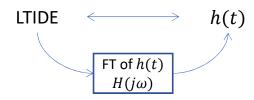
Signals and Systems I

Topic 11

Laplace Transform

Fourier Transform and LTIDE



Reminder:

What is the output of the following system to x(t)?

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt} - 6x(t)$$

First you need to find h(t) that is the "impulse response" of this system and the output is y(t) = x(t) * h(t).

Alternative approach using the FT is to first find $H(j\omega)$ from the equation and then calculate inverse FT of $H(j\omega)X(j\omega)$ which is y(t).

This method can be used for cases where M (order of highest derivate of input) is even greater than N (system order that is the order of highest derivative of output):

What is h(t) impulse response of this system?

$$\frac{dy(t)}{dt} + 4y(t) = \frac{d^2x(t)}{dt} + \frac{dx(t)}{dt} - 6x(t)$$

Fourier Transform provides a linear combination of $e^{j\omega t}$ s for a signal:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Laplace Transform is an extension of this method and finds correlation of e^{st} where $s = \sigma + j\omega$ (in FT $s = j\omega$ only), with the signal.

$$X(j\omega) = \underbrace{\int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt}_{s=j\omega} \xrightarrow{\text{extension to Laplace}} X(s) = \underbrace{\int_{-\infty}^{\infty} x(t)e^{-st}dt}_{s=j\omega+\sigma}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \xrightarrow{\text{extension to Laplace}} x(t) = \underbrace{\frac{1}{2\pi j} \int_{c-\infty}^{c+\infty} X(s) e^{st} ds}_{s=c+j\omega, \ c \ is \ a \ constant} \text{ set c to zero and its FT}$$

Similar to FT, Laplace is a linear operation.

$$x_1(t) \to X_1(s)$$

$$x_2(t) \to X_2(s)$$

$$ax_1(t) + bx_2(t) \to aX_1(s) + bX_2(s)$$

Why Laplace?

Many signals don't have FT but have Laplace Transform!

Fourier Transform provides a linear combination of $e^{j\omega t}$ s for a signal:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Laplace Transform is an extension of this method and finds correlation of e^{st} where $s = \sigma + j\omega$ (in FT $s = j\omega$ only), with the signal!

$$X(j\omega) = \underbrace{\int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt}_{s=j\omega} \xrightarrow{\text{extension to Laplace}} X(s) = \underbrace{\int_{-\infty}^{\infty} x(t)e^{-st}dt}_{s=j\omega+\sigma}$$

Region of Convergence (ROC) of Laplace Transform

Set of s values in complex plane that makes the integral of X(s) converge.

Example: $x(t) = e^{-at}u(t)$, a > 0. Find X(s) & its ROC.

$$X(s) = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-(a+s)t} dt$$
$$= \frac{e^{-(a+s)t}}{(a+s)} \Big|_{0}^{\infty} = \frac{e^{-(a+s)\infty}}{-(a+s)} + \frac{1}{a+s}$$

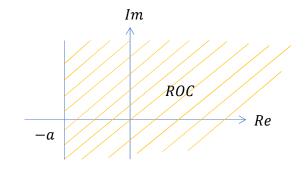
$$\lim_{t \to \infty} \frac{e^{-(a+s)t}}{-(a+s)} = \lim_{t \to \infty} \frac{e^{-(a+\sigma+j\omega)t}}{-(a+s)}$$

$$= \lim_{t \to \infty} \frac{e^{-j\omega t}e^{-(a+\sigma)t}}{-(a+s)}$$

$$e^{-j\omega t} \text{ is a complex number, } |e^{-j\omega t}| = 1 \text{ for all } t.$$

$$= \lim_{t \to \infty} \frac{e^{-(a+\sigma)t}}{-(a+s)} = \begin{cases} 0 & a+\sigma > 0 \text{ converges (ROC)} \\ \infty & a+\sigma < 0 \text{ does not converge} \end{cases}$$

 \Rightarrow ROC = {" $s = \sigma + i\omega$ " such that $\sigma + a > 0 \Rightarrow \sigma > -a$ }



$$x(t) = e^{-at}u(t), \quad a > 0 \quad \xrightarrow{L} \quad \frac{1}{s+a}$$

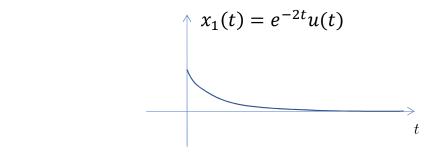
$$ROC = \{s, Re\{s\} > -a, \quad a > 0\}$$

