Signal and Systems I

Lecture 7

Last Lecture

- LTI System (Stability test & Causality test)
- Convolution Properties
- LTI System interconnections

Today

• Fourier Series

x(t): periodic signal with fundamental period T_0 (Fundamental freq. $\omega_0 = \frac{2\pi}{T_0}$) can be written as sum of <u>periodic spirals</u>:

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt} \qquad \text{(Fourier series)} \iff Synthesis$$

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 nt} dt \qquad \text{(Inverise FS, Finds } D_n \text{ from } x(t)) \iff Analysis$$

 D_n in the above equation is *countable*.

 D_0 is the signal bias (Direct Current (DC)) of x(t).

$$D_n = |D_n| e^{j \angle D_n}$$

 $|D_n|$, absolute value of D_n , shows the amplitude of the periodic spiral $e^{j\omega_0 nt}$ $\angle D_n$, angle of D_n , is the amount of rotation of the spiral.

Fourier Series are built with spirals. But only with <u>periodic spirals</u> to synthesis periodic signals.

 $x(t)=e^{st}, \quad s=-2+j\pi, \alpha=-2\neq 0, \text{ since } \alpha \text{ is non-zero, this function is not periodic! and therefore has no Fourier series.}$

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt} \qquad \text{(Fourier series)} \iff Synthesis$$

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 nt} dt \qquad \text{(Finds } D_n \text{ from } x(t)) \iff Analysis$$

$$x_1(t) = e^{j2\pi t}$$

$$x_1(t) = x_1(t+T_0)$$

 $e^{j2\pi t} = e^{j2\pi(t+1)} = e^{j2\pi t} \underbrace{e^{j2\pi}}_{1} \Rightarrow T_0 = 1$

This signal is periodic.

In this example
$$x(t) = \underbrace{1e^{j\omega_0 t}}_{\text{Fourier series}} = D_1 \underbrace{e^{j\omega_0 1 t}}_{n=1}, \quad D_1 = 1$$

$$x_2(t) = je^{j2\pi t}$$

$$x_2(t) = x_2(t + T_0)$$

 $je^{j2\pi t} = je^{j2\pi(t+1)} = je^{j2\pi t} \underbrace{e^{j2\pi}}_{1} \Rightarrow T_0 = 1$

This signal is periodic.

In this example
$$x(t) = \underbrace{je^{j\omega_0 t}}_{\text{Fourier series}} = D_1 \underbrace{e^{j\omega_0 1 t}}_{n=1}, \ D_1 = j \qquad |D_1| = 1, \ \angle(D_1) = \frac{\pi}{2}$$

Example: Can we have Fourier series for $x(t) = \frac{1}{2}e^{-j\frac{2\pi}{3}t}$?

Answer: first check if this function is periodic:

$$x(t) = x(t + T_0)$$

$$\frac{1}{2}e^{-j\frac{2\pi}{3}t} = \frac{1}{2}e^{-j\frac{2\pi}{3}(t+T_0)}$$

$$e^{-j\frac{2\pi}{3}t} = e^{-j\frac{2\pi}{3}t} \cdot e^{-j\frac{2\pi}{3}T_0}$$

If we choose $e^{-j\frac{2\pi}{3}T_0} = 1 \to T_0 = 3$ (signals in form of $e^{j\omega_0 t}$ are periodic with fundamental period ω_0).

$$x(t) = \sum D_n e^{j\omega_0 nt} = \sum D_n e^{j\frac{2\pi}{3}nt}$$

$$\frac{1}{2} e^{-j\frac{2\pi}{3}t} = \dots + D_{-2} e^{-j\frac{2\pi}{3}2t} + D_{-1} e^{-j\frac{2\pi}{3}1t} + D_0 + D_1 e^{j\frac{2\pi}{3}1t} + D_2 e^{j\frac{2\pi}{3}2t} + \dots$$

$$\begin{cases} D_{-2} = 0 \\ D_{-1} = \frac{1}{2} \\ D_0 = 0 \\ D_1 = 0 \end{cases} \Rightarrow \text{only} \quad D_{-1} = \frac{1}{2}$$

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt} \qquad \text{(Fourier series)} \iff Synthesis$$

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 nt} dt \qquad \text{(Finds } D_n \text{ from } x(t)) \iff Analysis$$

$$D_n e^{jn\omega_0 t}$$

Componencts of Fourier Series are periodic spirals in form of $e^{jn\omega_0t}$ which is a periodic spiral with frequency $n\omega_0$.

