt− 1

2

∫ 4π

2π
cos(2t) dt = π + 0 = π

(d) Eg =
∫ 2π

0
(2 sin t)2dt = 4

[
1

2

∫ 2π

0
dt− 1

2

∫ 2π

0
cos(2t) dt

]
= 4[π + 0] = 4π

Sign change and time shift do not affect the signal energy. Doubling the signal quadruples

its energy. In the same way, we can show that the energy of kg(t) is k2Eg.

• 2.1-7:

Pg = lim
T→∞

1

T

∫ T/2

−T/2
g(t) · g∗(t)dt = lim

T→∞
1

T

∫ T/2

−T/2

n∑

k=m

n∑
r=m

DkD
∗
re

j(ωk−ωr)t

The integrals of the cross-product terms (when k 6= r) are finite because the integrands

are periodic signals (made up of sinusoids). These terms, when divided by T →∞, yields

zero. The remaining terms (k = r) yields

lim
T→∞

1

T

∫ T/2

−T/2

n∑

k=m

|Dk|2 dt =
n∑

k=m

|Dk|2

• 2.1-8 (a) Power of a sinusoid of amplitude C is C2/2 (Eq. (2.6a)) regardless of its

frequency (ω 6= 0) and phase. Therefore, in this case, P = (10)2/2 = 50.

(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids (Eq.

(2.6b)). Therefore, in this case, P = (10)2/2 + (16)2/2 = 178.

(c) (10 + 2 sin 3t) cos 10t = 10 cos 10t + sin 13t − sin 3t. Hence, from (Eq. (2.6b)), P =

(10)2/2 + 1/2 + 1/2 = 51

(d) 10 cos 5t cos 10t = 5(cos 5t + cos 15t). Hence, P=25;

(e) 10 sin 5t cos 10t = 5(sin 15t− sin 5t). Hence, P=25;

(f) ejαt cos ω0t = 1/2[ej(α+ω0)t + ej(α−ω0)]. Using the results obtained in Prob. 2.1-7, we

obtain P = 1/4 + 1/4 = 1/2

• 2.4-1 Using the fact that g(x)δ(x) = g(0)δ(x), we have (a) 0, (b) 2
9
δ(ω) (c) 1

2
δ(t) (d)

−1
5
δ(t− 1) (e) 1

2−j3
δ(ω + 3) (f) kδ(ω) (use L’Hopital’s rule).

• 2.4-2 In these problems remember that impulse δ(x) is located at x = 0. Thus, an

impulse δ(t− τ) is located at τ = t, and so on.
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(a) The impulse is located at τ = t and g(τ) at τ = t is g(t). Therefore,
∫ ∞

−∞
g(τ)δ(t− τ)dτ = g(t)

(b) The impulse δ(τ) is at τ = 0 and g(t− τ) at τ = 0 is g(t). Therefore,
∫ ∞

−∞
δ(τ)g(t− τ)dτ = g(t)

Using similar arguments, we obtain (c) 1, (d) 0, (e) e3, (f) 5, (g) g(−1) (h) −e2

• 2.9-1 (a) T0 = 4, ω0 = π/2. Also, D0 = 0 (by inspection),

Dn =
1

2π

∫ 1

−1
e−j(nπ/2)t dt−

∫ 3

1
e−j(nπ/2)t dt =

2

πn
sin

nπ

2
|n| ≥ 1

(b) T0 = 10π, ω0 = 2π/10π = 1/5.

g(t) =
∞∑

n=−∞
Dne

j n
5

t where

Dn =
1

10π

∫ π

−π
e−j n

5
t dt =

j

2πn

(
−2j sin

nπ

5

)
=

1

πn
sin

(
nπ

5

)

(c)

g(t) = D0 +
∞∑

n=−∞
Dnejnt where by inspection D0 = 0.5

Dn =
1

2π

∫ 2π

0

t

2π
e−jnt dt =

j

2πn

so that |Dn| = 1
2πn

and 6 Dn = π/2 when n > 0 and −π/2 when n < 0.

(d) T0 = π, ω0 = 2 and D0 = 0.

g(t) =
∞∑

n=−∞
Dne

j2nt where

Dn =
1

π

∫ π/4

−π/4

4t

π
e−j(2n)t dt =

−j

πn

(
2

πn
sin

πn

2
− cos

πn

2

)

(e) T0 = 3, ω0 = 2π
3

.

g(t) =
∞∑

n=−∞
Dnej 2πn

3
t where

Dn =
1

3

∫ 1

0
t e−j 2πn

3
t dt =

3

4π2n2

[
e−j 2πn

3

(
j2πn

3
+ 1

)
− 1

]

(f) T0 = 6, ω0 = π
3
, and D0 = 0.5

g(t) = 0.5 +
∞∑

n=−∞
Dne

j πnt
3 where

Dn =
1

6

[∫ −1

−2
(t + 2)e−j πnt

3 dt +
∫ 1

−1
e−j πnt

3 dt +
∫ 2

1
(−t + 2) e−j πnt

3 dt
]

=
3

π2n2

(
cos

nπ

3
− cos

2nπ

3

)
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Fig. 1.1: Solution 2-9-1.
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• 2-9.2 (a)

g(t) = 3 cos t + sin
(
5t− π

6

)
− 2 cos

(
8t− π

3

)

For a compact trigonometric form, all terms must have cosine form and amplitudes must

be positive. For this reason, we rewrite g(t) as

g(t) = 3 cos t + cos
(
5t− π

6
− π

2

)
+ 2 cos

(
8t− π

3
− π

)

= 3 cos t + cos
(
5t− 2π

3

)
+ 2 cos

(
8t− 4π

3

)

(b) By inspection of the trigonometric spectra in Fig.2a, we plot the exponential spectra

as shown in Fig.2b. By inspection of exponential spectra in Fig.2a, we obtain

g(t) =
3

2

(
ejt + e−jt

)
+

1

2

[
ej(5t−2π/3) + e−j(5t−2π/3)

]
+

[
ej(8t−4π/3) + e−j(8t−4π/3)

]

=
3

2
ejt +

(
1

2
e−j2π/3

)
ej5t +

(
e−j4π/3

)
ej8t +

3

2
e−jt +

(
1

2
ej2π/3

)
e−j5t +

(
ej4π/3

)
e−j8t

Fig. 1.2: Solution 2-9-2.