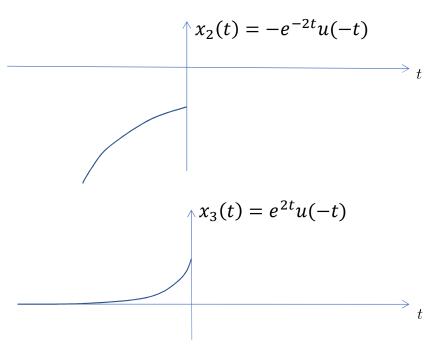
If $s = j\omega$ is in ROC then FT exists

Example:

Find Laplace and ROC for the following signals:

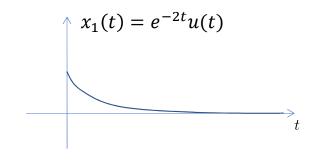
$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

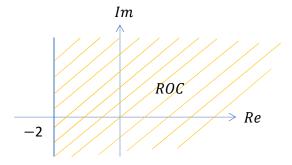




$$X_1(s) = \int_0^\infty e^{-(2+s)t} dt = \frac{1}{2+s} + \underbrace{\frac{e^{-(2+s)\infty}}{-(2+s)}}_{0 \text{ iff } 2+\sigma>0}$$

$$ROC = \{s \mid Re\{s\} > -2\} \to X_1(s) = \frac{1}{2+s}$$



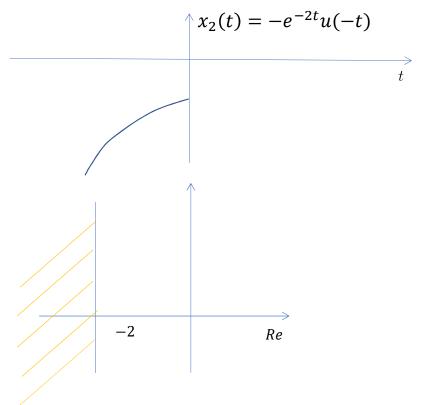


*Note: Direction of the dashed area of ROC is the same as direction of the signal in time.

$$X_2(s) = \int_{-\infty}^0 -e^{-2t} e^{-st} dt = -\int_{-\infty}^0 e^{-(2+s)t} dt$$
$$= \frac{-e^{-(2+s)t}}{-(2+s)} \Big|_{-\infty}^0 = \frac{1}{(2+s)} + \frac{e^{-(2+s)(-\infty)}}{-(2+s)}$$

$$e^{(2+s)(\infty)} = \begin{cases} 0 & 2+\sigma < 0 \to ROC = Re\{s\} < -2\\ \infty & 2+\sigma > 0 \end{cases}$$

$$X_2(s) = \frac{1}{2+s}, \quad Re\{s\} < -2$$



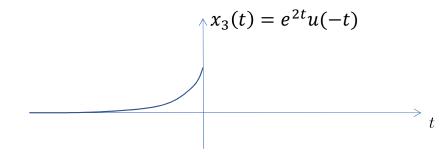
Laplace is the same as that of $x_1(t)$, only ROC is different!

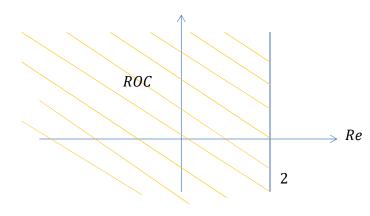
 $s = j\omega$ is not in ROC. Signal doesn't have FT.

$$X_3(s) = \int_{-\infty}^0 e^{2t} e^{-st} dt = \int_{-\infty}^0 e^{(2-s)t} dt$$
$$= \frac{e^{(2-s)t}}{(2-s)} \Big|_{-\infty}^0 = \frac{1}{(2-s)} - \frac{e^{-(2-s)(\infty)}}{(2-s)}$$

$$e^{-(2-s)(\infty)} = \begin{cases} 0 & 2-\sigma > 0 \to ROC = Re\{s\} < 2\\ \infty & 2-\sigma < 0 \end{cases}$$

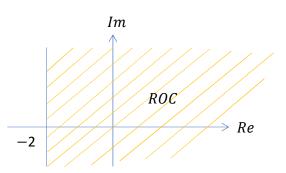
$$X_3(s) = \frac{1}{2-s}, \quad Re\{s\} < 2$$

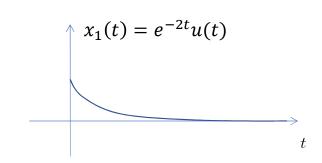




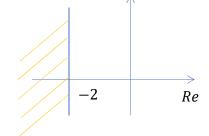
 $s = j\omega$ is in ROC. This noncausal signal has FT.