Each spiral is then rotated by angle of D_n and amplified by $|D_n|$

$$x_1(t) = je^{-j5t}$$

$$x_2(t) = 2e^{j\frac{\pi}{3}}e^{j2\pi t}$$

$$\omega_0 = -5$$
, $|D_{-1}| = 1$, $\angle(D_{-1}) = \frac{\pi}{2}$ $\omega_0 = 2\pi$, $|D_1| = 2$, $\angle(D_1) = \frac{\pi}{3}$ $\omega_0 = \frac{5}{6}\pi$, $|D_1| = 2$, $\angle(D_1) = \pi$

$$x_3(t) = -2e^{j\frac{5}{6}\pi t}$$

$$\omega_0 = \frac{5}{6}\pi, \ |D_1| = 2, \ \angle(D_1) = \pi$$

Example:

What is the Fourier series for $x(t) = 2\sin(2t)$?

Answer: First find T_0 and ω_0

$$x(t) = x(t + T_0)$$

$$2sin(2t) = 2sin(2t + 2T_0)$$

$$2T_0 = 2\pi$$

$$T_0 = \pi$$

$$\omega_0 = \frac{2\pi}{T_0} = 2$$

$$\begin{cases} D_{-1} = \frac{-1}{j} = j \\ D_1 = \frac{1}{j} = -j \end{cases} \Rightarrow \text{ Other coefficients are all zero}$$

$$x(t) = \sum D_n e^{j\omega_0 nt} = \sum D_n e^{j2nt}$$

$$= \dots + D_{-2} e^{-j2.2t} + D_{-1} e^{-j2.1t} + D_0 + D_1 e^{j2.1t} + D_2 e^{j2.2t} + \dots$$

$$2sin(2t) = 2\left(\frac{e^{j2t} - e^{-2jt}}{2j}\right) = \frac{-1}{j} e^{-j2t} + \frac{1}{j} e^{j2t}$$

Euler Formulas:

$$\cos(\alpha t + \beta) = \frac{e^{j(\alpha t + \beta)} + e^{-j(\alpha t + \beta)}}{2}$$
$$\sin(\alpha t + \beta) = \frac{e^{j(\alpha t + \beta)} - e^{-j(\alpha t + \beta)}}{2j}$$

Associated FS coefficients: $\omega_0 = \alpha$

$$\cos(\alpha t + \beta) = \underbrace{\frac{1}{2}}_{D_1} e^{\beta} e^{j(\alpha t)} + \underbrace{\frac{1}{2}}_{D_{-1}} e^{j\beta} e^{j(-\alpha t)}$$
$$\sin(\alpha t + \beta) = \underbrace{\frac{1}{j2}}_{D_1} e^{\beta} e^{j(\alpha t)} + \underbrace{\frac{-1}{2j}}_{D_{-1}} e^{j\beta} e^{j(-\alpha t)}$$

- \rightarrow One Spiral = One Coefficient
- \rightarrow One Sine/Cosine = Two Coefficients (one positive and one negative: $D_1\&D_{-1}$

Fourier transform of $e^{j\alpha t}$:

$$e^{j2t}$$
, $\alpha = 2 = \omega_0$
 $e^{j\omega_0 t} = D_1 e^{j\omega_0 1t} \Rightarrow n = 1, D_1 = 1$, all other D_n s are zero.

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt} \qquad \text{(Fourier series)} \iff Synthesis$$

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 nt} dt \qquad \text{(Finds } D_n \text{ from } x(t)) \iff Analysis$$

Fourier Transform of $cos(\alpha t + \beta)$:

$$cos(2t + \frac{\pi}{2}) = \frac{1}{2}e^{j(2t + \frac{\pi}{2})} + \frac{1}{2}e^{-j(2t + \frac{\pi}{2})} \qquad \omega_0 = 2$$
$$= \frac{1}{2}e^{j\frac{\pi}{2}}e^{j2t} + \frac{1}{2}e^{-j\frac{\pi}{2}}e^{-j2t}$$
$$= \underbrace{\frac{1}{2}e^{j\beta}}_{D_1}e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\beta}}_{D_{-1}}e^{-j\omega_0 t}$$