• 2-9.3 (a)

g(t) = 2 + 2 cos(2t− π) + cos(3t− π/2) = 2− 2 cos(2t) + sin(3t)

(b) The exponential spectra are shown below.

(c) By inspection of exponential spectral,

g(t) = 2 +
[
e(2t−π) + e−j(2t−π)

]
+

1

2

[
ej(3t−π/2) + e−j(3t−π/2)

]

= 2 + 2 cos(2t− π) + cos(3t− π/2)
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(d) Observe that the two expressions (trigonometric and exponential Fourier series) are

equivalent.

Fig. 1.3: Solution 2-9-3.



2. ASSIGNMENT 2

2.1 Assignment 2 Problems

• 3.2-2: From the definition of Fourier Transform, show that the Fourier transform of

rect(t− 5) is sinc(ω/2)ej5ω
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2.2 Assignment 2 Solutions

• 3.1-5 (a)

G(ω) =
∫ 1

0
4e−jωt dt +

∫ 2

1
2e−jωt dt =

4− 2e−jω − 2e−j2ω

jω

(b)

G(ω) =
∫ 0

−τ
− t

τ
e−jωt dt +

∫ τ

0

t

τ
e−jωt dt =

2

τω2
[cos ωτ + ωτ sin ωτ − 1]

This results could also be derived by observing that g(t) is an even function. Therefore,

from the result in Prob. 3.1-1,

G(ω) =
2

τ

∫ τ

0
t cos ωt dt =

2

τω2
[cos ωτ + ωτ sin ωτ − 1]

• 3.1-7 (a)

g(t) =
1

2π

∫ π/2

−π/2
cos ω ejωt dω =

ejωt

2π(1− t2)
(jt cos ω + sin ω)

π/2
−π/2 =

1

π(1− t2)
cos

πt

2

(b)

g(t) =
1

2π

∫ ω0

−ω0

G(ω)ejωtdω =
1

2π

[∫ ω0

−ω0

G(ω) cos ωtdω + j
∫ ω0

−ω0

G(ω) sin ωtdω
]

Because G(ω) is even function, the second integral on the right-hand side vanishes. Also

the integrand of the first term is an even function. Therefore,

g(t) =
1

π

∫ ω0

0

ω

ω0

cos tω dω =
1

πω0t2
[cos ω0t + ω0t sin ω0t− 1]

• 3.2-2 The function rect(t − 5) is centered at t = 5, has a width of unity, and its value

over this interval is unity. Hence

G(ω) =
∫ 5.5

4.5
e−jωt dt = − 1

jω
e−jωt|5.5

4.5 =
1

jω
[e−j4.5ω − e−j5.5ω]

=
e−j4.5ω

jω
[ejω/2 − e−jω/2] =

e−j5ω

jω
[2j sin

ω

2
] = sinc

(
ω

2

)
e−j5ω

• 3.3-2 Fig.(b) g1(t) = g(−t) and

G1(ω) = G(−ω) =
1

ω2
[e−jω + jω e−jω − 1]

Fig.(c) g2(t) = g(t− 1) + g1(t− 1). Therefore

G3(ω) = [G(ω) + G1(ω)]e−jω = [G(ω) + G(−ω)]e−jω =
2e−jω

ω2
[cos ω + ω sin ω − 1]
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Fig.(d) g3(t) = g(t− 1) + g1(t + 1) and

G4(ω) = G(ω)e−jω + G(−ω)ejω =
1

ω2
[2− 2 cos ω] =

4

ω2
sin2 ω

2
= sinc2

(
ω

2

)

Fig.(e) g4(t) = g(t− 1/2) + g1(t + 1/2). Therefore

G4(ω) = G(ω)e−jω/2 + G1(ω)ejω/2 =
e−jω/2

ω2
[ejω − jωejω − 1] +

ejω/2

ω2
[e−jω + jωe−jω − 1]

=
1

ω2

[
2ω sin

ω

2

]
= sinc

(
ω

2

)

Fig.(f) g5(t) can be obtained in three steps: (i) time-expanding g(t) by a factor 2; (ii)

then delaying it by 2 seconds; (iii) and multiplying it by 1.5 (we may interchange the

sequence for steps (i) and (ii)]. The first step (time0expansion by a factor 2) yields

f
(

t

2

)
⇔ 2G(2ω) =

1

2ω2
(ej2ω − 2jωej2ω − 1)

Second step of time delay of 2 secs, yields,

f
(

t− 2

2

)
⇔ 1

2ω2
(ej2ω − 2jωej2ω − 1)e−j2ω =

1

2ω2
(1− j2ω − e−j2ω)

The third step of multiplying the resulting signal by 1.5 yields

g5(t) = 1.5f
(

t− 2

2

)
⇔ 3

4ω2
(1− j2ω − e−j2ω)
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3.4−1



3. ASSIGNMENT 3

3.1 Assignment 3 Problems
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6.2-6: A message signal m(t) is transmitted by binary PCM without compression. If the SNR

(signal-to-quantization-noise ratio) is required to be at least 47 dB, determine the minimum

value of L required, assuming that m(t) is sinusoidal. Determine the SNR obtained with this

minimum L.

6.2-10: The output SNR of a 10-bit PCM (N = 10) was found to be 30 dB. The desired SNR

is 42 dB. It was decided to increase the SNR to the desired value by increasing the number of

quantization levels L. Find the required number of levels.
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3.2 Assignment 3 Solutions

1. 6.1-1: The bandwidth of g1(t) and g2(t) are 100 kHz and 150 kHz, respectively. Therefore,

• the Nyquist sampling rates for g1(t) is 200 kHz, sampling interval Ts = 1/200k = 5µs

• the Nyquist sampling rates for g2(t) is 300 kHz, sampling interval Ts = 1/300k =

3.33µs.