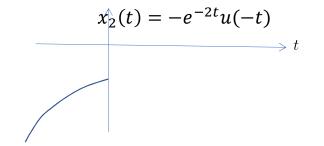
$$X_2(s) = \frac{1}{2+s}, \quad Re\{s\} > -2$$

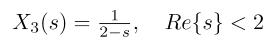


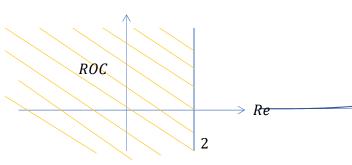


$$X_2(s) = \frac{1}{2+s}, \quad Re\{s\} < -2$$









$$\uparrow x_3(t) = e^{2t}u(-t)$$

Example:

Find X(s) for $e^{-a|t|}$, a > 0.

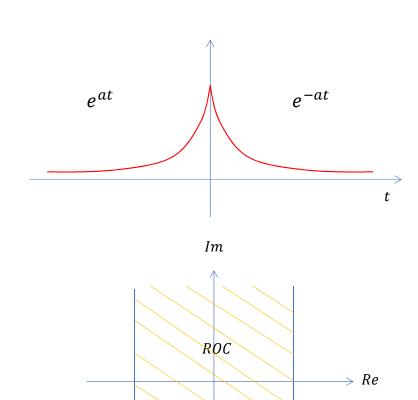
$$x(t) = e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$$
$$X(s) = \mathcal{L}\left(e^{-at}u(t)\right) + \mathcal{L}\left(e^{at}u(-t)\right)$$

$$ROC\left(X(s)\right) = ROC\{\mathcal{L}\left(e^{-at}u(t)\right)\} \cap ROC\{\mathcal{L}\left(e^{at}u(-t)\right)\}$$

$$e^{-at}u(t) \xrightarrow{\mathscr{L}} \frac{1}{a+s}, Re\{s\} > -a$$

$$e^{at}u(-t) \xrightarrow{\mathscr{L}} \frac{1}{a-s}, Re\{s\} < a$$

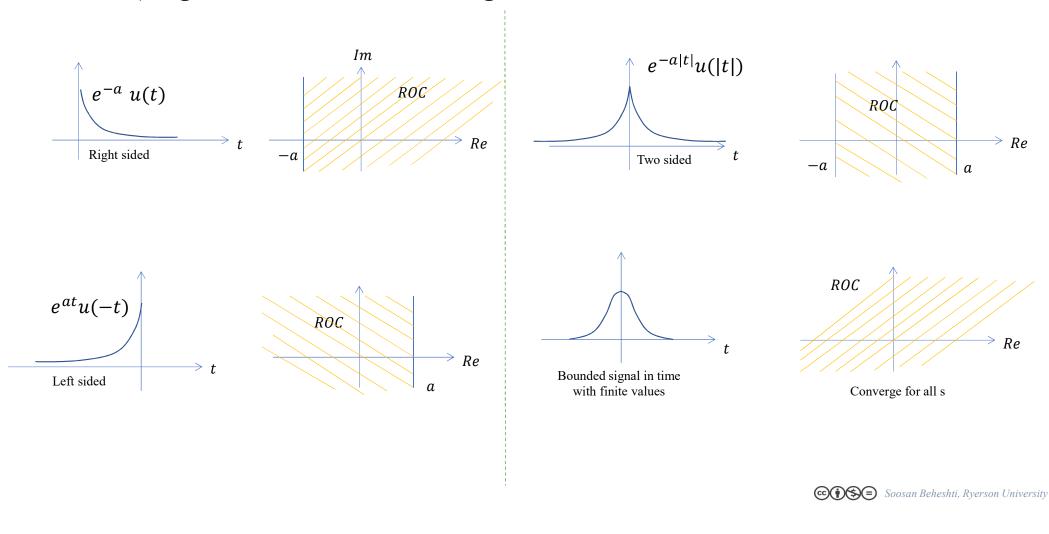
$$X(s) = \frac{1}{a+s} + \frac{1}{a-s} = \frac{2a}{a^2 - s^2}$$



-a

а

Left sided, Right sided or double sided signals and their ROC



Example:

Find x(t) for the following X(s).

$$X(s) = \frac{1}{s+2} + \frac{1}{s+3}, \quad ROC = \{s | Re(s) > -2\}$$

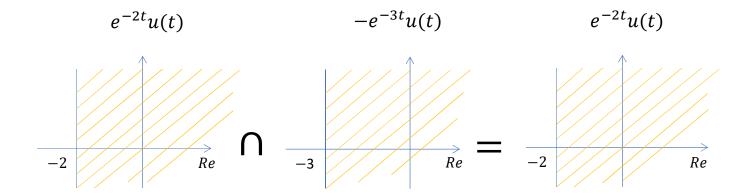
$$x(t) = e^{-2t}u(t) + e^{-3t}u(t)$$

Example:

Find x(t) for the following X(s).

$$X(s) = \frac{1}{s+2} + \frac{1}{s+3}, \quad ROC = \{s | Re(s) > -2\}$$

$$x(t) = e^{-2t}u(t) + e^{-3t}u(t)$$



Example:

Find x(t) for the following X(s).

$$X(s) = \frac{1}{s+2} + \frac{1}{s+3}, \quad ROC = \{s \mid -3 < Re(s) < -2\}$$

Example:

Find x(t) for the following X(s).

$$X(s) = \frac{1}{s+2} + \frac{1}{s+3}, \quad ROC = \{s \mid -3 < Re(s) < -2\}$$

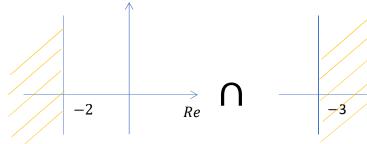
Signal has to be two-sided

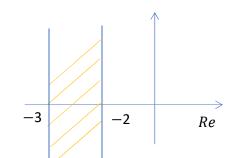
$$x(t) = -e^{-2t}u(-t) + e^{-3t}u(t)$$

$$-e^{-2t}u(-t)$$

$$e^{-3t}u(t)$$

Re





Without ROC there are more than one option for the inverse of the Laplace transform.

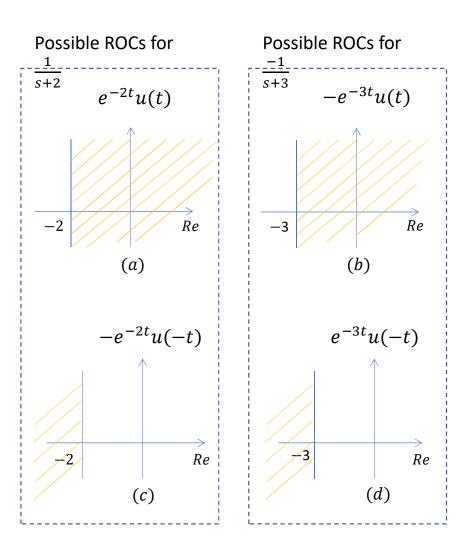
Example:

Find possible x(t)s with the following Laplace transform:

$$X(s) = \frac{1}{(s+2)(s+3)}$$

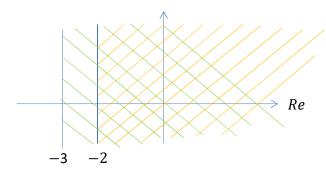
Use P.F.E

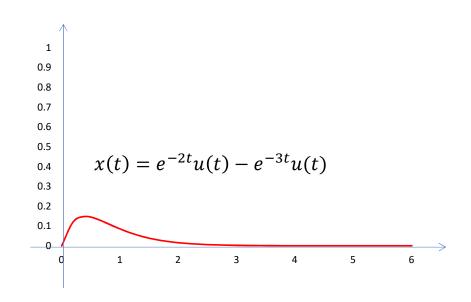
$$X(s) = \frac{a}{s+2} + \frac{b}{s+3} = \frac{1}{(s+2)(s+3)}$$
$$a(s+3) + b(s+2) = 1 \to \begin{cases} \sec s = -3 \Rightarrow b = -1\\ \sec s = -2 \Rightarrow a = 1 \end{cases}$$
$$X(s) = \frac{1}{s+2} + \frac{-1}{s+3}$$



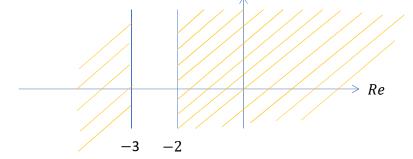
Case 1: (a) & (b):

Intersection: $Re\{s\} > -2$





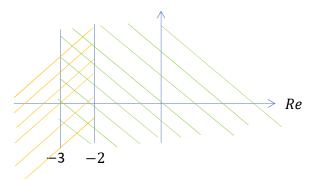
Case 2: (a) & (d):



No intersection, so this is a signal that has no Laplace transform!

