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Note

Assignment problems shown in this document are from the 3rd Edition of
the course reference text. Mapping of assignment problems from this earlier
edition to problems in the 4t Edition is shown on pages (ii1)—(viii).
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Problems from the 3" edition

(2.1-1) Find the energies of the signals:

a) sint, 0<t<n

b) —sint, 0<t<n

c) 2sint, 0<t<n

d) sin (t-2n), 2n<t<4n

Comment on the effect on energy of sign change, time shifting or doubling of the signal. What is
the effect on the energy if the signal is multiplied by k?

(2.9-2) of the 3" edition is the same as (2.9-2) of 4™ edition with the following change:

g(t) = 3cost + cos(5t — 2m/3) + 2 cos(8t + 2m/3)

(2.9-3) Figure below shows the trigonometric Fourier spectra of a periodic signal g(t).

a) By inspection of the figure, find the trigonometric Fourier series representing g(t).

b) By inspection of the figure, sketch the exponential Fourier spectra of g(t).

c) By inspection of the exponential Fourier spectra obtained in part (b), find the exponential
Fourier series of g(t).

Show that the series found in parts (a) and (c) are equivalent.

\\\ Magnitude

(3.1-5) of the 3" edition is the same as (3.1-4) of the 4™ edition
(3.1-7) of the 3" edition is the same as (3.1-6) of the 4™ edition with the following changes:
Figure (a): bandwidth = n/2; Figure (b): bandwidth= w,.

(3.2-2) Show that the Fourier transform of rect (t-5) is sinc(%)e_ﬁ“’.
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(3.3-6) of the 3 edition is the same as (3.3-6) of the 4™ edition with the following changes:

Figures (b) and (c): Frequency range is from n to 3n

(3.3-7) Using the frequency-shifting property, find the inverse Fourier transform of the following
spectra:

a) G(w) = rect(wT_‘L) + rect(wTH)

w+4

b) G(w) = A=) + A5

(3.3-10) of the 3" edition is the same as (3.3-9) of the 4™ edition with the following change:
Bandwidth of the filter is W rad/sec
(3.4-1) = (3.4-2) 4™ edition

(3.5-3) Determine the maximum bandwidth of a signal that can be transmitted through the low-
pass RC filter in fig. 3.28a with R=1000 and C=107 if, over this bandwidth, the amplitude
response (gain) variation is to be within 5% and the time delay variation is to be within 2%.

(6.1-1) = (6.1-1) 4™ edition with the following change:
Figure (b) bandwidth = 15,000 Hz
(6.1-2) Determine the Nyquist sampling rate and the Nyquist sampling interval for the signals:

(a) sinc (100mt); (b) sinc?(100mt); (c) sinc (1007t) + sinc (50mt); (d) sinc (100mt) +
3sinc?(60mt); () sinc (50mt)sinc (1007t).

(6.1-4) Asignal g(t) = sinc?(5nt) is sampled (using uniformly space impulses) at a rate of (i)
5 Hz; (ii) 10 Hz; (iii) 20 Hz. For each of the three cases:

a) Sketch the sampled signal.

b) Sketch the spectrum of the sampled signal.

c) Explain whether you can recover the signal g(t) from the sampled signal.

d) If the sampled signal is passed through an ideal low-pass filter of bandwidth 5 Hz, sketch
the spectrum of the output signal.

(6.2-2) = (6.2-1) 4™ edition

(6.2-9) = (6.2-10) 4™ edition with the following change:
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Sample rate = 50% higher than the Nyquist rate
(6.2-10) = (6.2-11) 4™ edition with the following change:
10-bit quantizer;

(4.2-1) For each of the following baseband signals: (i) m(t) = cos 1000t ; (ii) m(t) =
2 cos 1000t + cos 2000¢; (iii) m(t) = cos 1000t cos 3000¢ :

a) Sketch the spectrum of m(t).

b) Sketch the spectrum of the DSB-SC signal m(t) = cos 10,000t.

c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra.

d) ldentify the frequencies in the baseband, and the corresponding frequencies in the DSB-
SC, USB, and LSB spectra. Explain the nature of frequency shifting in each case.

(4.2-2) Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] if: (i) m(t) = sinc(100¢t); (ii) m(t) =
eIt (iii) m(t) = e~ !~ Observe that e~1t~1! is eIt delayed by 1 second. For the last case
you need to consider both the amplitude and the phase spectra.

(4.2-3) Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] for m(t) = e~!tl if the carrier is
cos (10,000t — %),

(4.2-4) = (4.2-3) 4™ edition

(4.2-6) = (4.2-5) 4™ edition

(4.3-1) Show that coherent (synchronous) demodulation can demodulate the AM signal
[A + m(t)] cos w,t

regardless of the value of A.

(4.3-2) = (4.3-3) 4™ edition

(4.3-3) For the AM signal in Prob. 4.3-2 with u = 0.8:

a) Find the amplitude and power of the carrier.
b) Find the sideband power and the power efficiency 1.

(4.3-4)

a) Sketch the DSB-SC signal corresponding to m(t) = cos 2mt.
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b) This DSB-SC signal is applied at the input of an envelope detector. Show that the output
of the envelope detector is not m(t), but |m(t)|. Show that, in general, if an AM signal
[A + m(t)] cos w, t is envelope-detected, the output is [A + m(t)]. Hence, show that the
condition for recovering m(t) from the envelope detector is A + m(t) > 0 for all t.

(4.5-1) A modulating signal m(t) is given by:

a) m(t) = cos 100t
b) m(t) = cos 100t + 2 cos 300t
c) m(t) = cos 100t cos 500t

In each case:

i.  Sketch the spectrum of m(t).
ii.  Find and sketch the spectrum of the DSB-SC signal 2m(t) cos 1000t.
iii.  From the spectrum obtained in (ii), suppress the LSB spectrum to obtain the USB
spectrum.
iv.  Knowing the USB spectrum in (ii), write the expression ¢z (t) for the USB signal.
V.  Repeat (iii) and (iv) to obtain the LSB signal ¢,z (t).

(4.5-2) For the signals in Prob. 4.5-1, determine ¢;s5(t) and @ysg(t) if the carrier frequency
w, = 1000.

(4.5-3) Find ¢, s5(t) and @ysg(t) for the modulating signal m(t) = B sinc(2mBt) with B=
1000 and carrier frequency w, = 10000 7. Following this do it yourself steps:

a) Sketch spectra of m(t) and the corresponding DSB-SC signal 2m(t) cos w, t .

b) To find the LSB spectrum, suppress the USB in the DSB-SC spectrum found in (a).

c) Find the LSB signal, which is the inverse Fourier transform of the LSB spectrum found in
part(b). Follow the similar procedure to find ¢, s5(t).

(4.5-5) An LSB signal is demodulated synchronously. Unfortunately, the local carrier is not
2 cos w.t as required, but is 2 cos[(w, + Aw)t+ §)]. Show that:

a) When § = 0, the output y(t) is the signal m(t) with all its spectral components shifted
(offset) by Aw.

b) When Aw = 0, the output is the signal m(t) with phases of all its spectral components
shifted by 6.

In each of these cases, explain the nature of distortion.

(4.5-6) = (4.4-7) 4™ edition
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(4.8-1) A transmitter transmits an AM signal with a carrier frequency of 1500 kHz. When an
inexpensive radio receiver (which has a poor selectivity in its RF-stage bandpass filter) is tuned
to 1500 kHz, the signal is heard loud and clear. This same signal is also heard (not as strong) at
another dial setting. State, with reasons, at what frequency you will hear this station. The IF
frequency is 455 kHz.

(4.8-2) Consider a superheterodyne receiver designed to receive the frequency band of 1 to 30
MHz with IF frequency 8 MHz. What is the range of frequencies generated by the local
oscillator for this receiver? An incoming signal with carrier frequency 10 MHz is received at the
10 MHz setting. At this setting of the receiver we also get interference from a signal with some
other carrier frequency if the receiver RF stage bandpass filter has poor selectivity. What is the
carrier frequency of the interfering signal?

(5.1-3) = (5.1-4) 4" edition with the following change:
w, = 10,000
(5.2-1) = (5.2-3) 4™ edition with the following change in m(t):
m(t) = 2 cos 100t + 18 cos 20007t
(5.2-2) = (5.2-4) 4™ edition
(5.2-3)=(5.2-5) 4™ edition
(5.2-4)=(5.2-6) 4™ edition

(5.2-5) Estimate the bandwidth of @p,(t) and @z, (t) in Prob. 5.1-2. Assume the bandwidth of
m(t) to be the fifth harmonic frequency of m(t).

(5.2-7)=(5.2-8) 4" edition with the following change: m(¢t) = e "
(5.3-1)=(5.3-2) 4" edition
(5.3-2)=(5.3-1) 4" edition

(11.1-4) Determine x(t) and R, (t4, t,) for the random process: x(t) = a cos(wt + 8), where ®
and 0 are constants and a is an RV uniformly distributed in the range (-A, A). Also determine
whether this is a wide-sense stationary process.

(11.1-8)=(9.1-9) 4™ edition

(11.2-3)=(9.2-4) 4™ edition with the following change:
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w
Sy(w)=k rect(4n—B)

(12.2-1) = (10.2-1) 4™ edition with the following changes:

S, (w) = 10719 signal bandwidth=4 kHz; SNR>30dB; H.(w) = 107*.
(11.5-1)=(9.8-1) 4™ edition

(11.5-2) =(9.8-2) 4™ edition with (c) f. = 90 kHz.

(11.5-3)=(9.8-3) 4™ edition

(12.1-1) A certain telephone channel has H.(w) = 1073 over the signal band. The message
signal PSD is S,,(w) = Brect (%),with a = 80007. The channel noise PSD is S,,(w) = 1078,

If the output SNR at the receiver is required to be at least 30dB, what is the minimum transmitted
power required? Calculate the value of S corresponding to this power.

(12.2-2)=(10.2-2) 4™ edition
(12.2-3)=(10.2-6) 4™ edition
(12.2-4)=(10.2-3) 4" edition
(12.3-1)=(10.3-1) 4" edition with the following changes:

B=2 a=10"*.
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1. ASSIGNMENT 1

1.1 Assignment 1 Problems
e 2.1-1
2.1-1 ﬁind the energies of the signals shown in Fig. P2.1-1. Comment on the effect on energy of

change, time shifting or doubling of the signal. What is the effect on the energy if the sign
multiplied by k7

1V\sint @ IT—SW/\ G
. 2sint

t—>

e 2.1-7: Show that the power of a signal g(t) given by
g(t) = > Dype/* w; #wy, forall 1#k
k=m
is (Parseval’s theorem)
Py = Z |Dk|2
k=m

e 2.1-8: Determine the power and the rms value for each of the following signals:

(a) 10 cos(100t + 7/3) (b) 10 cos(100t + 7/3) + 16 sin(150t + 7/5)

(¢) (10 4 2sin 3t) cos 10t (d) 10 cos 5t cos 10t
(e) 10sin 5t cos 10t (f) e/ coswot
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2.4-1 Simplify the following expressions:

- @ (225)s0 ® (L2252 5w
© [e" cos (31 — 60°)] 5(t) Smfz - s -1y
© (s575)0@+ ® (L) s
Hint: Use Eq. (2.18). For part (f) use L’ Hopital’s rule.
{ 2 Bialuats e Tollowl sl
N (@) /: 2(D8(t — 1) dr (h)[m 5(r)gt — 1) d
© /: 8(t)e I di @ [ ¢ —2)ysin e di
(e /: 8(t +3)e ! dt ® fjo (& + 4981 — 1) dt
(@ /: g2 =083 —1) dt (h) f: =1 g %(x — 5)8(x — 3) dx

Hint: §(x) is located at x = 0. For example, §(1 — ¢) is located at 1 — 7 = 0; that is,at7 = 1, and
SO on.

(~2.9-1y For each of the periodic signals in Fig. P2.8-4, find exponential Fourier series and skeicl
corresponding spectra.

'i.9-i\}A periodic signal g(?) is expressed by the following Fourier series:
e

2 2
g() =3cos t +cos (|5t — TTE) + 2 cos (87 + Tn)

(a) Sketch the amplitude and phase spectra [or the trigonometric series.
(b) By inspection of spectra in part (a), sketch the exponential Fourier series spectra.

. (¢) By inspection of spectra in part (b), write the exponential Fourier series for g(z).

x \

2.9-3 Figure P2.9-3 shows the trigonometric Fourier spectra of a periodic signal g ().

(a) By inspection of Fig. P2.9-3, find the trigonometric Fourier series representing g (7).

(b) By inspection of Fig. P2.9-3, sketch the exponential Fourier spectra of g(z).