• the bandwidth of g2
1(t) is 200 kHz, fNyq = 400 kHz, fNyq = 1/400k = 0.25µs.

• the bandwidth of g3
2(t) is 450 kHz, fNyq = 900 kHz, fNyq = 1/900k = 1.11µs.

• the bandwidth of g1(t) · g2(t) is 250 kHz, fNyq = 500 kHz, fNyq = 1/500k = 2µs.

2. 6.1-2:

• since

sinc(100πt) → 0.01rect
(

ω

200π

)

the bandwidth of this signal is 100 π rad/s or 50 Hz. The Nyquist rate is 100 Hz

(samples/sec).
•

sinc2(100πt) → 0.01∆
(

ω

400π

)

the bandwidth of this signal is 200 π rad/s or 100 Hz. The Nyquist rate is 200 Hz

(samples/sec).
•

sinc(100πt) + sinc(50πt) → 0.01rect
(

ω

200π

)
+ 0.02rect

(
ω

100π

)

the bandwidth of the first term on the right-hand side is 50 Hz and the second term

is 25 Hz. Clearly the bandwidth of the composite signal is the higher of the two,

that is, 100 Hz. The Nyquist rate is 200 Hz (samples/sec).
•

sinc(100πt) + 3sinc2(60πt) → 0.01rect
(

ω

200π

)
+ 0.05∆

(
ω

240π

)

the bandwidth of the first term is 50 Hz and that of the second term is 60 Hz. The

bandwidth of the sum is the higher of the two, that is, 60 Hz. The Nyquist sampling

rate is 120 Hz.•
sinc(50πt) → 0.02rect

(
ω

100π

)
sinc(100πt) → 0.01rect

(
ω

200π

)

The two signals have BW 25 Hz and 50 Hz respectively. The spectrum of the product

of two signals is 1/(2π) times the convolution of their spectra. From width property

of the convolution, the width of the convoluted signals is the sum of the widths of

the signals convolved. Therefore, the BW of the product is 25+50=75 Hz. The

Nyquist rate is 150 Hz.
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3. 6.1-3: The pulse train is a periodic signal with fundamental frequency 2B Hz. Hence,

ωs = 2π(2B) = 4πB. The period is T0 = 1/(2B). It is an even function of t. Hence, the

Fourier series for the pulse train can be expressed as

pTs(t) = C0 +
∞∑

n=1

Cn cos nωst

Using Eqs. (2.72), we obtain,

a0 = C0 =
1

T0

∫ 1/16B

−1/16B
dt =

1

4

and

an = Cn =
2

T0

∫ 1/16B

−1/16B
cos nωst dt =

2

nπ
sin

(
nπ

4

)
; bn = 0

Hence

ḡ(t) = g(t)pTs(t) =
1

4
g(t) +

∞∑

n=1

2

nπ
sin

(
nπ

4

)
g(t) cos nωst

4. 6.1-4: The BW of the signal g(t) is 5 Hz (10π rad/s), since the FT as below:

g(t) = sinc2(5πt) → G(ω) = 0.2∆
(

ω

20π

)

Therefore, the Nyquist rate is 10 Hz, and the Nyquist interval is T = 1/10 = 0.1s.

Fig. 3.1: Solution for 6.1-4.
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• When fs = 5Hz, the spectrum 1
T
G(ω) repeats every 5 Hz (10π rad/sec). The

successive spectra overlap, and the spectrum G(ω) is not recoverable from Ḡ(ω),

that is, g(t) cannot be recovered from its samples. If the sampled signal is passed

through an ideal lowpass filter of BW 5 Hz, the output spectrum is rect(ω/20π), and

the output signal is 10sinc(20πt), which is not the desired signal sinc2(5πt).

• When fs = 10Hz, the spectrum Ḡ(ω)consists of back-to-back, nonoverlapping rep-

etition of 1
T
G(ω) repeating every 10 Hz. Hence, G(ω) can be recovered from Ḡ(ω)

using an ideal lowpass filter of BW 5 Hz (Fig.1(f)), and the output is 10sinc2(5πt).

• in the last case of oversampling (fs = 20 Hz), with empty band between successive

cycles. Hence, G(ω) can be recovered from Ḡ(ω) using an ideal lowpass filter or even

a practical lowpass filter. The output is 20sinc2(5πt).

5. 6.1-5: This scheme is analyzed fully in Problem 3.4-1, where we found the bandwidth of

y1(t), y2(t), and y(t) to be 10 kHz, 5 kHz, and 15 kHz, respectively. Hence, the Nyquist

rates for the three signals are 20 kHz, 10 kHz, and 30 kHz, respectively.

6. 6.1-6: (a) When the input to this filter is b(t), the output of the summer is δ(t)−δ(t−T ).

This acts as the input to the integrator. And, h(t), the output of the integrator is

h(t) =
∫ t

0
[δ(t)− δ(t− T )] dτ = u(t)− u(t− T ) = rect

(
t− T/2

T

)

The impulse response h(t) is shown in the figure below.

(b) The transfer function of this circuit is

H(ω) = T sinc
(

ωT

2

)
e−jωT/2

and

|H(ω)| = T

∣∣∣∣sinc
(

ωT

2

)∣∣∣∣

7. 6.2-2:

(a): the bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

(b): 65536 = 216, so that 16 binary digits are needed to encode each sample.

(c): 30, 000× 16 = 480, 000 bits/s.

(d): 44, 100× 16 = 705, 600 bits/s.
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Fig. 3.2: Solution for 6.1-6.
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4.1 Assignment 4 Problems
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4.2 Assignment 4 Solutions

• 4.2-1: ,

– For m(t) = cos 1000t,

ψDSB−SC(t) = m(t) ·cos 10, 000t = cos 1000t cos 10, 000t =
1

2
[cos 9000t+cos 11, 000t]

where the first term is LSB part, the second term is USB part.