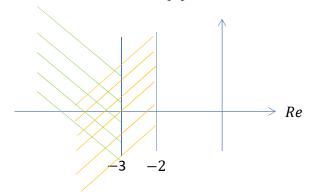
Case 3: (b) & (c):

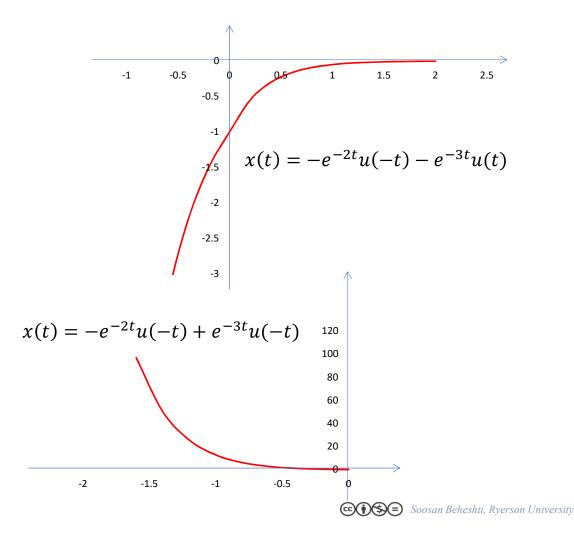
Intersection: $-3 < Re\{s\} < -2$



Case 4: (c) & (d):

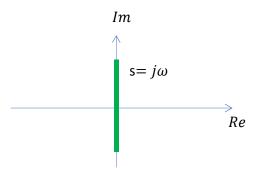
Intersection: $Re\{s\} < -3$





Laplace Transform & Fourier Transform

FT is a Laplace transform that is calculated for $s = j\omega$.



Therefore a signal has FT only if ROC includes the $j\omega$ axis! Therefore, **Not** all signals have FT.

Question: Go back to the previous example and indicate which signal has FT?

Example:

Find x(t) with the following X(s):

$$X(s) = \frac{2s^2+5}{s^2+3s+2}$$
 and ROC : $Re\{s\} > -1$ (Right sided signal)

Example:

Find x(t) with the following X(s):

$$X(s) = \frac{2s^2+5}{s^2+3s+2}$$
 and ROC : $Re\{s\} > -1$ (Right sided signal)

Solution:

$$X(s) = \frac{2(s^2 + 3s + 2) + 1 - 6s}{s^2 + 3s + 2} = 2 + \frac{1 - 6s}{s^2 + 3s + 2}$$

$$P.F.E\left(\frac{1 - 6s}{s^2 + 3s + 2}\right) = \frac{a}{(s+1)} + \frac{b}{(s+2)} = \frac{1 - 6s}{(s+1)(s+2)}$$

$$a = \frac{1 - 6s}{s+2} \Big|_{s=-1} = 7$$

$$b = \frac{1 - 6s}{s+1} \Big|_{s=-2} = -13$$

$$x(t) = 2\delta(t) + 7e^{-t}u(t) - 13e^{-2t}u(t)$$

Linearity
$$ax_1(t) + bx_2(t) \rightarrow aX_1(s) + bX_2(s)$$

Time Shift $x(t - t_0) \rightarrow e^{-st_0}X(s)$
Frequency shift $x(t)e^{s_0t} \rightarrow X(s - s_0)$
Detivative $\frac{dx(t)}{dt} \rightarrow sX(s)$
Higeher Order Derivative $\frac{d^nx(t)}{dt^n} \rightarrow s^nX(s)$

$$\int_{-\infty}^t x(t)dt \rightarrow \frac{1}{s}X(s)$$
Scaling $x(at) \rightarrow \frac{1}{a}X(\frac{s}{a})$
 $x_1(t) * x_2(t) \rightarrow X_1(s)X_2(s)$
 $x_1(t) \times x_2(t) \rightarrow \frac{1}{2\pi}X_1(s) * X_2(s)$

Bilateral Laplace Transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Linearity
$$ax_1(t) + bx_2(t) \rightarrow aX_1(s) + bX_2(s)$$

Time Shift $x(t - t_0) \rightarrow e^{-st_0}X(s)$

Frequency shift $x(t)e^{s_0t} \to X(s-s_0)$

Detivative
$$\frac{dx(t)}{dt} \to sX(s) - x(0)$$

Higher Order Derivative $\frac{d^n x(t)}{dt^n} \to s^n X(s) - \sum_{k=1}^n s^{n-k} x^k (k-1)(0)$

$$\int_{-\infty}^{t} x(t)dt \to \frac{1}{s}X(s)$$

Scaling
$$x(at) \to \frac{1}{a}X(\frac{s}{a})$$
 $a > 0$

$$x_1(t) * x_2(t) \to X_1(s)X_2(s)$$

$$x_1(t) \times x_2(t) \to \frac{1}{2\pi} X_1(s) * X_2(s)$$

Initial value Theorem $x(0) = \lim_{s \to \infty} sX(s)$

Final value Theorem $x(\infty) = \lim_{s \to 0} sX(s)$

Bilateral Laplace Transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Unilateral Laplace Transform:

$$X(s) = \int_0^\infty x(t)e^{-st}dt$$

Unilateral Laplace is used for Causal signals and causal systems to deal with initial conditions.