(c) By inspection of the exponential Fourier spectra obtained in part (b), find the expons
Fourier series for g(z).

(d) Show that the series found in parts (a) and (c) are equivalent.

Figure P2.9-3
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1.2 Assignment 1 Solutions

e 2.1-1 Let us denote the signal in question by g(¢) and its energy by E,. For parts (a)
and (b)

1 2w

27
E, = / sin? tdt = —
0 2 Jo

1 27
dt—§/ cos(2t)dt =m+0=m
0

4 o 1 4m 1 4m
(¢) E,= sin” tdt = 5 dt — 5/ cos(2t)dt =m+0=m
2

21 21 s

2 1 2 1 2
() Fy= [ (2sintPdt =4 [2 at—5 [ cos(an dt] — Afr 4 0] = 4n
0 0 0

Sign change and time shift do not affect the signal energy. Doubling the signal quadruples
its energy. In the same way, we can show that the energy of kg(t) is k*E,.

e 2.1-7:

n

T/2 T/2
P, = lim T/ = lim T/ Z Z DkD*eJ(w’f wr)t

o5 T Jozys? T T erp S

The integrals of the cross-product terms (when k # r) are finite because the integrands
are periodic signals (made up of sinusoids). These terms, when divided by 7" — oo, yields

zero. The remaining terms (k = r) yields

lim f/ SO DuPdt = |Dif?

T/2 k=m k=m
e 2.1-8 (a) Power of a sinusoid of amplitude C' is C?/2 (Eq. (2.6a)) regardless of its
frequency (w # 0) and phase. Therefore, in this case, P = (10)?/2 = 50.

) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids (Eq.
2.6b)). Therefore, in this case, P = (10)2/2 + (16)?/2 = 178.

(b

(

(c) (10 + 2sin 3t) cos 10t = 10 cos 10t + sin 13t — sin 3¢. Hence, from (Eq. (2.6b)), P =
(10)2/2 +1/2 + 1/2 = 51

(d) 10 cos 5t cos 10t = 5(cos 5t + cos 15t). Hence, P=25;

(e) 10sin 5t cos 10t = 5(sin 15t — sin 5¢). Hence, P=25;

(f) e coswot = 1/2[ed(@+wo)t 4 eil@=w0)] " Using the results obtained in Prob. 2.1-7, we

obtain P=1/4+1/4=1/2

e 2.4-1 Using the fact that g(z)d(x) = g(0)d(x), we have (a) 0, (b) 26(w) (c) 30(t) (d)
—26(t—1) (e) ﬁé(w + 3) (f) ké(w) (use L'Hopital’s rule).

e 2.4-2 In these problems remember that impulse §(z) is located at x = 0. Thus, an

impulse §(t — 7) is located at 7 = ¢, and so on.
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(a) The impulse is located at 7 =t and g(7) at 7 =t is g(¢). Therefore,

| gt = ryar = g0

—00

(b) The impulse §(7) is at 7 =0 and g(t — 7) at 7 = 0 is g(¢). Therefore,

| o()gtt = 7ydr = (1

—00

Using similar arguments, we obtain (c) 1, (d) 0, (e) €3, (f) 5, (g) g(—1) (h) —¢?

e 2.9-1 (a) To = 4,wp = /2. Also, Dy = 0 (by inspection),

D,

1 . 3 .
1 / i/t gy / =i/t gy = 2 G M s
2w J-1 1 ™m 2

(b) Ty = 10m,wp = 27/10m = 1/5.

D

g@t)= Y D,es" where

1 /™ ' 1
n = —/ eIE gt = (—2]' sin mr) = —sin (mr>
107 J—= 2mn 5 ™ 5

g(t)=Do+ Y D,e’™ where by inspection Dy = 0.5
1 2r ¢ j

D, =— — eIt =
2w Jo 2w 2m™n

so that |D,| = = and /D,, = w/2 when n > 0 and —7/2 when n < 0.

(d) Th = m,wp = 2 and Dy = 0.

(6) TO = 3,(,()0 = 2?7r

g(t)= > D,e”™ where

1 /44t . —J (2
D, = —/ e (O T— ( sin - — cos m)
™ \7mn 2 2

™ J—m/4 T

gty = > D,e "5t where

]_ 1 - 27N 3 -27Tn ]27Tn
e e g ()
3Jo ' ° ’ dwenz €7 3 *

(f) TO = 6,(.4)0 = %, and DO =0.5

-1

g(t) =05+ > D,e™3"  where

n=—oo

s TN 1 - T 2
(t +2)e 973" dt+/ e dt+/ (—t+2
—1 1

- nt 3
e s dt} = <COS 5 o8
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Fig. 1.1: Solution 2-9-1.
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e 2-9.2 (a)
g(t) = 3cost + sin <5t - 76r> — 2cos <8t - 7?:)

For a compact trigonometric form, all terms must have cosine form and amplitudes must

be positive. For this reason, we rewrite g(t) as

g(t) = 3cost+ cos (5t— % — ;T) + 2 cos (St—g—ﬂ')
4m

2
= 3cost+ cos <5t— ;T) + 2 cos (St— 3)

(b) By inspection of the trigonometric spectra in Fig.2a, we plot the exponential spectra

as shown in Fig.2b. By inspection of exponential spectra in Fig.2a, we obtain

g(t) _ §(6jt +e—jt) +1 [ej(5t—27r/3) _I_e—j(5t—27r/3)} + [ej(st—47r/3) +€—j(8t—47r/3)}
2 2

_ §€]t + <2€]2w/3> 6]515 + (67347r/3> e]St + §efjt + (26327r/3) e*jf}t + <€j47r/3) 673815

= B Kb
R B .
>
=
1

% T 1l
0 5 v 5
| (i}
ar { |
L] _
—— P —
1 g L
T :
A
Fig. 1.2: Solution 2-9-2.
e 2-9.3 (a)

g(t) =2+ 2cos(2t — ) + cos(3t — w/2) = 2 — 2 cos(2t) + sin(3t)
(b) The exponential spectra are shown below.

(c) By inspection of exponential spectral,

) 1. )
_ (2t—m) —j(2t—m) = | ,i(8t—7/2) —j(3t—m/2)
glt) = 2+ [ e }+2[e +e ]
= 2+ 2cos(2t — ) + cos(3t — m/2)
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(d) Observe that the two expressions (trigonometric and exponential Fourier series) are
equivalent.

L

L

]
h,

[ ]

(L FE
e e M
o
Ur
_-_H_

i .
=
™
0

- .

r
£
b |
I=
1
1
1 ;‘
=l Fei
bl
-

Fig. 1.3: Solution 2-9-3.



2. ASSIGNMENT 2

2.1 Assignment 2 Problems

3.1-5 From definition (3.8a), find the Fourier transforms of the signals shown in Fig. P3.1-5.

- e® &)
4 1
2 S5
[ -
1 2 -1 0 T
(a) (b)
Figure P3.1-5

3.1-6 From definition (3.8b), find the inverse Fourier transforms of the spectra shown in Fig. P3.1-6.

G(w)

Figure P3.1-6

3.1-7 From definition (3.8b), find the inverse Fourier transforms of the spectra shown in Fig. P3.1-7.

Figure P3.1-7

e 3.2-2: From the definition of Fourier Transform, show that the Fourier transform of

rect(t — 5) is sinc(w/2)e’>
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332 The Fourier transform of the triangular pulse g(¢) in Fig. P3.3-2a s given as

/ 1 . .
Glw) = —(e* - joe” ~1)
0
Using this information, and the time-shifting and time-scaling proper?ies, ‘ﬁnd tpe Eouricr
transforms of the signals shown in Fig. P33-2b, ¢, d, ¢, and f. Hint Time inversion in g()

results in the pulse g, (t) in Fig. P3.3-2b; consequently g, () = g(—1). The pulse in Fig. P3.3-2¢
can be expressed as g(f — T) + g (t = T) [the sum of g(f) and g, (1) both delayed by T}. The
pulses in Fig. P3.3-2d and e both can be expressed as g(t — T) + g, (r + T) [the sum of g(1)
delayed by T and g, (f) advanced by T for some suitable choice of T’ The pulse in Fig. P3.3-2f
can be obtained by time-expanding g(f) by a factor of 2 and then delaying the resulting pulse by
2 seconds [or by first delaying g(f) by 1 second and then time-expanding by a factor of 2].

g g(1) 8,(t)
....................... l 1 1 1 1
-1 0 t— 0 e | 0 = | 2
(a) (b) (c)
(1 0 . (1)
AU gl g.(1
I 3 1 4 5
>
-1 0 r—>1 1 o 1 0 (—> 2
2 2
(d) (e) (f)

Figure P3.3-2
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: }3‘-6 The signals in Fig. P3.3-6 are modulated signals with carrier cos 10¢. Find the Fourier transforms

e of these signals using the appropriate propetties of the Fourier transform and Table 3.1. Sketch
the amplitude and phase spectra for parts (a) and (b). Hinr: These functions can be expressed in
the form g(t) cos wyt.

L AAMARARARL -,
IV

3.3-7 Using the frequency-shifting property and Table 3.1, find the inverse Fourier transform of the
~ spectra shown in Fig, P3.3-7.

Figure P3.3-6

S 5l . % 4 92 0 IR

Figure P3.3-7
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11

3.3-10° The process of recovering a signal g(r) from the modulated signal (1) cos wyt is called
" demodulation. Show that the signal g(r) cos wyt can be demodulated by multiplying it with
2c0s wyf and passing the product through a low-pass filter of bandwidth W rad/s [the bandwidth

of g(t)]. Assume W < wy. Hint: 2cos* wyt = 1 + cos 2yt Recognize that the spectrum of

8(t) cos 2wyt is centered at 2wy and will be suppressed by a low-pass filter of bandwidth W
radss.

34 1 Signals g (1) = 10*rect (10*) and g(1) = d(t) are applied at the inputs of the ideal low-pass
flters H) () = rect (w/40, 000m) and Hy(w) = rect (/20,0007 ) (Fig, P34-1). The outputs
y1(£) and y(t) of these filters are multiplied to obtain the signal y(f) = y,(1)yy(1).

(a) Sketch G 1) and G, (w).

(b) Sketch H, () and H, (w).

(c) Sketch ¥;(w) and ¥y (w).

(d) Find the bandwidths of y, (1), y(r), and y(t).

Figure P3.4-1
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2.2 Assignment 2 Solutions

e 3.1-5 (a
@ 4 — 2eIw — eI

Jjw

1 ) 2 .
G(w) = / 4e™ It dt +/ 2e I dt =
0 1

(b)

ot . Tt 2
G(w) = / ——edt 4+ | — e dt = —[coswT 4 wTsinwr — 1]
- T 0o 7T TW

This results could also be derived by observing that ¢(t) is an even function. Therefore,
from the result in Prob. 3.1-1,

2 2
G(w) = f/ t coswtdt = —[coswT + wTsinwr — 1]
7 Jo TW

e 3.1-7 (a)

1 /2 - elwt , w2 1 mt
g(t) = 27T/Tr/2 cosw e dw = m(ﬂcosw +sinw)™ 5, = mcos;

(b)

1 w . 1 w w

g(t) = —/ i G(w)etdw = — U ’ G(w) cos wtdw +j/ i G(w) sinwtdw
27 J—wo 21 L —wo —wo

Because G(w) is even function, the second integral on the right-hand side vanishes. Also

the integrand of the first term is an even function. Therefore,

1 fwo w 1 )

g(t) = —/ — costw dw = ——[cos wyt + wot sinwpt — 1]

0 W Twot?

e 3.2-2 The function rect(t — 5) is centered at t = 5, has a width of unity, and its value

over this interval is unity. Hence

5.5 ) 1 ) 1 ) )
G(w) — / e—jwt dt = _%e—jwt 4512 _ %[€—j4.5w . e—]5.5w]
4.5 Jw Jw
e

—Jj4.5w ) —Jjdw .
= [ — e = 6_7[2]' sin g] = sinc <u2)) eI
Jw Jw

1,
Gi1(w) = G(—w) = E[eﬁ“’ + jwe 7Y —1]
Fig.(c) g2(t) = g(t — 1) + g1 (¢t — 1). Therefore

QeI

Gs(w) = [G(w) + Gi(w)]e ™ = [G(w) + G(—w)]e ™ =

5 [cosw +wsinw — 1]
w
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Fig.(d) g3(t) = g(t — 1) + g1(t + 1) and

. . 1 4 w w
_ —Jjw Jw __ _ 102 a2
Gi(w) = Gw)e™ + G(~w)e’ = —[2 — 2cosw] = —; sin 5 = sinc <2>