– For m(t) = 2 cos 1000t + cos 2000t,

ψDSB−SC(t) = m(t) · cos 10, 000t = [2 cos 1000t + cos 2000t] cos 10, 000t

= cos 9000t + cos 11, 000t +
1

2
[cos 8000t + cos 12, 000t]

=
[
cos 9000t +

1

2
cos 8000t

]
+

[
cos 11, 000t +

1

2
cos 12, 000t

]

where the first bracket includes LSB part, and the second USB part.

– For m(t) = cos 1000t · cos 3000t,

ψDSB−SC(t) = m(t) · cos 10, 000t = 0.5 · [cos 2000t + cos 4000t] cos 10, 000t

=
1

2
[cos 8000t + cos 12, 000t] +

1

2
[cos 6000t + cos 14, 000t]

=
1

2
[cos 8000t + cos 6000t] +

1

2
[cos 12, 000t + cos 14, 000t]

where the first bracket includes LSB part, and the second USB part.

• 4.2-2: The relevant plots are shown in Fig. S4.2-2.

• 4.2-3: The relevant plots are shown in Fig. S4.2-3.

• 4.2-4: (a) The signal at point b is

ga(t) = m(t) cos3 ωct = m(t)
[
3

4
cos ωct +

1

4
cos 3ωct

]

The term 3
4
cos ωct is the desired modulated signal, whose spectrum is centered at ±ωc.

The remaining term 1
4
cos 3ωct is the unwanted term, which represents the modulated

signal with carrier frequency 3ωc with spectrum centered at ±3ωc, as shown in Fig. S4.2-

4. The bandpass filter centered at ±ωc allows to pass the desired term 3
4
cos ωct, but

suppresses the unwanted term 1
4
cos 3ωct. Hence, this system works as desired with the

output 3
4
cos ωct.

(b) Fig. S4.2-4 shows the spectra at point b and c.

(c) The minimum usable value of ωc is 2πB in order to avoid spectral folding at dc.
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Fig. 4.1: Solution for 4.2-1.

Fig. 4.2: Solution for 4.2-3.
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(d)

m(t) cos2 ωct =
m(t)

2
[1 + cos 2ωct] =

1

2
m(t) +

1

2
m(t) cos 2ωct

This signal at point b consists of the baseband signal 1
2
m(t) and a modulated signal

1
2
m(t) cos 2ωct, which has a carrier frequency 2ωc, not the desired value ωc. both the

components will be suppressed by the filter, whose center frequency is ωc. Hence, this

system will not do the desired job.

(e) The reader may verify that the identity for cos nωct contains a term cos ωct when n is

odd. This is not true when n is even. Hence, the system works for a carrier cosn ωct only

when n is odd.

Fig. 4.3: Solution for 4.2-4.

• 4.2-6 The resistance of each diode is r ohms while conducting, and∞ when off. When the

carrier A cos ωct is prositive, the diodes conduct (during the entire positive half cycle), and

when the carrier is negative, the diodes are open (during the entire negative half cycle).

Thus, during the positive half cycle, the voltage R/(R + r)φ(t) appears across each of

the resistor R. During the negative half cycle, the output voltage is zero. Therefore, the

diodes act as a gate in the circuit that is basically a voltage divider with a gain 2R/(R+r).

The output is therefore,

eo(t) =
2R

R + r
w(t)m(t)

The period of w(t) is T0 = 2π/ωc. Hence, from Eq. (2.75),

w(t) =
1

2
+

2

π

[
cos ωct− 1

3
cos 3ωct +

1

5
cos 5ωct + · · ·

]

The output eo(t) is

eo(t) =
2R

R + r
w(t)m(t) =

2R

R + r
m(t)

[
1

2
+

2

π

(
cos ωct− 1

3
cos 3ωct +

1

5
cos 5ωct + · · ·

)]

(a) If we pass the output eo(t) through a bandpass filter (centered at ωc), the filter

suppresses the signal m(t) and m(t) cos nωct for all n 6= 1, leaving only the modulated

term 4R
π(R+r)

m(t) cos ωct intact. Hence, the system acts as a modulator.
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(b) The same circuit can be used as a demodulator if we use a bandpass filter at the

output. In this case, the input is φ(t) = m(t) cos ωct and the output is 4R
π(R+r)

m(t).

• 4.3-1 ga(t) = [A + m(t)] cos ωct. Hence,

gb(t) = [A + m(t)] cos2 ωct =
1

2
[A + m(t)] +

1

2
[A + m(t)] cos 2ωct

The first term is a lowpass signal because its spectrum is centered at ω = 0. The lowpass

filter allows this term to pass, but suppresses the second term, whose spectrum is centered

at ±2ωc. Hence, the output of the lowpass filter is

y(t) = A + m(t)

When this signal is passed through a DC block, the DC term A is suppressed yielding

the output m(t). This shows that the system can demodulate AM signal regardless of

the value of A. This is a synchronous or coherent demodulation.
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• 4.3-2 (a)

µ = 0.5 =
mp

A
=

10

A
→ A = 20

(b)

µ = 1.0 =
mp

A
=

10

A
→ A = 10

(c)

µ = 2.0 =
mp

A
=

10

A
→ A = 5

(d)

µ = ∞ =
mp

A
=

10

A
→ A = 0

This means that µ = ∞ represents the DSB-SC case.
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• 4.4-1 In Fig. 4.14, when the carrier is cos[(∆ω)t + δ] or sin[(∆ω)t + δ], we have

x1(t) = 2[m1(t) cos ωct + m2(t) sin ωct] cos[(ωc + ∆ω)t + δ]

= 2m1(t) cos ωct cos[(ωc + ∆ω)t + δ] + 2m2(t) sin ωct cos[(ωc + ∆ω)t + δ]

= m1(t){cos[(∆ω)t + δ] + cos[(2ωc + ∆ω)t + δ]}
+m2(t){sin[(2ωc + ∆ω)t + δ]− sin[(∆ω)t + δ]}