Example:

$$h(t) = \delta(t - 3)$$

$$H(s) = \int_{-\infty}^{\infty} \delta(t - 3)e^{-ts}dt$$

$$= e^{-3s} \underbrace{\int_{-\infty}^{\infty} \delta(t - 3)dt}_{1}$$

$$= e^{-3s}$$

Example:

$$X(s) = \frac{e^{-3s}}{s} = \frac{1}{s} \times e^{-3s}$$

$$x(t) = \underbrace{u(t)}_{\frac{1}{s}} * \underbrace{\delta(t-3)}_{e^{-3s}} = u(t-3)$$
Delay of $u(t)$ by 3 or

Delay of u(t) by 3 or Integral of $\delta(t-3)$ Useful Laplace Transforms:

$$e^{-at}\cos(bt)u(t) \xrightarrow{\text{Laplace}} \xrightarrow{s+a} \xrightarrow{(s+a)^2+b^2} \\ \delta(t) \xrightarrow{\text{Laplace}} 1 \\ u(t) \xrightarrow{\text{Laplace}} \frac{1}{s} \\ tu(t) \xrightarrow{\text{Laplace}} \frac{1}{s^2}$$

Example:

$$X(s) = \frac{1}{s(s+5)} = \frac{a}{s} + \frac{b}{s+5}, \quad ROC = Re\{s\} > 0$$

$$a = \frac{1}{s+5} \Big|_{s=0} = \frac{1}{5}$$

$$b = \frac{1}{s} \Big|_{s=-5} = \frac{-1}{5}$$

$$x(t) = \frac{1}{5}u(t) - \frac{1}{5}e^{-5t}u(t)$$

Example:

$$x(t) = e^{-2t} \cos\left(\frac{\pi}{3}t\right) u(t)$$

$$= e^{-2t} \left(\frac{e^{j\frac{\pi}{3}t} + e^{-j\frac{\pi}{3}t}}{2}\right) u(t)$$

$$= \frac{e^{j\frac{\pi}{3}t}}{2} e^{-2t} u(t) + \frac{e^{-j\frac{\pi}{3}t}}{2} e^{-2t} u(t)$$

$$= \frac{1}{2} \frac{1}{(s - j\frac{\pi}{3}) + 2} + \frac{1}{2} \frac{1}{(s + j\frac{\pi}{3}) + 2}$$

$$= \frac{1}{2} \left[\frac{1}{(s - j\frac{\pi}{3}) + 2} + \frac{1}{(s + j\frac{\pi}{3}) + 2}\right]$$

$$= \frac{1}{2} \left[\frac{s + j\frac{\pi}{2} + 2 + s - j\frac{\pi}{2} + 2}{[(s - j\frac{\pi}{3}) + 2][(s + j\frac{\pi}{3}) + 2]}\right]$$

$$= \frac{1}{2} \left[\frac{2s + 4}{[(s + 2) - j\frac{\pi}{3}][(s + 2) + j\frac{\pi}{3}]}\right]$$

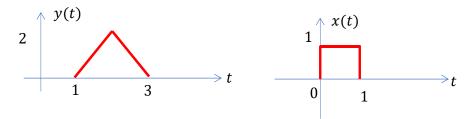
$$= \frac{s + 2}{(s + 2)^2 + (\frac{\pi}{9})^2} = \frac{s + 2}{s^2 + 4s + (4 + \frac{\pi^2}{9})}$$

Alternatively use:

$$e^{s_0 t}u(t), \ s_0 = \alpha_0 + j\omega_0 \to X_1(s) = \frac{1}{s - s_0}, ROC = Re\{s\} > \alpha_0$$

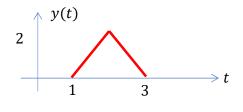
Laplace Transform Properties Example:

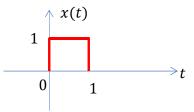
Write Y(s) as a function of X(s).



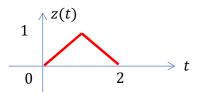
Example:

Write Y(s) as a function of X(s).