Fig.(e) g4(t) = g(t —1/2) + ¢1(t + 1/2). Therefore

efjw/Q . . . ejw/2
7[63“’ — jwel® — 1] +

Gi(w) = Gw)e? +Gi(w)e™* =

1 Y, . w
= E {Zw sin 2} = sinc (2)

Fig.(f) g5(t) can be obtained in three steps: (i) time-expanding ¢(t) by a factor 2; (ii)

3 [e79% + jwe ™ — 1]

then delaying it by 2 seconds; (iii) and multiplying it by 1.5 (we may interchange the
sequence for steps (i) and (ii)]. The first step (timeOexpansion by a factor 2) yields
f <t> < 2G(2w) = L(ejz‘” — 2jwe’® — 1)
2 20?2

Second step of time delay of 2 secs, yields,

t_ 2 1 2w . 12w — 172w 1 . —J2w
f(2> ﬁﬁ(ej — 2jwe’™ — 1)e™ :2702(1—]%)—6 Gl

The third step of multiplying the resulting signal by 1.5 yields

t—2 3 .
—15f () e -2 (1 - jow— e
g5 (%) 5f( 5 )<:>4w2( J2w — e 7%
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3.3-4 From time-shifting property

At T) e Glu)c HeT
Therelore

ge+T) + gt =T} vt Glw)e™T + Gw)e™T 2 26 (w) coswT

Ve can use this result to derive transforms of signals in Fig. P3.3-4.
(u) Here g{1} is a gato pulse 23 aliown in Fig. 53.3-4a.

glt) = rect (-;-) <= 2 sinc(w)

Also T = 3. The signal in Fig. P3.3-4a in g(t + 3) + g(t ~ 3), and

9(t +3) + o(t — 3) = dsinc(w) cosduw
{b) Here () is a triangular puise shown in Fig. 53.3-4b. From the Table 3.1 (pair 19}

g{tym A (%) += sinc? (%)
Also T = 3. The signal in Fig. P3.3-4b i g(t + 3) + g(# - 3), and

gt +3) + g(t — 3) «me 20inc® (%) con

a4 %L,
1—-
N P N
=1 i\ £ e L

3.3.8 Flg. (n) The signal g{¢) in this case is & triangle pulse A(L) (Fig. 53.3-6) multiplied by cos 10¢.
g(t)y= A (;;'-) cos 104
Alao from Table 3.1 {pair 19) Algs) = » uinc’{l'f) From the modulation property (.33}, it follows that

o) =A (2%) con 10t o % {.im; [w(w; 10)] + sine? [l(u : lD]]}

‘The Fourier tranaform in this case is & real function and w

% need only the smplitude spectzum in this case as
shown in Fig, 53.2-6a. .

Fig. (b) The signal ¢{s} hera is tho same a8 the signal in Fig. (a) delayed by 25, From time shifting property,
ita Fourier transform is the same as in part (a) muitiplied by »~*%) Therafore
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ar
L Ak |
‘-t- : {0 T. +-» “4-i2 4 o

337

I_.a‘:aﬁcg
o 6% 101y
) —»

1G))

‘h~.. 'D
(o] P ARE o () -
s -arris

Glup = £ {m, [.(w - un] + i [r(;u;— m]}'__,,.,

The Fourier transform in this case is the same as that in part (a) muitiplied by #~/2™. This multiplying [actor
reprenents & linear phase spectrum ~2rw, Thus we have an amplitude spectrum [same as in past (a}] ax weil a3
a lincar phase spectrum (G(w) = ~2nw as shown in Fig. $3.3-6b. the smplitude spectrum in this case as shown
in Flig. §3.3-6b,

Note: In the above solution, we first multiplied the triangle pulse A(x%) by cos 10t and then delayed the result
by 2x. This mens the signal in Fig. (h) is expreesed as A{L31%) cos 10t - 2r). ;
Wa could have interchanged the operation in this particular case. that is. the triangle pulse A(o) is first dclayed
by 2x and then the result is multiplied by cos 10t. In this alternate procedurs. the signal in Fig. (b) is expressed
s A7) cou 10

This interchange of operation is permissible here anly because the ninusoid cos 10¢ exccutes integral number of
cycles in the interval 2x. Becausa of this both the expressions are equivalent since cos 10(! - 2x) = cos 10f.

Fig. (c) In this case the signal is identical Lo that in Fig. b, except that the basic pulse is rect( ) instead of
a triangle pulse A(4:). Now

rect (#) = 2nsinc(rw)
Using the same argument as for part (b), we obtain

Glw) = x(sinc[z(w + 10)] + sinc|x{w = 10)]}o~/*™

{n)
Gt o (£54) s (45)
Also
bt o e 3)
Therefore
g(e) = %Mr)mv
(b)

Clw)= A (‘!-:-'-‘!) + a("’-i-"")
Also

fa
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%line’(ﬂ - A (‘f)

Therelore

9{1) = %!iﬂ:’{f]mfu

3.3-10

A basic demodulator is shown in Flg, 533106 The product of the modulated signal g(f) covwot with 2 conunt
yialds

9(€) comwnt x 2 conwet = 29(1) cos” wot m g(t){1 + cou Jwgt] = 9(t) + g{t) cos 2ol

The product contalns the desired (1) {whosa spectrum is cantered at w = 0) and the unwanted signal g(¢) cos Zoo!
whth spectrum §[Clw+Zus]+Glw=1ua), which in centared at +2ug. The two spectrs are nonoverlapping becaust

glt)aesa,t

gD
low
e

G-o{D)
[P
Ti By T By >
Tt et 0 -dr T w-
y i ""ak) r Gy (@D 1D
~HeOT | 2007 w-> i

.-h T w”
W < <o (Ses Fig. 53.3-10b). W can su

flter as shown in Fig. 53.3-10s. PPrexs the unwanted signal by paming the product through s lowpass
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34-1

Gilw) = sinel )  and Gulw) =)
Figers 53.4-1 shows Gilw). Gu(w). Hi[w) and Hilw). Now

Yilw) = Gi{=)Hilw)
Ya{w) = Cplw)Halw)

The spectrs Yi(w) and Ya(w) are also shown in Flg. S3.4-1. Because (i) = wi{t}ia(t). the h-qnma:mﬁ::'h;
proparty yields ¥ {w) = ¥ (w)e ¥a(w). From tha width property of convolution. it [ollows that the ban 'kH .
Y{w) la tha surm of bandwidiha of Yi(w) and Y3(w). Becsuss the bandwidths of ¥i{w) and Yi(w) are 10 kHy,
kHs, respeciivaly. the baadwidih of ¥ (w) is 18 kHa.

3.8-3 From iha results in Example .18

4 L
|H{w)| = e e B > wio?
Also H(0) = 1, Hence if w; is the lrequancy where the smplitude responsa drops to 0.9, then
10

[H(w)| = w 0.95 me 1y = 328,084
;;UF + lﬂ‘s

Maceover, Lhe time delay is gven by (ses Exampis 3.16)

telw) m 3%! = 14{0) = é = 107"

If wy is Lhe frequancy where the tima delay drops to 0.98% of [ value at w - 0, than

10* iy
fylwa) = W =098 x 107" we oy w 142,837

\Va select the smaller of i and wi. that is w = 142, 857, where both the specifications are satisfied. This yleids
n frequency of 12,T38.4 Hs.

Thera is & typo ho this example. The tlme deiay olerance should ba 4% (natead of 1'%,

The band of Aw = 7000 centarnd st w = 10° represents the frequancy range from 0.99 x 10% 10 1.01 % 10% Let
un consider the gains and the time delsys at the band edges. Frem Exampls 3.18

| H{w)} = 7:,'.‘:.‘, telw) » ;,:—.1 s 10°
At tha edges of the band

[H(0.99 x 10°)| = m =101x107% and [H{1.01x10%) = M%W =0.901x 107"

The gain vatistion over the band in only 1.99%. Similarly. wa And the time delays at the band edges s

14{0.99 x U},) = T!?I—I';':—)"Q-_N' = m. and ti(1.01 % lﬁ'] = m-—:%w = m

Tha time deluy variation over the band is 4%. Hence, the transmission may be considered distortionles, Tha
signal is transmitted with a gain and time delay st the center of the band, that is s w = 10°, W alo fnd
[H{10%) = 0.01 and £,{10°) = 1="". Hence. if 2{t) is the input, the correaponding outpuc in

u(t) = 0.01g(¢ - 107T)
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3. ASSIGNMENT 3

3.1 Assignment 3 Problems

Figure P6.1-1 shows Fourier spectra of signals g,(r) and g,(r). Determine the Nyquist interval
and the sampling rate for signals g, (1), g2(1), g3(1), g3(t), and g,(1)g2(1).

(b)

Figure P6.1-1

Determine the Nyquist samplmg rate and the Nyquist sampling interval for the sxgnals
(a) sinc (1007t); (b) sinc® (1007¢); (¢) sinc (1007¢) + sinc (507¢): (d) smc(100m)+3smc
(607 1); (e) sinc (507 ¢)sinc (1007 t).

A signal g(t) band-limited to B Hz is sampled by a periodic pulse train py, (1) made up of a
rectangular pulse of width 1/8B seconds (centered at the origin) repeating at the Nyquist rate
(2B pulses per second). Show that the sampled signal g () is given by

_ 1 =2  nm
gt) = Zg(r) + "‘L;: o sin (_4_1—) g(t) cos nw;t w, =4n B

Show that the signal g(t) can be recovered by passing g(t) through an ideal low-pass filter of
bandwidth B Hz and a gain of 4.

A signal g(1) = sinc ?(5rrt) is sampled (using uniformly spaced impulses) at a rate of: (i) 5 Hz;
(ii) 10 Hz; (iii) 20 Hz. For each of the three case:

(a) Sketch the sampled signal.
(b) Sketch the spectrum of the sampled signal.
(¢) Explain whether you can recover the signal g(r) from the sampled signal.

(d) If the sampled signal is passed through an ideal low-pass filter of bandwidth § H7 cketch the
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290 SAMPLING AND PULSE CODE MODULATION

v 615 Signals g, (1) = 10rect (10°) and g(1) = (1) are applied at the inputs of ideal low-pass filters
H(w) = rect(w/40,000m) and Hy(w) = rect (/20,0007) (Fig. P6.1-5). The outputs il
and y, (1) of these filters are multiplied to obtain the signal y() = y;(t)ys(1). Find the Nyquis
rate of y; (1), y(1), and y(1).

g (1)
1 H (0)
g,(1)
> H 2(‘co)
Figure P6.1-5

v 6,146 A zero-order hold circuit (Fig. P6.1-6) is often used to reconstruct a signal g(r) from its samples

Input Output

npu J- | Delay _ utpu
T

T+

Figure P6.1-6
(a) Find the unit impulse response of this circuit.

(b) Find the transfer function H (w) and sketch [H(w)|.

(¢) Show that when a sampled signal (1) is applied at the input of this circuit, the outputisa
staircase approximation of g(). The sampling interval is T,
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| yZ-Z \)A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal
V- bandwidth to be 15 kHe.

(a) What is the Nyquist rate?

(b) I the Nyquist samples are quantized into L = 65, 536 levels and then binary coded, determine
the number of binary digits required to encode a sample.

(¢) Determine the number of binary digits per second (bit/s) required to encode the audio signal.

(d) For practical reasons discussed in the text, signals are sampled at a rate well above the Nyquist
rate. Practical CDs use 44,100 samples per second. If L = 65, 536, determine the number
of bits per second required to encode the signal, and the minimum bandwidth required to
transmit the encoded signal,

.2-3"\A television signal (video and audio) has a bandwidth of 4.5 MHz. This signal is sampled,
\ ! quantized, and binary coded to obtain a PCM signal.

(a) Determine the sampling rate if the signal is to be sampled at a rate 20% above the Nyquist
rate.

(b If the samples are quantized into 1024 levels, determine the number of binary pulses required
to encode each sample.

(¢) Determine the binary pulse rate (bits per second) of the binary-coded signal, and the minimum
bandwidth required to transmit this signal.



3. Assignment 3 21

6.2-6: A message signal m(t) is transmitted by binary PCM without compression. If the SNR
(signal-to-quantization-noise ratio) is required to be at least 47 dB, determine the minimum
value of L required, assuming that m(t) is sinusoidal. Determine the SNR obtained with this

minimum L.