Similarly,

x2(t) = m1(t){sin[(2ωc + ∆ω)t + δ] + sin[(∆ω)t + δ]

+m2(t){cos[(∆ω)t + δ]− cos[(2ωc + ∆ω)t + δ]}

After x1(t) and x2(t) are passed through lowpass filter, the outputs are

m′
1(t) = m1(t) cos[(∆ω)t + δ]−m2(t) sin[(∆ω)t + δ]

m′
2(t) = m1(t) sin[(∆ω)t + δ] + m2(t) cos[(∆ω)t + δ]

• 4.5-1 To generate a DSB-SC signal from m(t), we multiply m(t) with cos ωct. However,

to generate the SSB signals of the same relative magnitude, it is convenient to multiply

m(t) with 2 cos ωct. This also avoids the nuisance of the fractions 1/2, and yields the

DSB-SC spectrum M(ω − ωc) + M(ω + ωc). We suppress the USB spectrum (above ωc

and below −ωc) to obtain the LSB spectrum. Similarly, to obtain the USB spectrum, we

suppress the LSB spectrum (between −ωc and ωc) from the DSB-SC spectrum. Fig.S4.5-1

a,b, and c show the three cases.

(a) From Fig.a, we can express ψLSB(t) = cos 900t and ψUSB(t) = cos 1100t.

(b) From Fig.b, we can express ψLSB(t) = 2 cos 700t+cos 900t and ψUSB(t) = cos 1100t+

2 cos 1300t.

(b) From Fig.c, we can express ψLSB(t) = 0.5[cos 400t+cos 600t and ψUSB(t) = 0.5[cos 1400t+

2 cos 1600t].
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• 4.5-3 (a) Fig. S4.5-3a shows the spectrum of m(t) and Fig.S4.5-3b shows the correspond-

ing DSB-SC spectrum 2m(t) cos 10, 000πt.

(b) Fig.S4.5-3c shows the corresponding LSB spectrum obtained by suppressing the USB

spectrum.

(c) Fig.S4.5-3d shows the corresponding USB spectrum obtained by suppressing the LSB

spectrum. We now find the inverse Fourier transforms of the LSB and USB spectra from

Table 3.1 (pair 18) and the frequency shifting property as

ψLSB(t) = 1000sinc(1000πt) cos 9000πt

ψUSB(t) = 1000sinc(1000πt) cos 11000πt

• 4.5-5 The incoming SSB signal at the receiver is given by [Eq. (4.17b)]

ψLSB(t) = m(t) cos ωct + mh(t) sin ωct

Let the local carrier be cos[(ωc + ∆ω)t + δ]. The product of the incoming signal and the

local carrier is ed(t), given by

ed(t) = ψLSB(t) cos[(ωc + ∆ω)t + δ] = 2[m(t) cos ωct + mh(t) sin ωct] cos[(ωc + ∆ω)t + δ]

The lowpass filter suppresses the sum frequency component centered at the frequency

(2ωc+∆ω), and passes only the difference frequency component centered at the frequency
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∆ω. Hence, the filter output eo(t) is given by

eo(t) = m(t) cos[(∆ω)t + δ]−mh(t) sin[(∆ω)t + δ]

Observe that if both ∆ω and δ are zero, the output is given by

eo(t) = m(t)

as expected. If only δ = 0, then the output is given by

eo(t) = m(t) cos(∆ω)t−mh(t) cos(∆ω)t

This is an USB signal corresponding to a carrier frequency ∆ω as shown in Fig. S5.5-5b.

This spectrum is the same as the spectrum M(ω) with each frequency component shifted

by a frequency ∆ω. This changes the sound of an audio signal slightly. For voice signals,

the frequency shift within ±20Hz is considered tolerable. Most US systems, however,

restrict the shift to ±2Hz.

(b) When only ∆ω = 0, the lowpass filter output is

eo(t) = m(t) cos δ −mh(t) sin δ

We now show that this is a phase distortion, where each frequency component of M(ω)

is shifted in phase by amount δ. The Fourier transform of this equation yields

Eo(ω) = M(ω) cos δ −Mh(ω) sin δ
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But from Eq.(4.14b)

Mh(ω) = −jsgn(ω)M(ω) =




−jM(ω) ω > 0

M(ω) ω < 0

and

Eo(ω) =





M(ω)ejδ ω > 0

M(ω)e−jδ ω < 0

It follows that the amplitude spectrum of eo(t) is M(ω). The same as that for m(t).

But the phase of each component is shifted by δ. Phase distortion generally is not a

serious problem with voice signals, because the human ear is somewhat insensitive to

phase distortion. Such distortion may change the quality of speech, but the voice is still

intelligible. In video signals and data transmissions, however, phase distortion may be

intolerable.

• 4.5-6 We showed in Prob. 4.5-4 that the Hilbert transform of mh(t) is −m(t). Hence, if

mh(t) (instead of m(t)) is applied at the input in Fig.4.20, the USB output is

y(t) = mh(t) cos ωct−m(t) sin ωct = m(t) cos
(
ωct +

π

2

)
+ mh(t) sin

(
ωct +

π

2

)

Thus, if we apply mh(t) at the input of the Fig.4.20, the USB output is an LSB signal

corresponding to m(t). The carrier also acquires a phase shift π/2. Similarly, we can

show that if we apply mh(t) at the input of the Fig.4.20, the LSB output would be an

USB signal corresponding to m(t) (with a carrier phase shifted by π/2).

• 4.6-1 From Eq. (4.20)

Ho(ω) =
1

Hi(ω + ωc) + Hi(ω − ωc)
|ω| ≤ 2πB

Fig.S4.6-1a shows Hi(ω − ωc) and Hi(ω + ωc). Fig. S4.6-1b shows the reciprocal, which

is Ho(ω).