How to plot D_i s:

$$D = |D|e^{j\angle(D)}$$

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt} \qquad \text{(Fourier series)} \iff Synthesis$$

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 nt} dt \qquad \text{(Finds } D_n \text{ from } x(t)) \iff Analysis$$

$$\begin{vmatrix} \frac{1}{2}e^{j\frac{\pi}{2}} | = \frac{1}{2} & \angle \frac{1}{2}e^{j\frac{\pi}{2}} = \frac{\pi}{2} \\ |\frac{1}{2}e^{-j\frac{\pi}{2}} | = \frac{1}{2} & \angle \frac{1}{2}e^{-j\frac{\pi}{2}} = -\frac{\pi}{2} \\ \begin{vmatrix} \frac{1}{2}e^{-j\frac{\pi}{2}} | = \frac{1}{2} & \angle \frac{1}{2}e^{-j\frac{\pi}{2}} = -\frac{\pi}{2} \\ \end{vmatrix} = \frac{1}{2} \qquad (\operatorname{cos}(2t + \frac{\pi}{2}) = \underbrace{\frac{1}{2}e^{j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_{-1}} e^{-j\omega_0 t} \\ \end{vmatrix} = \frac{1}{2} \qquad (\operatorname{cos}(2t + \frac{\pi}{2}) = \underbrace{\frac{1}{2}e^{j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_{-1}} e^{-j\omega_0 t} \\ \end{vmatrix} = \frac{1}{2} \qquad (\operatorname{cos}(2t + \frac{\pi}{2}) = \underbrace{\frac{1}{2}e^{j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_{-1}} e^{-j\omega_0 t} \\ \end{vmatrix} = \frac{1}{2} \qquad (\operatorname{cos}(2t + \frac{\pi}{2}) = \underbrace{\frac{1}{2}e^{j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_{-1}} e^{-j\omega_0 t} \\ \end{vmatrix} = \frac{1}{2} \qquad (\operatorname{cos}(2t + \frac{\pi}{2}) = \underbrace{\frac{1}{2}e^{j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{e^{-j\omega_0 t}} e^{-j\omega_0 t} \\ \end{vmatrix} = \frac{1}{2} \qquad (\operatorname{cos}(2t + \frac{\pi}{2}) = \underbrace{\frac{1}{2}e^{j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_{-1}} e^{-j\omega_0 t} \\ \end{vmatrix} = \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} \\ \end{vmatrix} = \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} \\ \end{vmatrix} = \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} \\ \end{vmatrix} = \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} \\ \end{vmatrix} = \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_1} e^{-j\omega_0 t} + \underbrace{\frac{1}{2}e^{-j\frac{\pi}{2}}}_{D_2} e^{-j\omega_0 t} \\ + \underbrace{\frac$$

Fourier series of $sin(\alpha t)$:

$$\sin(\frac{\pi}{3}t) = \underbrace{\frac{1}{2j}}_{D_1} e^{j(\frac{\pi}{3}t)} - \underbrace{\frac{1}{2j}}_{D_{-1}} e^{-j(\frac{\pi}{3}t)} \qquad \omega_0 = \frac{\pi}{3}$$

$$|D_1| = \left|\frac{1}{2j}\right| = \frac{1}{2} \qquad \angle D_1 = \angle \frac{1}{2j} = \angle \frac{1}{j} = \angle \frac{1}{j} \times \frac{j}{j} = \angle \frac{j}{j \times j} = \angle -j = \frac{-\pi}{2}$$

$$|D_{-1}| = \left|\frac{-1}{2j}\right| = \frac{1}{2} \qquad \angle D_{-1} = \angle \frac{-1}{2j} = \angle \frac{-1}{j} \times \frac{j}{j} = \angle \frac{-j}{j \times j} = \angle j = \frac{\pi}{2}$$

Example: Fourier series of x(t) is as follows. Find x(t). $(\omega_0 = 2)$

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt} \qquad \text{(Fourier series)} \iff Synthesis$$

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 nt} dt \qquad \text{(Finds } D_n \text{ from } x(t)) \iff Analysis$$

Example: Fourier series of x(t) is as follows. Find x(t). $(\omega_0 = 2)$

Example: Find x(t) from its Fourier series coefficients.

Example: Find x(t) from its Fourier series coefficients.

Note: Unlike the previous example ω_0 is not provided in this example, So x(t) is provided as a function of ω_0 .