6.2-10: The output SNR of a 10-bit PCM (N = 10) was found to be 30 dB. The desired SNR
is 42 dB. It was decided to increase the SNR to the desired value by increasing the number of
quantization levels L. Find the required number of levels.
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3.2 Assignment 3 Solutions

1. 6.1-1: The bandwidth of ¢;(f) and g»(t) are 100 kHz and 150 kHz, respectively. Therefore,

the Nyquist sampling rates for g;(t) is 200 kHz, sampling interval T = 1/200k = 5us

the Nyquist sampling rates for go(¢) is 300 kHz, sampling interval Ty = 1/300k =
3.33us.

the bandwidth of ¢f(¢) is 200 kHz, fyy,, = 400 kHz, fy,, = 1/400k = 0.25us.
the bandwidth of g3(t) is 450 kHz, fn,, = 900 kHz, fy,, = 1/900k = 1.11us.
the bandwidth of g;(t) - g2(t) is 250 kHz, fny,, = 500 kHz, fy,, = 1/500k = 2us.

2. 6.1-2:

since

sinc(1007t) — 0.01rect <2007r)

the bandwidth of this signal is 100 7 rad/s or 50 Hz. The Nyquist rate is 100 Hz

(samples/sec).

inc?(1007¢ 1A( >
sinc”(1007t) — 0.0 1007

the bandwidth of this signal is 200 = rad/s or 100 Hz. The Nyquist rate is 200 Hz

(samples/sec).

sinc(1007t) + sinc(50mt) — 0.01rect (2&}”) + 0.02rect <1(;(})7r>

the bandwidth of the first term on the right-hand side is 50 Hz and the second term
is 25 Hz. Clearly the bandwidth of the composite signal is the higher of the two,
that is, 100 Hz. The Nyquist rate is 200 Hz (samples/sec).

sinc(1007t) 4 3sinc?(607t) — 0.01rect (20“6%) + 0.05A (24077)

the bandwidth of the first term is 50 Hz and that of the second term is 60 Hz. The
bandwidth of the sum is the higher of the two, that is, 60 Hz. The Nyquist sampling
rate is 120 Hz.

sinc(507t) — 0.02rect ( sinc(1007t) — 0.01rect (

1007T> 2007r>

The two signals have BW 25 Hz and 50 Hz respectively. The spectrum of the product
of two signals is 1/(27) times the convolution of their spectra. From width property
of the convolution, the width of the convoluted signals is the sum of the widths of
the signals convolved. Therefore, the BW of the product is 254+50=75 Hz. The
Nyquist rate is 150 Hz.



3. Assignment 3 23

3. 6.1-3: The pulse train is a periodic signal with fundamental frequency 2B Hz. Hence,
ws = 2m(2B) = 4w B. The period is Ty = 1/(2B). It is an even function of ¢. Hence, the

Fourier series for the pulse train can be expressed as

pr,(t) = Co+ > Cp cosnwst

n=1

Using Eqs. (2.72), we obtain,

o 1 [1/16B p 1
= = — t — —
a0 0 To /—1/163 4

and

9  (1/16B 9
an:Cn:—/ cosnwstdtzsin<m); b, =0
Ty J-1/16B nmw 4

Hence X o 4
91t) = g(0)pr, (1) = 390 + 3 s (") o(0) cosmu

4. 6.1-4: The BW of the signal g(¢) is 5 Hz (107 rad/s), since the FT as below:

g(t) = sinc?(5rt) — G(w) = 0.2A (20(;T>

Therefore, the Nyquist rate is 10 Hz, and the Nyquist interval is 7= 1/10 = 0.1s.

(a) 0.2 & Gw) 5y
- -0 b [ p ——
=3 3 F(Hz) —
tay
<) ooy
= = o e ——
i — 40w - 20w 20w ADw 0 ==
-20 = 5 10 FiH:) -~
Lend Fileer (]
] N K-
7 \/\/\/ 3
= —40m - 1O 10m a0m @
-20 -3 s 0 F (Hz) —=
Precescal Filter
e et ooy hy
(il
S & i
o [P— — O —i0m 1 10w [ T —

Fig. 3.1: Solution for 6.1-4.
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e When f, = 5Hz, the spectrum 7G(w) repeats every 5 Hz (107 rad/sec). The
successive spectra overlap, and the spectrum G(w) is not recoverable from G(w),
that is, g(¢) cannot be recovered from its samples. If the sampled signal is passed
through an ideal lowpass filter of BW 5 Hz, the output spectrum is rect(w/207), and
the output signal is 10sinc(207t), which is not the desired signal sinc?(57t).

e When f, = 10Hz, the spectrum G (w)consists of back-to-back, nonoverlapping rep-
etition of 1G(w) repeating every 10 Hz. Hence, G(w) can be recovered from G(w)
using an ideal lowpass filter of BW 5 Hz (Fig.1(f)), and the output is 10sinc?(5nt).

e in the last case of oversampling (fs = 20 Hz), with empty band between successive
cycles. Hence, G(w) can be recovered from G(w) using an ideal lowpass filter or even
a practical lowpass filter. The output is 20sinc?(5mt).

5. 6.1-5: This scheme is analyzed fully in Problem 3.4-1, where we found the bandwidth of
y1(t), y2(t), and y(t) to be 10 kHz, 5 kHz, and 15 kHz, respectively. Hence, the Nyquist
rates for the three signals are 20 kHz, 10 kHz, and 30 kHz, respectively.

6. 6.1-6: (a) When the input to this filter is b(¢), the output of the summer is 6(¢) — (¢t —T).
This acts as the input to the integrator. And, h(t), the output of the integrator is

h(t) = /Ot[a(t) —5(t—T)]dr = u(t) — u(t — T) = rect (t _£/2>

The impulse response h(t) is shown in the figure below.

(b) The transfer function of this circuit is

T .
H(w) = Tsinc YL\ w2
2

e ()

inc | —

sinc { =
7. 6.2-2:

a): the bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

and
|H(w)| =T

(

(b): 65536 = 216 50 that 16 binary digits are needed to encode each sample.
(c): 30,000 x 16 = 480,000 bits/s.

(d): 44,100 x 16 = 705,600 bits/s.
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6.2-9

8.2-10

X3
L Hﬂ { Hio)] - m(mf
/\/\/\/‘\m
T ¢ zTF o i ox LI

Figure 86.1-6

Fig. 3.2: Solution for 6.1-6.

(a) Nyquist rate =2 x 10® Hz. The actual sampling rate is 1.5 x (2 x 10%) = 3 x 10° Hz. Moreover, L = 256
and s = 255, From Eq. (6.18)

So 3L _ 3(256)
Mo [n(p+DP  (In256)

(b) If we reduce the sampling rate and increase the value of L so that the same number of bits/second is
maintained, we can improve the SNR (because of increased L) with the same bandwidth. In part (a), the
sampling rate is 3 x 10° Hz and each sample is encoded by 8 bits (L = 256). Hence, the transmission rate is
8 x 3 x 10% = 24 Mbits/second.

I we reduce the sampling rate to 2.4 x 10% (20% above the Nyquist rate), then for the same transmission rate

(24 Mbita/s). we can have (24 x 10%)/(2.4 x 10%) = 10 bits/sample. This results in L = 2'° = 1024. Hence, the
new SNR is

= 6394 = 38.06 dB

So _ 3L 3(104)
No ~ [In(p+1)]3 ~ (In256)2
Clearly, the SNR is increased by more than 10 dB.

= 102300 = 50.1 dB

Equation (6.23) shows that increasing n by one bit increases the SNR by 6 dB. Hence, an increase in the SNR
by 12 dB (from 30 to 42) can be accomplished by increasing n from 10 to 12, that is increasing by 20%.
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4. ASSIGNMENT 4

4.1 Assignment 4 Problems

For each of the following baseband signals: (i) m(r) = cos 1000z: (i) m(t) = 2cos 10y
€0s 2000¢; (i11) m(t) = cos 10001 cos 3000«

(a) Sketch the spectrum of m (7).
(b) Sketch the spectrum of the DSB-SC signal m(r) cos 10,000z.
(¢) Identify the upper sideband (USB) and the lower sideband (LSB) spectra.

0z +\'

(d) Identify the frequencies in the baseband, and the corresponding frequencies in the DSR.

USB, and LSB spectra. Explain the nature of frequency shifting in each case. ;-

Repeat Prob. 4.2-1 [parts (a), (b), and (¢) only] if: (i) m(¢) = sinc (1007); (ii) m (1) = ¢~ (i)
m(t) = e "', Observe that ¢7"~'l is ¢7 delayed by I second. For the last case you ne,ed -

consider both the amplitude and the phase spectra.

Repeat Prob. 4.2-1 [parts (a), (b), and (¢) only] form(t) = ¢ " if the carrier is cos(]0,000t-nM)
Hint: Use Eq. (3.36). i

You are asked to design a DSB-SC modulator to generate a modulated signal km(¢) cos wg

where (1) is a signal band-limited to B Hz. Figure P4.2-4 shows a DSB-SC modulator availabje

in the stock room. The carrier generator available generates not cos w7, but cos® w.t. Explain

whether you would be able to generate the desired signal using only this equipment. You may use

any kind of filter you like.

(a) What kind of filter is required in Fig. P4.2-47

(b) Determine the signal spectra at points b and ¢. and indicate the frequency bands occupied by
these spectra.

(¢) What is the minimum usable value of w,.”?

(d) Would this scheme work if the carrier generator output were cos” w,t? Explain.

(e) Would this scheme work if the carrier generator output were cos” w1 for any integer 1 2 2

M(w)

km(t) cos w.t A

Filter

@ ® ©

—2@B
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i . P

iq
~~— Slope &
o) r
E Vq =
(b)
Figure P4.2-6

4.2-6 InFig. P4.2-6, the input ¢ (t) = m(t), and the amplitude A > | (r)|. The two diodes are identical
with a resistance r ohms in the conducting mode and infinite resistance in the cutoff mode. Show
that the output ¢, (t) is given by

2R
e,(r) = Rer w(t) m(t)

where w(7) is the switching periodic signal shown in Fig. 2.22a with period 277/ W, seconds.
(a) Hence, show that this circuit can be used as a DSB-SC modulator.

(b) How would you use this circuit as a synchronous demodulator for DSB-SC signals.

4.2-7 In Fig. P4.2-6, if ¢ (1) = sin (w,t + 6), and the output e, (z) is passed through a low-pass filter,
then show that this circuit can be used as a phase detector, that is, a circuit that measures the phase
difference between two sinusoids of the same frequency (w,). Hint: show that the filter output is
a de signal proportional to sin 6.

4.2-8 Twosignals m; (¢) and m,(t), both band-limited to 5000 rad/s, are to be transmitted simultaneously
over a channel by the multiplexing scheme shown in Fig. P4.2-8. The signal at point b is the
multiplexed signal, which now modulates a carrier of frequency 20,000 rad/s. The modulated
signal at point c is transmitted over a channel.

(a) Sketch signal spectra at points a, b, and c.
(b) What must be the bandwidth of the channel?

(c) Design a receiver to recover signals m (1) and m;, (t) from the modulated signal at point c.

MI(UJ) ml(t)

b c
5000 w-> ¥ > 5

mglt) ® . T
- a
T 2 cos 20,000t

2 cos 10,000¢

Figure P4.2-8
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(a) Find the spectrum of the scrambled signal y(z).
(b) Suggest a method of descrambling y(¢) to obtain m ().

A slightly modified version of this scrambler was first used commercially on the 25-mjje
telephone circuit connecting Los Angeles and Santa Catalina island. !

m(t) Lofvsi-pass (1) s i
lter = cramb] .
0-15 kHz .

—15kHz 15 kHz T
f kHz

M(o)

2 cos 30,0007s
Figure P4.2-9

4.2-10 A DSB-SC signal is given by m(#) cos (277)10%. The carrier frequency of this signal, 1
to be changed to 400 kHz. The only equipment available is one ring modulator, a bandp
centered at the frequency of 400 kHz, and one sine wave generator whose frequency can
from 150 to 210 kHz. Show how you can obtain the desired signal cm(t) cos (27 x 400
from m(t) cos (27)10°¢. Determine the value of c.

4.3-1 Figure P4.3-1 shows a scheme for coherent (synchronous) demodulation. Show that this
can demodulate the AM signal [A + m(f)] cos w.t regardless of the value of A.

[A + m(t)] cos w t

e
S

Low-pass dc Outp

filter blocker

Y

cos w,!

Figure P4.3-1

4.3-2 Sketch the AM signal [A +m(t)] cos w.t for the periodic triangle signal m (¢) shown in Fi
corresponding to the modulation index: (a) x = 0.5; (b) u = 1; (¢) 1 = 2; (d) u = o0.
you interpret the case yu = oo?

/ \/ N\
~10 [ —>

Figure P4.3-2

4.3-3 For the AM signal in Prob. 4.3-2 with 1 = 0.8:
(a) Find the amplitude and power of the carrier.

(b) Find the sideband power and the power efficiency 7.