• 4.8-1 A station can be heard at its allocated frequency 1500 kHz as well as at its image

frequency. The two frequencies are 2fIF Hz apart. In the present case, fIF = 455 kHz.

hence, the image frequency is 2 × 455 = 910 kHz apart. Therefore, the station will

also be heard if the receiver is tuned to frequency 1500-910=590 kHz. The reason for

this is as follows.When the receiver is tuned to 590 kHz, the local oscillator frequency is

fLO = 599 + 455 = 1045 kHz. Now this frequency fLO is multiplied with the incoming

signal of frequency fc = 1500 kHz. The output yields the two modulated signals whose

carrier frequencies are the sum and difference frequencies, which are 1500+1045=2545

kHz and 1500-1045=455 kHz. The sum carrier is suppressed, but the difference carrier

passes through, and the station is received.
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• 4.8-2 The local oscillator generates frequencies in the range 1+8=9 Mhz. When the

receiver setting is 10Mhz, fLO = 10+8 = 18 Mhz. Now, if there is a station at 18+8 = 26

Mhz, it will beat (mix) with fLO = 18 Mhz to produce two signals centered at 26+18=44

Mhz and at 26-18=8 Mhz. The sum component is suppressed by the IF filter, but the

difference component, which is centered at 8 Mhz, passes through the IF filter.
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5.2 Assignment 5 Solutions

• 5.1-1: In this case, fc = 10 MHz, mp = 1 and m′
p = 8000.

For FM:

∆f = kfmp/2π = 2π×105/2π = 105 Hz. Also, fc = 107. Hence, (fi)max = 107+105 = 10.1

MHz, and (fi)min = 107 − 105 = 9.9 MHz. The carrier frequency increases linearly from

9.9 MHz to 10.1 MHz over a quarter (rising) cycle of duration a seconds. For the next

a seconds, when m(t) = 1, the carrier frequency remains at 10.1 MHz. Over the next

quarter (the falling) cycle of duration a, the carrier frequency decreases linearly from 10.1

MHz to 9.9 MHz, and over the last quarter cycle, when m(t) = −1, the carrier frequency

remains at 9.9 MHz. This cycles repeat periodically with the period 4a seconds as shown

in Fig.1.

For PM:

∆f = kpm
′
p/2π = 50π × 8000/2π = 2 × 105 Hz. Also, (fi)max = 107 + 2 × 105 = 10.2

MHz, and (fi)min = 107− 2× 105 = 9.8 MHz. Fig. 1b shows ṁ(t). We conclude that the

frequency remains at 10.2 MHz over the (rising) quarter cycle, where ṁ(t) = 8000. For

the next a second, ṁ(t) = 0, and the carrier frequency remains at 10 MHz. Over the next

a seconds, where ṁ(t) = −8000, the carrier frequency remains at 9.8 MHz. Over the last

quarter cycle, ṁ(t) = 0 again, and the carrier frequency remains at 10 MHz. This cycles

repeat periodically with the period 4a seconds as shown in Fig.1.

Fig. 5.1: Solution for 5.1-1.

• 5.1-2: In this case, fc = 1 MHz, mp = 1 and m′
p = 2000. For FM:

∆f = kfmp/2π = 20, 000π/2π = 104 Hz. Also, fc = 1 MHz. Hence, (fi)max = 106+104 =

1.01 MHz, and (fi)min = 106 − 104 = 0.99 MHz. The carrier frequency increases linearly

from 0.99 MHz to 1.01 MHz over the cycle (over the interval −10−3/2 < t < 10−3/2).

Then instantaneously, the carrier frequency falls to 0.99MHz and starts rising linearly to

10.01 MHz over the next cycle. This cycle repeats periodically with period 10−3 as shown

in Fig.2
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For PM:

Here, because m(t) has jump discountinuities, we shall use a direct approach. For conve-

nience, we select the origin for m(t) as shown in Fig.2. Over the interval −10−3/2 < t <

10−3/2, we can express the message signal as m(t) = 2000t. Hence,

φPM(t) = cos
[
2π(10)6 t +

π

2
m(t)

]
= cos[2π(10)6 t + 1000πt] = cos[2π(105 + 500) t]

At the discontinuity, the amount of jump is md = 2. Hence, the phase discontinuity is

kpmd = π. Therefore, the carrier frequency is constant throughout at 106 + 500 Hz. But

at the points of discontinuity, there is a phase discontinuity of π radians as shown in Fig.2.

In this case, we must maintain kp < π because there is a discontinuity of the amount 2.

For kp > π, the phase discontinuity will be higher than 2π given rise to ambiguity in

demodulation.

Fig. 5.2: Solution for 5.1-2.

• 5.1-3: (a)

φPM(t) = A cos[ωct + kpm(t)] = 10 cos[10, 000t + kpm(t)]

We are given that φPM(t) = 10 cos(13, 000t) with kp = 1000. clearly, m(t) = 3t over the

interval |t| ≤ 1.

(b)

φFM(t) = A cos
[
ωct + kf

∫ t

0
m(α) dα

]
= 10 cos

[
10, 000t + kf

∫ t

0
m(α) dα

]

Therefore,

kf

∫ t

0
m(α) dα = 1000

∫ t

0
m(α) dα = 3000t

Hence,

3t =
∫ t

0
m(α) dα → m(t) = 3
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• 5.2-1: In this case, kf = 1000π and kp = 1. For

m(t) = 2 cos 100t + 18 cos 2000πt

and

ṁ(t) = −200 sin 100t− 36, 000π sin 2000πt

Therefore, mp = 20 and m′
p = 36, 000π + 200. Also the baseband signal BW B =

2000π/2π = 1kHz.

For FM: ∆f = kfmp/2π = 10, 000 and BFM = 2(∆f +B) = 2(20, 000+1000) = 42kHz.

For PM: ∆f = kfm
′
p/2π = 18, 000 + 100/πHz, and BPM = 2(∆f + B) = 2(18, 031.83 +

1000) = 38.06366kHz.