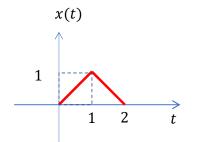
Solution:

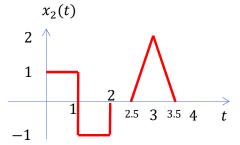


$$x(t) * x(t) = z(t) \Rightarrow X(s) \times X(s) = Z(s)$$

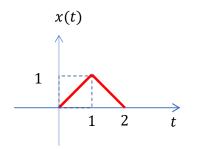
 $2z(t-1) = y(t) \Rightarrow Y(z) = 2e^{-s}Z(s) = 2e^{-s}X^{2}(s)$

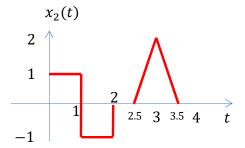
Example: Write Laplace transform of $x_2(t)$ as a function of X(s).

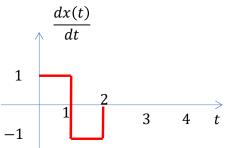




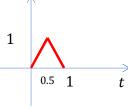
Example: Write Laplace transform of $x_2(t)$ as a function of X(s).







$$z(t) = x(2t)$$
 $z(t-2.5) = x(2(t-2.5)) = x(2t-5)$



$$x_{2}(t) = \frac{dx(t)}{dt} + 2x(2t - 5)$$

$$X_{2}(s) = sX(s) + 2\mathcal{L}(x(2t - 5))$$

$$= sX(s) + 2\mathcal{L}(z(t - 2.5))$$

$$= sX(s) + 2e^{-2.5s}\mathcal{L}(z(t))$$

$$= sX(s) + 2e^{-2.5s}\mathcal{L}(x(2t))$$

$$= sX(s) + 2e^{-2.5s}\frac{1}{2}X(\frac{s}{2})$$

Example:

The input and output of a casual LTI system respectively are: $x(t) = e^{-2t}u(t)$ and $y(t) = te^{-t}u(t)$. Find H(s), Laplace transform of the impulse response h(t) and show its ROC.

Example:

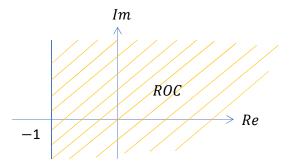
The input and output of a casual LTI system respectively are: $x(t) = e^{-2t}u(t)$ and $y(t) = te^{-t}u(t)$. Find H(s), Laplace transform of the impulse response h(t) and show its ROC.

Solution:

$$y(t) = x(t) * h(t) \to Y(s) = X(s)H(s) \to H(s) = \frac{Y(s)}{X(s)}$$
$$x(t) = e^{-2t}u(t) \to X(s) = \frac{1}{s+2}$$
$$y(t) = te^{-t}u(t) \to Y(s) = \frac{1}{(s+1)^2}$$
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\frac{1}{(s+1)^2}}{\frac{1}{(s+2)}} = \frac{s+2}{(s+1)^2}$$

Since the LTI system is casual, h(t) is right hand signal, therefore ROC: $Re\{s\} > -1$

Laplace of impulse response of an LTI system is also known as **Transfer Function** of the system.



Laplace Transform Example:

LTI system has transform $H(s) = \frac{s-1}{s+1}$, what is y(t) output of this system to input with Laplace transform $X(s) = \frac{s}{s+1}$.

Example:

LTI system has transform $H(s) = \frac{s-1}{s+1}$, what is y(t) output of this system to input with Laplace transform $X(s) = \frac{s}{s+1}$.

Solution:

$$Y(s) = H(s) \times X(s) = \frac{s-1}{s+1} \times \frac{s}{s+1} = \frac{s(s-1)}{(s+1)^2}$$
$$= \frac{s^2 - s}{s^2 + 2s + 1} = 1 + \frac{-3s - 1}{s^2 + 2s + 1} = 1 + \frac{a}{s+1} + \frac{b}{(s+1)^2}$$

$$b = (s+1)^{2}Y(s)\big|_{s=-1} = 2$$

$$a = \frac{d}{ds}\left((s+1)^{2}Y(s)\right)\big|_{s=-1} = (2s-1)\big|_{s=-1} = -3$$

$$\frac{1}{(s+1)^2} \xrightarrow{IL} te^{-t}u(t)$$
$$y(t) = \delta(t) - 3e^{-t}u(t) + 2te^{-t}u(t)$$

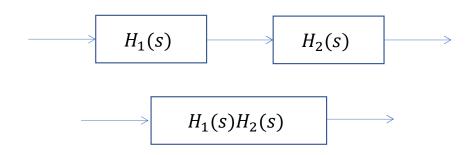
Another method:

$$Y(s) = \frac{s^2 - s}{(s+1)^2} = \underbrace{\frac{s^2}{(s+1)^2}}_{(\frac{d^2}{dt^2}(te^{-t}u(t)))} - \underbrace{\frac{s}{(s+1)^2}}_{(\frac{d}{dt}(te^{-t}u(t)))}$$