4.3-4 (a) Sketch the DSB-SC signal corresponding to m(t) = cos 27t.
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(b) This DSB-SC signal m(t) cos w,t is applied at the input of an envelope detector. Show that
the output of the envelope detector is not m(z), but [m(#)|. Show that, in general, if an AM
signal [A 4+ m(2)] cos w,t is envelope-detected, the output is |A 4 m(r)|. Hence, show that the
condition for recovering m(t) from the envelope detector is A 4+ m(¢) > 0 for all ¢.

4.3-5 Show that any scheme that can be used to generate DSB-SC can also generate AM. Is the converse

true? Explain.

4.3-6 Show that any scheme that can be used to demodulate DSB-SC can also demodulate AM. Is the

converse true? Explain.

4.3-7 'In the text, the power efficiency of AM for a sinusoidal m () was found. Carry out a similar

X A

analysis when m(t) is a random binary signal as shown in Fig. P4.3-7 and ;. = 1. Sketch the AM
signal with ¢ = 1. Find the sideband’s power and the total power (power of the AM signal) as
well as their ratio (the power efficiency 7).

A

1 —>

-A

Figure P4.3-7

4.3-8 In the early days of radio, AM signals were demodulated by a crystal detector followed by a

low-pass filter and a dc blocker, as shown in Fig. P4.3-8. Assume a crystal detector to be basically
a squaring device. Determine the signals at points a, b, ¢, and d. Point out the distortion term in
the output y(¢). Show that if A > |m(¢)|, the distortion is small.

dam(@®) x(1) y(t)
e | ¢ P > Low-pass > dc block
@ ®© L™ © @
Figure P4.3-8

4.4-1 Ina QAM system (Fig. 4.14), the locally generated carrier has a frequency error Aw and a phase

error §; that is, the receiver carrier is cos [(w, + Aw)t + 8] or sin [(w. + Aw)t + §]. Show that
the output of the upper receiver branch is

my(t) cos [(Aw)t 4+ §] — my(t) sin [(Aw)t + 5]
instead of m (¢), and the output of the lower receiver branch is
my(t) sin [(Aw)t + 8] + my(t) cos [(Aw)t + 6]

instead of m, (1).

4.5-1 A modulating signal m(z) is given by:

(@) m(r) = cos 100z
(b) m(t) = cos 100¢ + 2 cos 300¢
(e) m(t) = cos 100¢ cos 500¢

In each case:
(i) Sketch the spectrum of m (t).
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(i) Find and sketch the spectrum of the DSB-SC signal 2m () cos 1000z

(iii) From the spectrum obtained in (ii), suppress the LSB spectrum to obtain the USB spectrum;
(iv) Knowing the USB spectrum in (ii), write the expression ¢y (¢) for the USB signal. |
(v) Repeat (iii) and (iv) to obtain the LSB signal ¢, i, (7).

4.5-2 For the signalsin Prob. 4.5-1, determine ¢, ., (t) and g, (1) using Eq. (4.17) if the carrier frequency;

= 1000. Hint: If m(t) is a sinusoid, its Hilbert transform my(¢) is the sinusoid m(f) phasa, |

delayed by 7/2 rad.

4.5-3 Find ¢, (1) and ¢, (¢) for the modulating signal m(r) = B sinc (27 Bt) with B = 1000 anq
v carrier frequency w. = 10, 0007r. Follow these do-it-yourself steps:

(a) Sketch spectra of m(r) and the corresponding DSB-SC signal 2m(t) cos w.t.
(b) To find the LSB spectrum, suppress the USB in the DSB-SC spectrum found in ().

4\
(c) Find the LSB signal ¢, g (), which is the inverse Fourier transform of the LSB spectrum fougét'
in part (b). Follow a similar procedure to find ¢, (7). g

4.5-4 1If mh (t) is the Hilbert transform of m(t), then show that the Hilbert transform of mh (1) 1s —m(t‘

transform of m(¢) is obtained by passing m(¢) through H () in cascade with H (w).

4.5-5 An LSB signal is demodulated synchronously, as shown in Fig. P4.5-5. Unfortunately, the 100:3‘
> carrier is not 2 cos w,t as required, but is 2 cos [(w. + Aw)t + §]. Show that: ;

(a) When § = 0, the output y(7) is the signal m(t) with all its spectral components shifted (offse

by Aw. Hint: Observe that the output y(f) is identical to the right-hand side of Eq. (4.178

with @, replaced with Aw. §

(b) When Aw = 0, the output is the signal m(¢) with phases of all its spectral components shi

by 8. Hinz: Show that the output spectrum ¥ (w) = M (w)e’® for w > 0, and equal to M (w)e -
when w < 0. o

In each of these cases, explain the nature of distortion. Hint: For (a), demodulation consists !
shifting an LSB spectrum to the left and right by w, + Aw, and low-pass filtering the result.
part (b), use the expression (4.17b) for ¢, , (#) and multiply it by the local carrier 2 cos (!
and low-pass filter the result. '

Prsp() Low-pass (0
filter

2 ¢os [(, + Aw) + 6]

Figure P4.5-5

4.5-6 An USB signal is generated by using the phase-shift method (Fig. 4.20). If the input to this sy®
is m, (¢) instead of m (¢), what will be the output? Is this signal still an SSB signal with bandW
equal to that of m()? Can this signal be demodulated [to get back m(7)]? If so, how?
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4.6-1

H;(w)

A vestigial filter H;(w) shown in the transmitter of Fig. 4.22 has a transfer function as shown in
Fig. P4.6-1. The carrier frequency is f. = 10 kHz and the baseband signal bandwidth is 4 kHz.
Find the corresponding transfer function of the equalizer filter H,(w) shown in the receiver of
Fig. 4.22.

Yt

f kHz —

Figure P4.6-1

4.8-1

4.8-2

A transmitter transmits an AM signal with a carrier frequency of 1500 kHz. When an inexpensive
radio receiver (which has a poor selectivity in its RF-stage bandpass filter) is tuned to 1500 kHz,
the signal is heard loud and clear. This same signal is also heard (not as strong) at another dial
setting. State, with reasons, at what frequency you will hear this station. The IF frequency is
455 kHz.

Consider a superheterodyne receiver designed to receive the frequency band of 1 to 30 MHz with
IF frequency 8 MHz. What is the range of frequencies generated by the local oscillator for this
receiver? An incoming signal with carrier frequency 10-MHz is received at the 10 MHz setting. At
this setting of the receiver we also get interference from a signal with some other carrier frequency
if the receiver RF stage bandpass filter has poor selectivity. What is the carrier frequency of the
interfering signal?
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4.2 Assignment 4 Solutions

e 4.2-1: |
— For m(t) = cos 1000t,

1
Ypsp—sc(t) = m(t)-cos 10,000t = cos 1000t cos 10,000t = i[COS 9000t + cos 11, 000¢]

where the first term is LSB part, the second term is USB part.
— For m(t) = 2 cos 1000t + cos 2000¢,

Ypsp-sc(t) = m(t) - cos 10,000t = |2 cos 1000t 4 cos 2000t cos 10, 000t
1
= ¢0s 9000t + cos 11,000t + i[COS 8000t + cos 12, 000¢]

1 1
= |cos 9000t + 3 cos 800015} + {COS 11,000t + 3 cos 12,000t

where the first bracket includes LSB part, and the second USB part.
— For m(t) = cos 1000t - cos 3000¢,

Ypsp-sc(t) = m(t) - cos 10,000t = 0.5 - [cos 2000t + cos 4000t cos 10, 000t

m

1 1

5 [cos 8000t + cos 12, 000¢] + 5 [cos 6000t + cos 14, 000¢]
1 1

= 5 [cos 8000t + cos 6000¢] + 5 [cos 12, 000t + cos 14, 000¢]

where the first bracket includes LSB part, and the second USB part.

e 4.2-2: The relevant plots are shown in Fig. S4.2-2.
e 4.2-3: The relevant plots are shown in Fig. S4.2-3.

e 4.2-4: (a) The signal at point b is

3 1
ga(t) = m(t) cos® wt = m(t) 7 608 wet + 7 608 3wt

The term %cos wet is the desired modulated signal, whose spectrum is centered at +w..

The remaining term icos 3wt is the unwanted term, which represents the modulated

signal with carrier frequency 3w, with spectrum centered at +3w,, as shown in Fig. S4.2-
4. The bandpass filter centered at 4+w,. allows to pass the desired term %COS wet, but
suppresses the unwanted term %cos 3w.t. Hence, this system works as desired with the

output % CoS wlt.
(b) Fig. S4.2-4 shows the spectra at point b and c.

(¢) The minimum usable value of w, is 27 B in order to avoid spectral folding at dc.
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ca)y (b & @) i
+ a 1
1D M2 200> :
&200 -~ /200
o i LSBws XY
D - — e 1 NZa
-l00 00 — i6co0 o W igece [
(i :
Hw)n oek (6> & (@D :
2 Td—g'+\ )
ol w — ~15,€0 8 lo @-= 0000
Qi LM((D) by & @ .
s y ZhA Usﬁi" o LB i - A\ V5B ;
A : 2 _
| L. wes —1q500 5| o> “’:a@. |
M (D) ;
2 2 e T | !
——a (¢F-4-1 ‘2':,-4_99: :i:l.{z ;.sa-aé' vsb
| “tooco }- > ~tdoer
’ -T2t e
A—.Q’\

Fig. 4.2: Solution for 4.2-3.



4. Assignment 4 34

(d)
m(t) 1

1
m(t) cos® wet = ?[1 + cos 2w.t] = gm(t) + §m(t) cos 2wt

This signal at point b consists of the baseband signal %m(t) and a modulated signal
%m(t) cos 2w.t, which has a carrier frequency 2w., not the desired value w.. both the
components will be suppressed by the filter, whose center frequency is w.. Hence, this

system will not do the desired job.

(e) The reader may verify that the identity for cos nw.t contains a term cosw.t when n is
odd. This is not true when n is even. Hence, the system works for a carrier cos” w.t only

when n is odd.

30y -2, ° “4. - w3
| o |
-, o), D>

Fig. 4.3: Solution for 4.2-4.

4.2-6 The resistance of each diode is r ohms while conducting, and oo when off. When the
carrier A cos w,t is prositive, the diodes conduct (during the entire positive half cycle), and
when the carrier is negative, the diodes are open (during the entire negative half cycle).
Thus, during the positive half cycle, the voltage R/(R + r)¢(t) appears across each of
the resistor R. During the negative half cycle, the output voltage is zero. Therefore, the
diodes act as a gate in the circuit that is basically a voltage divider with a gain 2R/(R+r).
The output is therefore,

eo(t) = ﬁw(t}m(t)

The period of w(t) is Tp = 27 /w.. Hence, from Eq. (2.75),
(t) 1+2{ F— % o8 Bt + + cos Bl +
= -+ — |cosw.t — = cos 3wt + = cos bw,t + - - -
w 5+~ w 3 w : w
The output e,(t) is
2R 2R
oll) = t)m(t) =
€ol!) R+Tw()m<) R+r

(a) If we pass the output e,(t) through a bandpass filter (centered at w.), the filter

1 2 1 1
m(t) {2 + - (cos Wt — 3 cos 3wt + = cos bw,t + - - )]

suppresses the signal m(t) and m(t) cosnw.t for all n # 1, leaving only the modulated

term m(t) cosw,t intact. Hence, the system acts as a modulator.

4R
w(R+r)
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(b) The same circuit can be used as a demodulator if we use a bandpass filter at the

output. In this case, the input is ¢(t) = m(t) cosw.t and the output is m(t).

4R
w(R4+r)

.at @ ot &
A

-loR | Bis ok (515 O-» - oK, | 3K ’Z;EK

at (@
PAVAAY LS | /W\/\

~3B -0 K, -5, [0 5K IR WO »
- M+
tos 20000T LP = >
, Coe..lacoc't
v mz_l'f )
e PR ——
lg 34 2.8

4.2-8 (a) Fig. 54.2-8 shows the signals at points a. b, and ¢.
(b) From the spectrum at point c, it is clear that the channel bandwidth must be at least 30 000 rad/s (fiom
5000 to 35,000 red/s.).
(c) Fig. 54.2-8 shows the receiver to recover {t) and ma(t) from the received modulated signal.

o 4.3-1 g,(t) = [A+ m(t)] cosw.t. Hence,
g(t) = [A+m(t)] cos® wt = ;[A +m(t)] + ;[A + m(t)] cos 2wt

The first term is a lowpass signal because its spectrum is centered at w = 0. The lowpass
filter allows this term to pass, but suppresses the second term, whose spectrum is centered

at +2w,.. Hence, the output of the lowpass filter is
y(t) = A+mf(t)

When this signal is passed through a DC block, the DC term A is suppressed yielding
the output m(¢). This shows that the system can demodulate AM signal regardless of

the value of A. This is a synchronous or coherent demodulation.
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04.3-2(a)
u—o5—n:’—m—>A—2O
(b) 10
ulez%:——mlzlo
(C) 10
— _%:7 =
,LL—Q.O—A A—>A 5
(d) 10
mp
— _ — = — A:
p=oo=p=g A=t

This means that p = oo represents the DSB-SC case.