• 5.2-2: φEM(t) = 10 cos(ωct + 0.1 sin 2000πt). Here, the baseband signal bandwidth B =

2000π/2π = 1000Hz. Also,

ωi(t) = ωc + 200π cos 2000πt

Therefore, ∆ω = 200π and ∆f = 100Hz and BEM = 2(∆f + B) = 2(100 + 1000) =

2.2kHz

• 5.2-3: φEM(t) = 5 cos(ωct + 20 sin 1000πt + 10 sin 2000πt). Here, the baseband signal

bandwidth B = 2000π/2π = 1000Hz. Also,

ωi(t) = ωc + 20, 000π cos 1000πt + 20, 000π cos 2000πt

Therefore, ∆ω = 20, 000π + 20, 000π = 40, 000π and ∆f = 20kHz and BEM = 2(∆f +

B) = 2(20, 000 + 1000) = 42kHz

• 5.2-4: The baseband signal bandwidth B = 3× 1000 = 3000Hz

For FM: ∆f =
kf mp

2π
= 105×1

2π
= 15.951kHz and BFM = 2(∆f + B) = 37.831kHz.

For PM: ∆f =
kpm′

p

2π
= 25×8000

2π
= 31.831kHz and BFM = 2(∆f + B) = 66.662kHz.

• 5.2-5: The baseband signal bandwidth B = 5× 1000 = 5000Hz

For FM: ∆f =
kf mp

2π
= 2000π×1

2π
= 1kHz and BFM = 2(∆f + B) = 2(2 + 5) = 14kHz.

For PM: To find B PM, we observe from Fig. 2 that φFM(t) is essentially a sequence of

sinusoidal pulses of width T = 10−3 seconds and of frequency fc = 1 MHz. Such a pulse

and its spectrum are depicted in Figs. 3.22c and d, respectively. The bandwidth of the

pulse, as seen from Fig. 3.22d, is 4π/T rad/s or 2/T Hz. Hence, BPM = 2kHz.

• 5.2-6: (a)

For FM: ∆f =
kf mp

2π
= 200,000π×1

2π
= 100kHz and the baseband signal bandwidth B =

2000π
2π

= 1kHz. Therefore, BFM = 2(∆f + B) = 202kHz.
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For PM: ∆f =
kpm′

p

2π
= 10×2000π

2π
= 10kHz and BFM = 2(∆f + B) = 2(10 + 1) = 22kHz.

(b) m(t) = 2 sin 2000πt, and B = 2000π/2π = 1kHz. Also, mp = 2 and m′
p = 4000π.

For FM: ∆f =
kf mp

2π
= 200,000π×2

2π
= 200kHz and the baseband signal bandwidth B =

2000π
2π

= 1kHz. Therefore, BFM = 2(∆f + B) = 2(200 + 1) = 402kHz.

For PM: ∆f =
kpm′

p

2π
= 10×4000π

2π
= 20kHz and BFM = 2(∆f + B) = 2(20 + 1) = 42kHz.

(c) m(t) = sin 4000πt, and B = 4000π/2π = 2kHz. Also, mp = 1 and m′
p = 4000π.

For FM: ∆f =
kf mp

2π
= 200,000π×1

2π
= 100kHz and, BFM = 2(∆f + B) = 2(100 + 2) =

204kHz.

For PM: ∆f =
kpm′

p

2π
= 10×4000π

2π
= 20kHz and BFM = 2(∆f + B) = 2(20 + 2) = 44kHz.

(d) Doubling the amplitude of m(t) roughly doubles the bandwidth of both FM and PM.

Doubling the frequency of m(t) (expanding the spectrum M(ω) by a factor of 2) has

hardly any effect on the FM bandwidth. However, it roughly doubles the bandwidth of

PM, indicating that PM spectrum is sensitive to the shape of the baseband spectrum.

FM spectrum is relatively insensitive to the nature of the spectrum M(ω).

• 5.2-7: From pair 22 (Table 3.1), we obtain

e−t2 ⇒ √
πe−ω2/4

The spectrum M(ω) =
√

πe−ω2/4 is a Gaussian pulse, which decays rapidly. Its 3 dB

bandwidth is 1.178 rad/s=0.187 Hz. This is an extremely small bandwidth compared to

∆f .

Also, ṁ(t) = −2te−t2/2. The spectrum of ṁ(t) is M ′(ω) = jωM(ω) = j
√

πωe−ω2/4.

This spectrum also decays rapidly away from the origin, and its bandwidth can also be

assumed o be negligible compared to ∆f .

For FM: ∆f =
kf mp

2π
= 6000π×1

2π
= 3kHz and, BFM ≈ 2(∆f) = 2× 3 = 6kHz.

For PM: To find m′
p, we set the derivative of ṁ(t) = −2te−t2/2 equal to zero. This yields

m̈(t) = −2e−t2/2 + 4t2e−t2/2 = 0 ⇒ t =
1√
2

and m′
p = ṁ(1/

√
2) = 0.858, and ∆f =

kpm′
p

2π
= 8000π×0.858

2π
= 3.432kHz and BPM ≈

2(∆f) = 2(3.432) = 6.864kHz.

• 5.3-1: The block diagram of the design is shown in Fig. 5.3

• 5.3-2: The block diagram of the design is shown in Fig. 5.4

• 5.4-1: (a)

φPM(t) = A cos[ωct + kpm(t)]
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Fig. 5.3: Solution for 5.3-1.

Fig. 5.4: Solution for 5.3-2.
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When this φPM(t) is passed through an ideal FM demodulator. The output is kpṁ(t).

This signal, when passed through an ideal integrator, yields kpm(t). Hence, FM demod-

ulator followed by an ideal integrator acts as a PM demodulator. However, if m(t) has a

discontinuity, ṁ(t) = ∞ at the point(s) of discontinuity, and the system will fail.

(b)

φFM(t) = A cos
[
ωct + kf

∫ t

0
m(α) dα

]

when this signal φFM(t) is passed through an ideal PM demodulator, the output is

kf

∫ t
0 m(α) dα. When this signal is passed through an ideal differentiator, the output

is kfm(t). Hence, PM demodulator followed by an ideal differentiator, acts as FM de-

modulator regardless of whether m(t) has jump discontinuities or not.