Example: Find Fourier series of the following signal $x(t) = sin(\frac{2\pi}{3}t) + cos(\frac{\pi}{5}t)$. (Note: Since the function has only sin and cos function, Euler formula is used.)

First check if the signal is periodic!

Example: Find Fourier series of the following signal $x(t) = sin(\frac{2\pi}{3}t) + cos(\frac{\pi}{5}t)$. (Note: Since the function has only sin and cos function, Euler formula is used.)

Solution: The first step is to find the period of this signal.

Fundamental Freq of $\sin(\frac{2\pi}{3}t)$: $\omega_0 = \frac{2\pi}{3}$ Fundamental Freq of $\cos(\frac{\pi}{5}t)$: $\omega_0 = \frac{\pi}{5}$

Adding two periodic signal does not always result in a periodic signal. So we need to first check if x(t) is periodic or not.

$$x(t+T_0) = x(t)$$

$$sin\left(\frac{2\pi}{3}(t+T_0)\right) + cos\left(\frac{\pi}{5}(t+T_0)\right) = sin\left(\frac{2\pi}{3}t\right) + cos\left(\frac{\pi}{5}t\right)$$

$$\begin{cases} \frac{2\pi}{3}(t+T_0) = \frac{2\pi}{3}t + 2\pi k_1 \\ \frac{\pi}{5}(t+T_0) = \frac{\pi}{5}t + 2\pi k_2 \end{cases} \Rightarrow \begin{cases} \frac{2\pi}{3}T_0 = 2\pi k_1 \\ \frac{\pi}{5}T_0 = 2\pi k_2 \end{cases} \Rightarrow \begin{cases} \frac{2\pi}{3}T_0 = 2\pi k_1 \\ \frac{\pi}{5}T_0 = 2\pi k_2 \end{cases} \Rightarrow \begin{cases} T_0 = 3k_1 \\ T_0 = 10k_2 \end{cases}$$

 T_0 : Smallest multiple of 3 & 10. (Lowest common multiple (LCM) of 3 & 10) $T_0 = 3 \times 10 = 30 \Rightarrow \omega_0 = \frac{2\pi}{30}$

Now write the Euler formula for x(t):

$$x(t) = \sin(\frac{2\pi}{3}t) + \cos(\frac{\pi}{5}t)$$

$$= \frac{e^{j\frac{2\pi}{3}t} - e^{-j\frac{2\pi}{3}t}}{2j} + \frac{e^{j\frac{2\pi}{10}t} + e^{-j\frac{2\pi}{10}t}}{2}$$

Powers
$$\frac{2\pi}{3}$$
 $\frac{-2\pi}{3}$ $\frac{2\pi}{10}$ $\frac{-2\pi}{10}$ $\omega_0 = \frac{2\pi}{30}$ $\omega_0 \times 10$ $\omega_0 \times (-10)$ $\omega_0 \times 3$ $\omega_0 \times (-3)$ $\omega_0 \times (-3)$

Example: Find Fourier series of the following signal and plot D_n s.

$$x(t) = -2 + \sin(\frac{2\pi t}{3}) + 2\cos(\frac{\pi t}{9})$$

Example: Find Fourier series of the following signal and plot D_n s.

$$x(t) = -2 + \sin(\frac{2\pi t}{3}) + 2\cos(\frac{\pi t}{9})$$

Solution:

First we find the period of the signal

$$\begin{cases} \frac{2\pi}{3}T_0 = k_1.2\pi \\ \frac{\pi}{9}T_0 = k_2.2\pi \end{cases} \Rightarrow \begin{cases} T_0 = 3k_1 \\ T_0 = 18k_2 \end{cases} \Rightarrow \text{LCM of } (3 \& 18) \Rightarrow T_0 = 18 \Rightarrow \omega_0 = \frac{2\pi}{18} = \frac{\pi}{9}$$

Now, write the Euler expansion of the given signal:

$$x(t) = -2 + \frac{e^{j\frac{2\pi}{3}t} - e^{-j\frac{2\pi}{3}t}}{2j} + 2\frac{e^{j\frac{\pi}{9}t} + e^{-j\frac{\pi}{9}t}}{2}$$

$$= -2 + \frac{1}{2j}e^{j\frac{2\pi}{3}t} - \frac{1}{2j}e^{-j\frac{2\pi}{3}t} + e^{j\frac{\pi}{9}t} - e^{-j\frac{\pi}{9}t}$$

$$= -2 + \frac{1}{2j}e^{j\omega_0.6t} - \frac{1}{2j}e^{j\omega_0.(-6)t} + e^{j\omega_0t} + e^{j(-\omega_0)t}$$