P.= A2 = 78.125.

m(t)

4.3-3 (a) According to Eq. (4.10a), the carrier amplitude is 4 = mp/; = 10/0.8 = 12.8. The carrier power is

(b) The sideband power is m?(t)/2. Becauso of symmetry of amplitude values every quarter cycle. the power of
m(¢) may be computed by averaging the signal energy over a quarter cycle only. Over a quarter cycle m(t) can

be represented as n(t) = 40¢/Ty (see Fig. S4.3-3). Hence,

AN To/d 2
21 =—l|—- [-4-0—!-] = 0.
m*(t) To/“/o 7 dt = 33.34

The sideband power is

AAAAR

b
P,= 5“—2‘-'-)-=1s.57

The efficiency is

P, 18.67

n= =
B . D TRI1IL L 14 RY

x 100 = 19.66%
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4.3-4 From Fig. 54.3-4 it is clear that the envelope of the signal m(f) cosw,t is {m(t)|. The signal [4 + m(t)| coswet is
identical to m(t) cosw.t with m(t) replaced by A + ra(t). Hence, using the previous argument. it is clear that
its envelope is |A + m(1)]. Now, if A +m(t) > 0 for all ¢, then A +m(t) = |A + m(t}|. Therefore, the condition
for demodulating AM signal using envelope detector is A + m(t) > 0 for all t.

_‘/J'n(u =¢os 2Tt

) ”

Hi -

¢ TR T

- 4,3-7 Observe that m?(1) = A4? for all +. Hence. the tine average of m?(1) is also A% Thus

mz(!)=A' P'=T= '.

The carrier amplitude is A = mp/s = mp = A. Hence Pc = A%/2. The total power is Pr = F.: + P. = A% The
power efficiency is

2 4
3= % x 100 = AA:,.J

The AM signal for y = 1 is shown in Fig. 54.3-7.

x 100 =0.5

4.3-B The signal at point a is [4 + m(t)] cos wet. The signal at péint b is

i =4 +m()cos’ut = {1+ cos 2uel)

A%+ 24m () + m (D)
2

-

The luwpass filter suppresses the term containing cos 2u.t. Hence. the signal at point c is

2 2 ; %
() = A +2.-’.m;f)+m’(f) . i!_ [l % 2mAfﬂ = (%ﬂ) }

Usunily. m(t}/4 < | for most of the time. Ouly when m(t) is near its peak, this condition is violated. Hence,
the output at point d iy

p(t) = i;- + Am(t)

A blocking capacitor will suppress the dc term A%/2, yielding the output Am(t). From the signsl w(t), we see
that the distortion component is m3(1)/2.
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e 4.4-1 In Fig. 4.14, when the carrier is cos[(Aw)t 4 0] or sin[(Aw)t + ¢], we have

z1(t) = 2[my(t) coswet + ma(t) sinw.t] cos|[(w. + Aw)t + ¢]
= 2my(t) cos wt cos[(we + Aw)t + ] + 2ma(t) sinw.t cos|(w. + Aw)t + 0]
= my(t){cos[(Aw)t + 0] + cos[(2w. + Aw)t + 0]}
+ma(t){sin](2w. + Aw)t + 6] — sin[(Aw)t + J] }

Similarly,

xo(t) = my(t){sin[(2w, + Aw)t + 6] + sin[(Aw)t + J]
+my(t){cos[(Aw)t + d] — cos[(2w. + Aw)t + 4]}

After x1(t) and z5(t) are passed through lowpass filter, the outputs are
my(t) = my(t) cos[(Aw)t + 6] — ma(t) sin[(Aw)t + J]
my(t) = my(t) sin[(Aw)t + 0] + ma(t) cos[(Aw)t + ]

e 4.5-1 To generate a DSB-SC signal from m(t), we multiply m(t) with cosw.t. However,
to generate the SSB signals of the same relative magnitude, it is convenient to multiply
m(t) with 2cosw.t. This also avoids the nuisance of the fractions 1/2, and yields the
DSB-SC spectrum M (w — w.) + M (w + w.). We suppress the USB spectrum (above w,
and below —w..) to obtain the LSB spectrum. Similarly, to obtain the USB spectrum, we
suppress the LSB spectrum (between —w, and w,) from the DSB-SC spectrum. Fig.S4.5-1
a,b, and ¢ show the three cases.

(a) From Fig.a, we can express ¥rsp(t) = cos 900t and ysp(t) = cos 1100¢.

(b) From Fig.b, we can express 11s5(t) = 2 cos 700t 4 cos 900t and Yy sp(t) = cos 1100t +
2 cos 1300¢.

(b) From Fig.c, we can express ¢1,s5(t) = 0.5[cos 400t+cos 600t and ysp(t) = 0.5[cos 1400t+
2 cos 1600¢].



4. Assignment 4 39

x M (D : I ’;f-ps.ewa :
111 ] 11
T =10o| 100 o —= -0 ~q0®© ol w=> goo (oD
P, . . (> ' L @Usé‘ﬁ)
{“TC 3B
—QTO-‘-’ w - -Joo —100 o O == Hloé
=
M (D B sl
TT#TT T1rf~1”‘]\tt1
-300 -to0| |00 30D WO -3 -1=q -7k ‘o ’fl{ qm R 13K
_rn_ P on(d 17:“_ P uss
—ﬂTITK. I;CLD-rTLEH fls[?m& I;c L0 111&;[3&
(b>

Pren (@

_EMcw)
1T 511 11 11 [E11 11
-Gt =4oc |0 yop oo =662 ~1400 ~iso "0 | O ‘oo ccr 140 eoo
oo >
I r FPRCD - §mtw)
1t TE11 N
- 400 - 400 |D ‘g_:o =100 -1¥oT (o LD e 148® (60D
(<)



4. Assignment 4 40

4.5-2

Pram(t) = m(t) coswet — mp(t) sinwet and Pran(t) = m(t) coswct + ma{t) sinwet
() m(t) = cos 100t and s (¢) = sin 1002 Hence,
Pign () = cos 1001 cos 1000¢ + sin 100t sin 1000t = cos(1000 — 100)t = cos 900t

Puap(t) = cos 100t cos 1000t — sin 100¢ sin 1000 = cos(1000 + 100)¢ = cos 1100t
(b) m(t) = cos 100¢ + 2 cos 300t and ma(t) = sin 100t + 2 sin 300t. Hence,

¥rsn () = (cos 100t + 2cos300t) cos 1000t + (sin 100¢ + 2 sin 300¢) sin 1000t = cos 900t + 2 cos 700t

¥vya(t) = (cos 100t + 2 cos 300¢) cos 1000t — (sin 100t + 2ain 300¢t) sin 1000t = cos 1100¢ 4 2 cos 1300t

(c) m(1) = cos 100t cos 500t = 0.5 cos 400¢ + 0.5 cos 600¢ and ma{t) = 0.5sin 400¢ + 0.5 sin 600¢. Hence,

Praalt) = (0.5 08400t + 0.5 cos 600t} cos 1000t + (0.5 sin 4002 + 0.5 8in 600¢) sin 1000¢ = 0.5 cos 400t + 0.3 cos 600¢

Pran(?) = (0.5.cos 400t + 0.5 cos 600¢) cos 1000t — (0.3 sin 400¢ + 0.5 sin 600¢) sin 1000t = 0.5 cos 1400¢ + 0.5 cos 1600f

e 4.5-3 (a) Fig. S4.5-3a shows the spectrum of m(t) and Fig.S4.5-3b shows the correspond-
ing DSB-SC spectrum 2m(t) cos 10, 0007t.

(b) Fig.S4.5-3c shows the corresponding LSB spectrum obtained by suppressing the USB

spectrum.

(c) Fig.54.5-3d shows the corresponding USB spectrum obtained by suppressing the LSB
spectrum. We now find the inverse Fourier transforms of the LSB and USB spectra from

Table 3.1 (pair 18) and the frequency shifting property as
Yrsp(t) = 1000sinc(10007t) cos 90007t

Yusp(t) = 1000sinc(10007t) cos 110007t

e 4.5-5 The incoming SSB signal at the receiver is given by [Eq. (4.17b)]
Yrsp(t) = m(t) coswet + my,(t) sin w,t

Let the local carrier be cos[(w. + Aw)t + 0]. The product of the incoming signal and the
local carrier is e4(t), given by

eq(t) = ¥rsp(t) cos[(w. + Aw)t + 6] = 2[m(t) cos wet + my,(t) sin w,t] cos[(w. + Aw)t + ¢

The lowpass filter suppresses the sum frequency component centered at the frequency

(2w.+Aw), and passes only the difference frequency component centered at the frequency
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Aw. Hence, the filter output e,(t) is given by
eo(t) = m(t) cos[(Aw)t + 0] — my(t) sin[(Aw)t + 4]
Observe that if both Aw and § are zero, the output is given by
eo(t) = m(t)
as expected. If only 6 = 0, then the output is given by
eo(t) = m(t) cos(Aw)t — my(t) cos(Aw)t

This is an USB signal corresponding to a carrier frequency Aw as shown in Fig. S5.5-5b.
This spectrum is the same as the spectrum M (w) with each frequency component shifted
by a frequency Aw. This changes the sound of an audio signal slightly. For voice signals,
the frequency shift within +20Hz is considered tolerable. Most US systems, however,
restrict the shift to +2Hz.

(b) When only Aw = 0, the lowpass filter output is
eo(t) = m(t) cos § — my(t) sind

We now show that this is a phase distortion, where each frequency component of M (w)

is shifted in phase by amount §. The Fourier transform of this equation yields

E,(w) = M(w) cosd — Mp(w)sin
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But from Eq.(4.14b)

—jMw) w>0

My(w) = —jsgn(w)M (w) = { Mw) w<0

and

) M) w>0
Eolw) = { M(w)e™ w<0

It follows that the amplitude spectrum of e,(t) is M(w). The same as that for m(t).
But the phase of each component is shifted by 6. Phase distortion generally is not a
serious problem with voice signals, because the human ear is somewhat insensitive to
phase distortion. Such distortion may change the quality of speech, but the voice is still
intelligible. In video signals and data transmissions, however, phase distortion may be

intolerable.

4.5-6 We showed in Prob. 4.5-4 that the Hilbert transform of my(t) is —m(t). Hence, if
mp(t) (instead of m(t)) is applied at the input in Fig.4.20, the USB output is

y(t) = my(t) coswet — m(t) sinw.t = m(t) cos (wct + ;T) + mp(t) sin <wct + g)

Thus, if we apply my(t) at the input of the Fig.4.20, the USB output is an LSB signal
corresponding to m(t). The carrier also acquires a phase shift 7/2. Similarly, we can
show that if we apply my(t) at the input of the Fig.4.20, the LSB output would be an
USB signal corresponding to m(t) (with a carrier phase shifted by 7/2).

4.6-1 From Eq. (4.20)

1
H, = < 2B
() Hi(w+we) + Hi(w — w,) jwl < 2m

Fig.S4.6-1a shows H;(w — w.) and H;(w + w.). Fig. S4.6-1b shows the reciprocal, which
is H,(w).

4.8-1 A station can be heard at its allocated frequency 1500 kHz as well as at its image
frequency. The two frequencies are 2f;r Hz apart. In the present case, fjp = 455 kHz.
hence, the image frequency is 2 x 455 = 910 kHz apart. Therefore, the station will
also be heard if the receiver is tuned to frequency 1500-910=590 kHz. The reason for
this is as follows.When the receiver is tuned to 590 kHz, the local oscillator frequency is
fro = 599 + 455 = 1045 kHz. Now this frequency fro is multiplied with the incoming
signal of frequency f. = 1500 kHz. The output yields the two modulated signals whose
carrier frequencies are the sum and difference frequencies, which are 1500+1045=2545
kHz and 1500-1045=455 kHz. The sum carrier is suppressed, but the difference carrier

passes through, and the station is received.
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( Fig. S4.6-1 )

e 4.8-2 The local oscillator generates frequencies in the range 14+8=9 Mhz. When the
receiver setting is 10Mhz, fro = 10+8 = 18 Mhz. Now, if there is a station at 1848 = 26
Mhz, it will beat (mix) with fro = 18 Mhz to produce two signals centered at 26+18=44
Mhz and at 26-18=8 Mhz. The sum component is suppressed by the IF filter, but the
difference component, which is centered at 8 Mhz, passes through the IF filter.
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5.1 Assignment 5 Problems

5.1-1 Sketch @pv(#) and @pm(2) for the modulating signal m(#) shown in Fig. P5.1-1, given 3
108, k; = 10°, and k, = 25. .