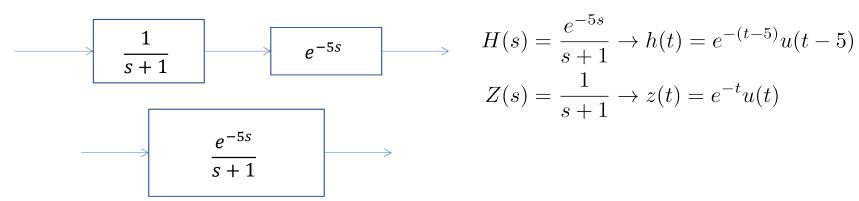
$$y(t) = \frac{d}{dt}[(e^{-t} - te^{-t})u(t)] - te^{-t}\delta(t) + (e^{-t} - te^{-t})u(t)$$

$$= \delta(t) + (2te^{-t} - 3e^{-t})u(t)$$

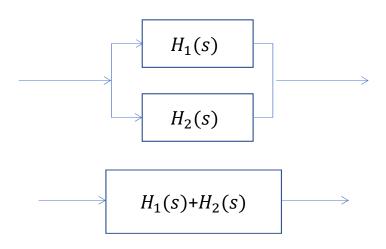
$\underline{\text{Cascade}}$



Example:



Parallel



Example:

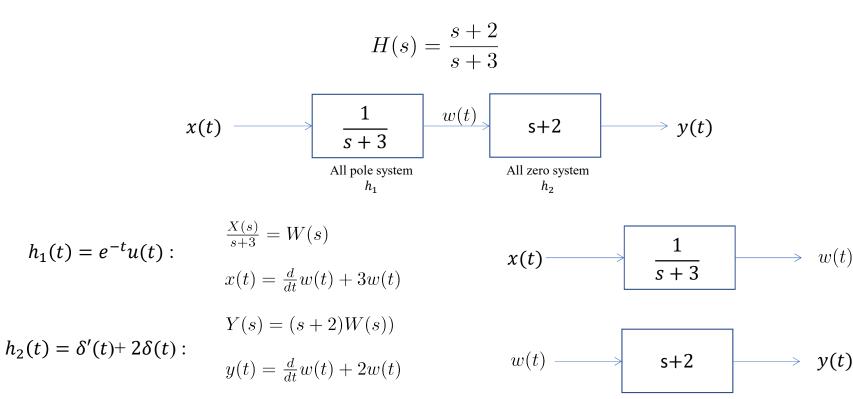
$$H_1(s) = \frac{1}{s+2-4j}, \quad H_2(s) = \frac{1}{s+2+4j}$$

$$H(s) = \frac{1}{s+2-4j} + \frac{1}{s+2+4j} = \frac{s+2+4j+s+2-4j}{(s+2)^2-(4j)^2} = \frac{2s+4}{(s+2)^2+16}$$

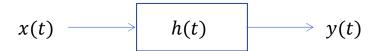
$$e^{-at}\cos(bt)u(t) \xrightarrow{L} \frac{s+a}{(s+a)^2+b^2}$$

$$H(s) = \frac{2(s+2)}{(s+2)^2+4^2} \xrightarrow{\text{Inverse Laplace}} 2e^{-2t}\cos(4t)u(t)$$

Example with zero & pole:



$$h(t) = h_1(t) * h_2(t) = e^{-t}u(t) * (2\delta(t) + \delta'(t)) = 2e^{-t}u(t) + \frac{d}{dt}(e^{-t}u(t))$$



$$x(t) = e^{s_0 t}$$
 $y(t) = H(s_0)e^{s_0 t}$

Only for s_0 s that are in ROC of H(s), otherwise the output is infinity!

Example:

$$x(t) = C \text{ (Constant)} \Rightarrow y(t) = C \times H(j0)$$

$$x(t) \longrightarrow h(t) \qquad y(t)$$

$$x(t) = e^{s_0 t}$$

$$y(t) = H(s_0)e^{s_0t}$$

Only for s_0 s that are in ROC of H(s), otherwise the output is infinity!

Note that e^{s_0t} s are eigenfunctions of Laplace Transform!.

Difference between e^{s_0t} and its causal part $e^{s_0t}u(t)$, $s_0 = \alpha_0 + j\omega_0$:

$$e^{s_0 t} \xrightarrow{\text{Laplace}} \delta(s - s_0)$$

$$ROC = \{s | Re\{s\} = Re\{s_0\} = \alpha_0\}$$

$$e^{s_0 t} u(t), \xrightarrow{\text{Laplace}} X_1(s) = \frac{1}{s - s_0}, ROC = \{s \mid Re\{s\} > \alpha_0 \}$$