• 5.4-2: Fig. 5 shows the waveforms at points b, c, d and e. The figure is self explanatory.

Fig. 5.5: Solution for 5.4-2.
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6.1 Assignment 6 Problems

• 11.1-4: Determine X(t) and RX(t1, t2) for the random process in Prob. 11.1-1, and

determine whether this is a wide-sense stationary process.

• 11.1-8: Repeat Prob. 11.1-7 for the random process

x(t) = a cos(ωct + Θ)

where ωc is a constant, a and Θ are independent RVs uniformly distributed in the ranges

(-1,1) and (0, 2π) respectively.

• 11.2-3: Show that if the PSD of a random process X(t) is band-limited to B Hz, and if

RX

(
n

2B

)
=





1 n = 0

0 n = ±1,±2,±3, · · ·

then X(t) is a white bandlimited process; that is, SX(ω) = krect(ω/4πB). Hint: Using

the interpolation formula, reconstruct RX(τ).
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• 12.1-1: A certain telephone channel has Hc(ω) ≈ 10−3 over the signal band. The message

signal PSD is Sm(ω) = βrect(ω/2α), with α = 8000π. The channel noise PSD is Sn(ω) =

10−8. If the output SNR at the receiver is required to be at least 30 dB, what is the

minimum transmitted power required? Calculate the value of β corresponding to this

power.

• 12.2-1: For a DSB-SC system with a channel noise PSD of Sn(ω) = 10−10 and a baseband

signal of bandwidth 4 kHz, the receiver output SNR is required to be at least 30 dB. The

receiver is as shown in Fig.12.3.

a. What must be the signal power Si received at the receiver input?

b. What is the receiver output noise power N0?

c. What is the minimum transmitted power ST if the channel transfer function is

Hc(ω) = 10−4 over the transmission band?

• 12.2-2: Repeat Prob. 12.2-1 for SSB-SC.

• 12.2-3: Determine the output SNR of each of the two quadrature multiplexed channels

and compare the results with those of DSB-SC and SSB-SC.

• 12.2-4: Assume [m(t)]max = −[m(t)]min = mp.

a. Show that for AM

mp = µA

b. Show that the output SNR for AM [Eq. (12.14)] can be expressed as

So

No

=
µ2

K2 + µ2
γ

where k2 = m2
p/m

2.

c. Using the result in part (2), show that for tone modulation with µ = 1, So/No = γ/3.

d. Show that if ST and S ′T are the AM and DSB-SC transmitted powers, respectively,

required to attain a given output SNR, then

ST ≈ k2S ′T for µ = 1 and k2 >> 1

• 12.3-1: For an FM communication system with β = 2 and white channel noise with PSD

Sn(ω) = 10−10, the output SNR is found to be 28 dB. The baseband signal m(t) is gaussian

and band-limited to 15 kHz, and 3σ loading is used. The demodulator constant α = 10−4.

This means that the FM demodulator output is αψ̇ when the input is A cos(ωct + ψ(t)).

In the present case, the signal at the demodulator output is αkfm(t). The output noise

is also multiplied by α.
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a. Determine the received signal power Si.

b. Determine the output signal power So.

c. Determine the output noise power No.



6. Assignment 6 57

6.2 Assignment 6 Solutions

• 11.1-4:

Since x(t) = a cos(ωt + θ)

E[x(t)] = E[a cos(ωt + θ)] = E[a] cos(ωt + θ) = cos(ωt + θ)
∫ A

−A
apa(a) da

= [cos(ωt + θ)/(2A)]
∫ A

−A
a da = 0

RX(t1, t2) = E[a2 cos(ωt1 + θ) cos(ωt2 + θ)] = cos(ωt1 + θ) cos(ωt2 + θ)E[a2]

= cos(ωt1 + θ) cos(ωt2 + θ)
∫ A

−A

a2

2A
da =

A3

3
cos(ωt1 + θ) cos(ωt2 + θ)(6.1)

• 11.1-8:

x(t) = a cos(ωct + θ), E[a] = 0 and E[a2] = 1
3

(b)

E[x(t)] = E[a cos(ωct + θ)] = E[a] · E[cos(ωct + θ)] = 0

(c)

RX(t1, t2) = E[a2] · E[cos(ωct1 + θ) cos(ωct2 + θ)] =
1

3
E[cos ωc(t1 − t2) + cos ωc(t1 + t2) + 2θ]

=
1

3
cos ωc(t1 − t2) +

1

2π

∫ 2π

0
cos[ωc(t1 − t2) + 2θ] dθ =

1

3
cos ωc(t1 − t2)

(d) The process is W.S.S

• 11.2-3: RX(τ) = 0 for τ = ± n
2B

and its Fourier transform SX(ω) is bandlimited to B

Hz. Hence, RX(τ) = 0 is a waveform bandlimited to B Hz and according to Eq.6.10b

RX(τ) =
∞∑

n=−∞
RX

(
n

2B

)
sinc (2πBτ − n).

Since RX

(
n

2B
= 0 for all n except n = 0, therefore,

RX(τ) = RX(0)sinc(2πBτ)

and

SX(ω) =
RX(0)

2B
rect

(
ω

4πB

)

Hence, x(t) is a white process bandlimited to B Hz.
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• 12.2-1: since N0/2 = 10−10, we have N0 = 2× 10−10.

(a)

30dB = 1000 =
S0

σ2
o

= γ =
Si

N0B
=

Si

2× 10−10 × 4000

therefore, Si = 8× 10−4.

(b) From Eq.(12.7), the receiver output noise power σ2
o is given as

σ2
o = N0B = 2× 10−10 × 4000 = 8× 10−7

(c) Since Si = |Hc(ω)|2ST = 10−8ST , therefore, ST = Si/10−8 = 8× 104.
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