=4

10—3—>l

Figure P5.1-1

5.1-2 A baseband signal m () is the periodic sawtooth signal shown in Fig. P5.1-2. Sketch gy
@pm (1) for this signal m(f) if w, = 2w x 10°, k; = 20007, and k, = 7 /2. Explain wh
necessary to use k, < 7 in this case.

le—1073

A A 7
N

Figure P5.1-2

5.1-3 Over an interval |f| < 1, an angle modulated signal is given by

wem (1) = 10 cos 13, 0007

It is known that the carrier frequency w. = 10, 000.
(a) If this were a PM signal with k, = 1000, determine m(¢) over the interval ="
(b) If this were an FM signal with kr = 1000, determine m (¢) over the interval |z] < 1.

5.2-1 For a modulating signal
m(t) = 2cos 1007 + 18 cos 20005 ¢

(a) Write expressions (do not sketch) for gpy () and @ev(z) when A = 10, w. = 10
10007, and k, = 1. For determining ¢pv (1), use the indefinite integral of m (1), thal
the value of the integral at t = —o0o to be 0.

(b) Estimate the bandwidths of v (#) and @pm (7).
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5.2-2

5.2-3

5.2-4
5.2-5

5.2-6

5.2-7

5.3-1

5.3-2

54-1

An angle-modulated signal with carrier frequency w. = 27 x 10° is described by the equation

@em(t) = 10 cos (w.t + 0.1 sin 20007 1)

(a) Find the power of the modulated signal.
(b) Find the frequency deviation Af.

(¢) Find the phase deviation Ag.

(d) Estimate the bandwidth of @gy (7).

Repeat Prob. 5.2-2 if
@em () = 5Scos (w.t + 20 sin 100077 + 10 sin 20007 1)

Estimate the bandwidth for ¢py (f) and @rm(t) in Prob. 5.1-1. Assume the bandwidth of m(t) in
Fig. P5.1-1 to be the third-harmonic frequency of m(r).

Estimate the bandwidth of gpy (#) and @ry(7) in Prob. 5.1-2. Assume the bandwidth of m(¢) to be
the fifth harmonic frequency of m (r).

Given m(r) = sin 20007z, k¢ =200, 0007, and k, = 10.

(a) Estimate the bandwidths of gy (¢) and opm (7).

(b) Repeat part (a) if the message signal amplitude is doubled.

(¢) Repeat part (a) if the message signal frequency is doubled.

(d) Comment on the sensitivity of FM and PM bandwidths to the spectrum of m (¢).

Givenm(r) = e™, f. = 10" Hz, k; = 60007, and k, = 8000
(a) Find Af, the frequency deviation for FM and PM.

(b) Estimate the bandwidths of the FM and PM waves. Hint: Find M (w) and observe the rapid
decay of this spectrum. Its 3-dB bandwidth is even smaller than 1 Hz (B K Af).

Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier
with a carrier frequency of 98.1 MHz and A J = 75kHz. A narrow-band FM generator is available
at a carrier frequency of 100 kHz and a frequency deviation Af = 10 Hz. The stock room also
has an oscillator with an adjustable frequency in the range of 10 to 11 MHz. There are also plenty
of frequency doublers, triplers, and quintuplers.

Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier
with a carrier frequency of 96 MHz and A f = 20 kHz. A narrow-band FM generator with
Je = 200 kHz and adjustable A [ in the range of 9 to 10 Hz is available. The stock room also has
an oscillator with adjustable frequency in the range of 9 to 10 MHz. There is a bandpass filter with
any center frequency, and only frequency doublers are available.

Show that when m (¢) has no jump discontinuities, an FM demodulator followed by an integrator
(Fig. P5.4-1a) acts as a PM demodulator, and a PM demodulator followed by a differentiator
(Fig. P5.4-1b) serves as an FM demodulator even if m(t) has jump discontinuities. Hint: For an
input A cos [w.? + y(¢)], the output of an ideal FM demodulator is ¥ (¢) and that of an ideal PM
demodulator is ¥/ (z).
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(b) FM demodulator

Figure P5.4-1

5.4-2 A periodic square wave m(t) (Fig. P5.4-2a) frequency-modulates a carrier of frequency f, =
10 kHz with Af = 1 kHz. The carrier amplitude is A. The resulting FM signal is demodulated,
as shown in Fig. P5.4-2b by;‘the method discussed in Sec. 5.4 (Fig. 5.11). Sketch the waveformg
at points b, ¢, d, and e. 1

m(t) fe—o=T~,—
1

[ —
_1_j
(a)
m(1) FM d Envelope DC
modulator - dt o det tp % blockin
@ ® t © ector Q@ g ®
N v J
Demodulator
(b)
Figure P5.4-2

5.4-3 Using small-error analysis, show that a first-order loop [H (s) = 1] cannot track an incomiﬂ
signal whose instantaneous frequency is varying linearly with time [0; (1) = kt?]. This signal ca "
be tracked within a constant phase if H(s) = (s 4+ a)/s. It can be tracked with a zero phase el‘fOii
if H(s) = (s> +as + b)/s%.
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5.2 Assignment 5 Solutions

e 5.1-1: In this case, f. = 10 MHz, m, = 1 and m;, = 8000.

For FM:

Af = kym,/2m = 27x10° /2 = 10° Hz. Also, f. = 107. Hence, (fi)max = 107+10° = 10.1
MHz, and (fi)min = 10”7 — 10° = 9.9 MHz. The carrier frequency increases linearly from
9.9 MHz to 10.1 MHz over a quarter (rising) cycle of duration a seconds. For the next
a seconds, when m(t) = 1, the carrier frequency remains at 10.1 MHz. Over the next
quarter (the falling) cycle of duration a, the carrier frequency decreases linearly from 10.1
MHz to 9.9 MHz, and over the last quarter cycle, when m(t) = —1, the carrier frequency
remains at 9.9 MHz. This cycles repeat periodically with the period 4a seconds as shown

in Fig.1.

For PM:

Af = kym /2m = 507 x 8000/2m = 2 x 10° Hz. Also, (fi)max = 107 + 2 x 10° = 10.2
MHz, and (f;)min = 107 — 2 x 10° = 9.8 MHz. Fig. 1b shows 7(t). We conclude that the
frequency remains at 10.2 MHz over the (rising) quarter cycle, where r(t) = 8000. For
the next a second, m(t) = 0, and the carrier frequency remains at 10 MHz. Over the next
a seconds, where m(t) = —8000, the carrier frequency remains at 9.8 MHz. Over the last
quarter cycle, m(t) = 0 again, and the carrier frequency remains at 10 MHz. This cycles

repeat periodically with the period 4a seconds as shown in Fig.1.

. 2 mit)
/—\ me> /t— P00 ] ?__1 -
e/ 2 _ - Q0006 t—b

A he) |

t-> <+ -

104M .M Jo2M oM gy 1OM o2

Fig. 5.1: Solution for 5.1-1.

e 5.1-2: In this case, f. = 1 MHz, m;, = 1 and m;, = 2000. For FM:
Af = kym,/2m = 20,0007 /27 = 10* Hz. Also, f. = 1 MHz. Hence, (f;)max = 106+10* =
1.01 MHz, and (f;)min = 10° — 10* = 0.99 MHz. The carrier frequency increases linearly
from 0.99 MHz to 1.01 MHz over the cycle (over the interval —1073/2 < t < 1073/2).
Then instantaneously, the carrier frequency falls to 0.99MHz and starts rising linearly to
10.01 MHz over the next cycle. This cycle repeats periodically with period 10~ as shown
in Fig.2
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For PM:
Here, because m(t) has jump discountinuities, we shall use a direct approach. For conve-
nience, we select the origin for m(t) as shown in Fig.2. Over the interval —1073/2 < t <

1073/2, we can express the message signal as m(t) = 2000¢. Hence,
dpar(t) = cos |2m(10)% ¢t + gm(t) = cos[27m(10) ¢ + 10007t] = cos[27(10° 4 500) t]

At the discontinuity, the amount of jump is mg = 2. Hence, the phase discontinuity is
k,mg = m. Therefore, the carrier frequency is constant throughout at 10 + 500 Hz. But
at the points of discontinuity, there is a phase discontinuity of 7 radians as shown in Fig.2.
In this case, we must maintain k, < 7 because there is a discontinuity of the amount 2.
For k, > m, the phase discontinuity will be higher than 27 given rise to ambiguity in

demodulation.

/I mmI/] m/- :
AL e

'ng ﬂ
_V \/\/\/Ym

Fig. 5.2: Solution for 5.1-2.

5.1-3: (a)
dpu(t) = Acos|wt + kym(t)] = 10 cos[10, 000t + k,m(t)]

We are given that ¢pp(t) = 10 cos(13,000¢) with k, = 1000. clearly, m(t) = 3t over the
interval |t < 1.

(b)
orm(t) = Acos {wct + kf/ doz} = 10 cos {10 000t + kf/ da}

Therefore,
k / o) da = 1000 / o) da = 3000t

Hence,
t
3t:/ m(a)da  —  m(t) =3
0
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e 5.2-1: In this case, ky = 10007 and k, = 1. For
m(t) = 2 cos 100t + 18 cos 20007t
and
m(t) = —200sin 100t — 36, 0007 sin 20007t

Therefore, m, = 20 and m; = 36,000 4+ 200. Also the baseband signal BW B =
20007 /27 = 1kH z.

For FM: Af = kym,/2r = 10,000 and By = 2(Af + B) = 2(20,00041000) = 42k H 2.
For PM: Af = kym! /2 = 18,000 + 100/7Hz, and Bpay = 2(Af + B) = 2(18,031.83 +
1000) = 38.06366k H =.

e 5.2-2: ¢pp(t) = 10 cos(w.t + 0.1sin20007t). Here, the baseband signal bandwidth B =
20007 /2w = 1000H z. Also,

w;(t) = we + 2007 cos 20007t

Therefore, Aw = 200m and Af = 100Hz and Bgy = 2(Af + B) = 2(100 + 1000) =
2.2kHz

e 5.2-3: ¢pn(t) = 5cos(w.t + 20sin 10007t + 10sin 20007t). Here, the baseband signal
bandwidth B = 20007 /27 = 1000H z. Also,

wi(t) = we + 20,0007 cos 10007t + 20, 0007 cos 20007t

Therefore, Aw = 20,0007 + 20,0007 = 40,000r and Af = 20kHz and Bgy = 2(Af +
B) = 2(20,000 + 1000) = 42kH 2

e 5.2-4: The baseband signal bandwidth B = 3 x 1000 = 3000H z
For FM: Af = " = 1000 — 15951k Hz and By = 2(Af + B) = 37.831kHz.

For PM: Af = ™" — 25x8000 _ 31 831k H > and By = 2(Af + B) = 66.662kH .

e 5.2-5: The baseband signal bandwidth B = 5 x 1000 = 5000H z

For FM: Af =M™ — 2000031 — 117> and Bry = 2(Af + B) = 2(2 + 5) = 14kH .

For PM: To find B PM, we observe from Fig. 2 that ¢z (t) is essentially a sequence of
sinusoidal pulses of width 7" = 1072 seconds and of frequency f, = 1 MHz. Such a pulse
and its spectrum are depicted in Figs. 3.22c and d, respectively. The bandwidth of the
pulse, as seen from Fig. 3.22d, is 47 /T rad/s or 2/T Hz. Hence, Bpy; = 2kH z.

e 5.2-6: (a)
For FM: Af = kymp 200’022?”1 = 100kH z and the baseband signal bandwidth B =

2

2007 — 1k Hz. Therefore, Bpy = 2(Af + B) = 202kH z.

2
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For PM: Af = "™ — 10x200r _ 10k > and Byy = 2(Af + B) = 2(10 + 1) = 22k H =,

(b) m(t) = 2sin 20007, and B = 20007 /27 = 1kHz. Also, m, = 2 and m;, = 40007

For FM: Af = kg:p = 200’022?”2 = 200k H z and the baseband signal bandwidth B =

2007 — 1k Hz. Therefore, Bry = 2(Af + B) = 2(200 + 1) = 402k H 2.

2

For PM: Af = "™ — 10x4000r — 90111 > and Byyy = 2(Af + B) = 2(20 + 1) = 42k H =,
(c) m(t) = sin40007t, and B = 40007 /27 = 2kHz. Also, m, = 1 and m;, = 40007

For FM: Af = "M — 20001 — 100k [z and, Bry = 2(Af + B) = 2(100 + 2) =
204k H 2.