Fourier Series
$$x(t) = -2 + \frac{1}{2j}e^{j\omega_0.6t} - \frac{1}{2j}e^{j\omega_0.(-6)t} + e^{j\omega_0t} + e^{j(-\omega_0)t}$$

$$|D_n|$$

Important note:

For a real signal: $|D_n|$ is always even. $\angle D_n$ is always odd.

Summation of periodic signals with fundamental frequencies ω_1 and ω_2 is periodic only and only if $\frac{\omega_1}{\omega_2}$ is a rational number. For example $\frac{2\pi}{5\pi} = \frac{2}{5}$ is rational and $\frac{2\pi}{5} = \frac{2\pi}{5}$ is not rational!

More complicated examples:

Find and plot the Fourier series of the above signal with period T_0 .

$$D_{n} = \frac{1}{T_{0}} \int_{\langle T_{0} \rangle} x(t)e^{-j\omega_{0}nt}dt = \frac{1}{\omega_{0}nT_{0}} 2sin(\omega_{0}nT_{1})$$

$$= \frac{1}{T_{0}} \int_{-T_{1}}^{T_{1}} 1.e^{-j\omega_{0}nt}dt = 2\frac{T_{1}}{T_{0}} \frac{sin(\omega_{0}nT_{1})}{\omega_{0}nT_{1}}$$

$$= -\frac{1}{T_{0}} \frac{e^{-j\omega_{0}nt}}{j\omega_{0}nt}\Big|_{-T_{1}}^{T_{1}} = 2\frac{T_{1}}{T_{0}} sinc(\omega_{0}nT_{1})$$

$$= \frac{e^{j\omega_{0}nT_{1}} - e^{-j\omega_{0}nT_{1}}}{j\omega_{0}nT_{0}}$$

 $-1^{1} 1 2$

 $\angle(D_n)$ is zero for positive values of D_n and is π (or equivalently $-\pi$) for negative values of D_n

n

Trigonometric Fourier Series and Exponential Fourier Series

$$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{j\omega_0 nt}$$
 (Exponential Fourier series)

$$x(t) = D_0 + \underbrace{D_1 e^{j\omega_0 t} + D_{-1} e^{-j\omega_0 t}}_{a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t)} + \underbrace{D_2 e^{j2\omega_0 t} + D_{-2} e^{-j2\omega_0 t}}_{b_2 \sin(2\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)}_{a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t)} + \underbrace{D_2 e^{j2\omega_0 t} + D_{-2} e^{-j2\omega_0 t}}_{a_1 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)}_{a_1 \cos(\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)}$$

Euler formula
$$\underbrace{a_{1}(\frac{e^{j\omega_{0}t} + e^{-j\omega_{0}t}}{2}) + b_{1}(\frac{e^{j\omega_{0}t} - e^{-j\omega_{0}t}}{2j})}_{\text{formula}} + \underbrace{(\frac{a_{1}}{2} + \frac{b_{1}}{2j})e^{j\omega_{0}t} + (\frac{a_{1}}{2} - \frac{b_{1}}{2j})e^{-j\omega_{0}t})}_{\text{for}} + \underbrace{cond_{n} = \frac{a_{n}}{2} + \frac{b_{n}}{2j}}_{\text{for}} \xrightarrow{\text{or}} \begin{cases} D_{n} + D_{-n} = a_{n} \\ D_{n} = \frac{a_{n}}{2} - \frac{b_{n}}{2j} \end{cases}}_{\text{for}} \xrightarrow{\text{or}} \begin{cases} D_{n} + D_{-n} = a_{n} \\ D_{n} = \frac{a_{n}}{2} - \frac{b_{n}}{2j} \end{cases}}$$

Simple Example:

$$x(t) = \cos(\omega_0 t)$$

Trigonometric FS:
$$a_0 = 0, a_1 = 1, a_2 = 0, ..., b_n = 0, \forall n$$

Exponential FS:
$$D_0 = 0, D_1 = \frac{1}{2}, D_{-1} = \frac{1}{2}$$