For PM: Af = "™ — 1024000 — 90k 1 > and Bya = 2(Af + B) = 2(20 + 2) = 44k H =,

(d) Doubling the amplitude of m(t) roughly doubles the bandwidth of both FM and PM.
Doubling the frequency of m(t) (expanding the spectrum M (w) by a factor of 2) has
hardly any effect on the FM bandwidth. However, it roughly doubles the bandwidth of
PM, indicating that PM spectrum is sensitive to the shape of the baseband spectrum.

FM spectrum is relatively insensitive to the nature of the spectrum M (w).

e 5.2-7: From pair 22 (Table 3.1), we obtain
e = me

The spectrum M (w) = \/Ee*“ﬁ/ 4 is a Gaussian pulse, which decays rapidly. Its 3 dB
bandwidth is 1.178 rad/s=0.187 Hz. This is an extremely small bandwidth compared to
Af.

Also, m(t) = —2te /2. The spectrum of m(t) is M'(w) = juM(w) = jy/awe<"/4,
This spectrum also decays rapidly away from the origin, and its bandwidth can also be

assumed o be negligible compared to Af.

For FM: Af = MM — 800mx1 — 3 F7 > and, By ~ 2(Af) =2 x 3 = 6kHz.

2

For PM: To find m;,, we set the derivative of m(t) = —2te™*/2 equal to zero. This yields

1

m(t) = —2e /2 —}—4t2€_t2/2 =0 = {t=-—"—

(t) 7

and m), = m(1/v/2) = 0.858, and Af = ’“g’:% - 80007;;0858 = 3.432kHz and Bp); ~
2(Af) = 2(3.432) = 6.864kH 2.

e 5.3-1: The block diagram of the design is shown in Fig. 5.3
e 5.3-2: The block diagram of the design is shown in Fig. 5.4

e 5.4-1: (a)
opum(t) = Acos(wet + kym(t)]
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Fig. 5.3: Solution for 5.3-1.
fo = Joo ki X'G"{-\ fo= 128Y BPF foz 3Ntz X3 ﬁf%ﬁ’l\
AF- 0 T660 42 Af< (2542 3MHE] AP 6ROz 1 Af=20

q:§MHz

Fig. 5.4: Solution for 5.3-2.
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When this ¢pp(t) is passed through an ideal FM demodulator. The output is kym(t).
This signal, when passed through an ideal integrator, yields k,m(t). Hence, FM demod-
ulator followed by an ideal integrator acts as a PM demodulator. However, if m(t) has a
discontinuity, m(t) = oo at the point(s) of discontinuity, and the system will fail.
(v) t
orm(t) = Acos [wct + k:f/ m(a) da]

0
when this signal ¢pp/(t) is passed through an ideal PM demodulator, the output is
ky fg m(a) da. When this signal is passed through an ideal differentiator, the output
is kym(t). Hence, PM demodulator followed by an ideal differentiator, acts as FM de-

modulator regardless of whether m(t) has jump discontinuities or not.

e 5.4-2: Fig. 5 shows the waveforms at points b, ¢, d and e. The figure is self explanatory.

et &

Fig. 5.5: Solution for 5.4-2.
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6.1 Assignment 6 Problems

e 11.1-4: Determine X (¢) and Rx(t1,t) for the random process in Prob. 11.1-1, and

determine whether this is a wide-sense stationary process.
e 11.1-8: Repeat Prob. 11.1-7 for the random process
z(t) = acos(w.t + O)

where w, is a constant, a and © are independent RVs uniformly distributed in the ranges

(-1,1) and (0, 27) respectively.

e 11.2-3: Show that if the PSD of a random process X (¢) is band-limited to B Hz, and if

R (n)_ 1 n=0
X\2B) " 0 n=41,42 43, .-

then X (¢) is a white bandlimited process; that is, Sx(w) = krect(w/47B). Hint: Using

the interpolation formula, reconstruct Rx (7).
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11,5-1 A white process of PSD N/2 is transmitted through a bandpass filter H(w) (Fig, P
Y% Represent the filter output n(t) in terms of quadrature components, and determine ;f

Sa, (@), 12 n_f and n? when the center frequency used in this representation is 100 ki he

-5 ’4— in kHz
7 F 4

w, = 2007 x 10°).
|H(o)?
100 kHZ f—

o
T

Figure P11.5-1

115-2 Repeat Prob. 11.5-1 if the center frequency o, used in the representation is not a true cgp

frequency. Consider three cases: (a) f, = 105 kHz; (b) f. = 95kHz; (¢) f, = 90kHz.

11.5-3 A random process x(t) with the PSD shown in Fig. P11.5-3a s passed through a bandp,
(Fig. 11.5-3b). Determine the PSDs and mean square values of the quadrature comp:
the output process. Assume the center frequency in the representation to be 0.5 MHz.

Figure P11.5-3
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e 12.1-1: A certain telephone channel has H,.(w) ~ 1072 over the signal band. The message
signal PSD is S, (w) = frect(w/2a), with a = 80007. The channel noise PSD is S, (w) =
1078, If the output SNR at the receiver is required to be at least 30 dB, what is the
minimum transmitted power required? Calculate the value of § corresponding to this

power.

e 12.2-1: For a DSB-SC system with a channel noise PSD of S,,(w) = 107! and a baseband
signal of bandwidth 4 kHz, the receiver output SNR is required to be at least 30 dB. The

receiver is as shown in Fig.12.3.
a. What must be the signal power S; received at the receiver input?
b. What is the receiver output noise power Ny?
c¢. What is the minimum transmitted power Sp if the channel transfer function is
H.(w) = 107* over the transmission band?

e 12.2-2: Repeat Prob. 12.2-1 for SSB-SC.

e 12.2-3: Determine the output SNR of each of the two quadrature multiplexed channels
and compare the results with those of DSB-SC and SSB-SC.

o 12.2-4: Assume [m(t)]max = —[M(t)]min = M.

a. Show that for AM
m, = A

b. Show that the output SNR for AM [Eq. (12.14)] can be expressed as

S, %

No K2 _|_ MQ,Y

where k* = m2/m?.
c. Using the result in part (2), show that for tone modulation with u = 1, S,/N, = /3.

d. Show that if S and S} are the AM and DSB-SC transmitted powers, respectively,
required to attain a given output SNR, then

Sr~k*Sy for p=1 and k*>>1

e 12.3-1: For an FM communication system with § = 2 and white channel noise with PSD
Sp(w) = 1071 the output SNR is found to be 28 dB. The baseband signal m/(t) is gaussian
and band-limited to 15 kHz, and 3o loading is used. The demodulator constant o = 1074
This means that the FM demodulator output is at) when the input is A cos(wet + 1(t)).
In the present case, the signal at the demodulator output is akym(t). The output noise

is also multiplied by a.
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a. Determine the received signal power S;.
b. Determine the output signal power 5,.

¢. Determine the output noise power N,.
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6.2 Assignment 6 Solutions

o 11.1-4:
Since x(t) = acos(wt + 0)

A

Elz(t)] = Elacos(wt + 0)] = Ela] cos(wt + 8) = cos(wt + 6) /_ apu(a)da
= [cos(wt + 0)/(24)] /_’: ada=0

Rx(ti,t2) = FEla® cos(wt; + 0) cos(wty + 0)] = cos(wt; + 0) cos(wty + 0)E[a’]
A 2 A3
= cos(wty + 0) cos(wty + 0) S—A da = 5 cos(wty + 0) cos(wty + 6(6.1)
—A

e 11.1-8:
z(t) = acos(wet + 0), Ela] = 0 and E[a®] = 3
(b)
E[z(t)] = Elacos(w.t + 0)] = Ela] - Elcos(w.t +6)] =0
()
Rx(t1,ty) = FEla?] - Ecos(wet; + 0) cos(wety + 0)] = ;E[cos we(ty — ta) + coswe(ty + t2) + 26

1 1 r2n 1
= 3 coswe(ty — to) + %/0 cos|w(t1 — t2) + 20] df = 3 cosw,(ty — ta)

(d) The process is W.S.S

e 11.2-3: Rx(7) = 0 for 7 = £5% and its Fourier transform Sx(w) is bandlimited to B

Hz. Hence, Rx(7) = 0 is a waveform bandlimited to B Hz and according to Eq.6.10b

o0

Rx(t)= > Rx <2nB> sinc (2rBT — n).
Since Rx (% = 0 for all n except n = 0, therefore,

Rx (1) = Rx(0)sinc(27 BT)

and
RX(O) rect (w)
2B 4B

Hence, z(t) is a white process bandlimited to B Hz.

Sx(w) =
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1181 n{t) = n(t)coswt +ng(r)sinw ¢
The PSD of n,(r) and (1) are identical. They are shown in Fig. S11.5-1. Also, n’ is the area under

- 4
Sa(@) , and is given by n?= 1{"—:— x10 + %(12“-%)] =125x10' W

) ' ] N 4
nﬁ(or nf) is the area under S, (@), and is given by nanls Z[SOQOU\I v 5000] =125x10°N

.

\. £ "‘;

2

SR £ 1>

1152 We follow a procedure similar to that of the solution of Prob.
11.5-1 except that the center frequencies are different. For the

3 center frequencies S\, (a))[or Sp, (@) ]m shown in Fig.
$11.5-2. Inall the three cases, the area under S, (o) s the

same, viz., 125x10* . Thusinall3 cases

ok =n? =125x10°W
'{ ' N ’ b_ £
-0 | 5K Iom -’rék ‘ 5i< 10K  ~lok y 5K 5N I‘OH 15K
FHy > $Hy > £y =

tenter {req. 05k cariter freq: 45 R Center freq- oK

1153 F(T)-E{(T)-?(;)-z[%uo"nooxw’]-loo

Bl 5 1)

FalE>
O LE?; > |
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12.2-1: since Ny/2 = 10719 we have Ny = 2 x 10710,

@ S S S
3045 =1000="75=7= B = 2x 1010 x 4000

therefore, S; = 8 x 1074,

(b) From Eq.(12.7), the receiver output noise power o2 is given as

02 =NyB=2x10"" %4000 =8 x 107

(c) Since S; = |H.(w)|*St = 10785y, therefore, Sy = S;/1078 = 8 x 10%.
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60

S S -3 a

-2
N,
S5
2x10% x 4000

S
Also, H,(0)=10". Hence, Sy =——— =8x10*
IHc(w)i

sr=-zl-ﬁ[2x8000n]=8xw‘=>ﬂ=10
v 4

y=1000= = §; =008

S S, Y
1222 (a) ~2=21000==tL o2 ¢ _4xi0™
N, NB 10,4000 '

(b) N,=B=10"1"x8000=4x10"7
2 o
© 8 =|H (@) Sr =107 S =4x10~ = 57 = 4 x10*

12.2-3  Let the signals m() and m;(r) be transmitted over the same band by carriers of the same
frequency (), but in phase quadrature. The two transmitted signals are J'z'[ml(t)coswct +my(¢)sin w‘.r]

«
Vactosd, V3 eos 0, &

LPF

M () (k)
.

Mol) - 0, (8D

LPF

B sna,t B.sin Lt

C ng.siuD

The bandpass noise over the channel is n,(f)cos ¢ + n(f)sinw,s. Hence, the received signal is
[ﬁm,(r) + n,(t)]cow,t +[ﬁm2(r)+ n,(t)]sinmct
Eliminating the high frequency terms, we get the output of the upper lowpass filter as m(r) +%n¢(1)

Similarly, the output of the lower demodulator is my(r) +7l;n,(t)

These are similar to the outputs obtained for DSB-SC on page 535. Hence, we have %L =y for both QAM
channels, ’
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1224 (a) u= -:{-:I(-a)-]—m-lf- = ”;—p Hence, my = ud

-2 -2

S, m m 3 ms
A°+m 2L+; K™ +u m?
”2
ml
(¢) For tone modulation x 2 =-Tp-=2 andforpu =1, -'29-=--1-f =L
my (2 No 2+1" 3
Sp A+m! mlimd m?
(d) Ratxo—’-'a———"l-s—’igz.——=-’-+l-x ifx2>>1
m m m

12.3-1 '—g9- = 28dB =631, Hence,
N,

S _am '"—2(-'5
-I-V-L-63l-3ﬂ Y —

0 mp
ok
=32)y e

Therefore, y = ﬁ%‘—g- =47325

(8) Also, y =%=s, =y B =47325x2x1071% x 15000 = 14197x 107

® A= ™23 = 30000s

—_ 2
S =a*k}m(1)=akfoh, =(10%) (200002)" = 4x?

= kpopy =20,0007

S
c) N,=—L=00199





