
Vector Processors Motivations:

• Cannot increase performance with deeper pipeline

because:

-clock cycle time limitation (latch delay)

-increase dependences with deeper pipeline

• Cannot increase performance by multiple is-

suing because:

-limitation of Instruction Fetch and decode

rate (memory bottelneck)

-Not enough ILP

Concept of Vector Processing

Provide operations that work on vectors.

Vectors are alinear array of numbers.

One vector operation could add two 64 elements

Advantages of Vector Operations:

• Operations on each two elements do not de-

pend on previous results (No data hazards)

• Need single vector instruction to do the work

of multiple instructions. This reduces Instruc-

tion memory bandwidth.

• Could use Interleaved memory to reduce la-

tency cost of main memory and fetch data

elements.

Multiple elements could be accessed from multi-

bank memory in single access.

• Reduce Control hazards because an entire loop

is replaced by single vector operation.

The Basic Vector Architecture

OP VR3, VR2, VR1 ; 64 Operation

VR3(i) = VR2(i) OP VR1(i)

Scalar operation:

R3 = R2 OP R1

FU
VR1

VR2

VR3

1

1

1

64

64

64

The Vector Architecture Components:

• 1-Pipelined function units for vector opera-

tions.

Clock cycle time= latency pipeline depth

Vector Function Units can use very deep pipeline

(no hazards), this increases clock frequency.

• 2-Multiple Vector Function Units:

Multiply, ADD Subtract, Divide, Integer, Log-

ical.

This allows multiple vector operations

• 3-It uses Scalar Unit (same as the basic pipeline)

• 4-Vector Register File

Each Vector register consists of fixed length

bank holding a vector. (DLXV= 64 elements)

The Vector Architecture Components:

• 5- Multiple read/write ports for the vector

register file (16 read ports and 8 write).

• 6-Vector Load-Store Unit:

Load or Store Vector from memory.

Fully pipelined, words can be moved fromto

memory at a rate of 1 word/clock cycle (need

Interleaved memory).

• 7-Scalar Registers:

To compute address for loadstore unit and the

32 GPR, 32 FP registers used in DLX.

Main Memory

Vector Load−Store

Vector
Registers

Scalar
Registers

8 multiple words

16 multiple words

MULTIPLE VECTOR
FUNCTION UNITS

FP ADD/SUB

FP MULTIPLY

FP Divide

Integer

Logical

Cray T-90 , 1996

Clock rate= 500 MHz

Vector registers =8

each register = 128 X 64 bits

8 FP add, 1 FP Multiply, 4 LoadStore, 1 Int

AddSub , 2 Logial, 1 Shift, 1Reciprocal

DLXV Instruction Set

ADD V1, V2, V3 ; V1(i) = V2(i) + V3(i)

ADDSV V1, F0, V2 ; V1(i) = F0 + V2(i)

SUBV V1, V2, V3 ; V1(i0 = V2(i) - V3(i)

MULTV V1, V2, V3 ; V1(i) = V2(i) xV3(i)

DIVV V1, V2, V3; V1(i) = V2(i) /V3(i)

LV V1, R1 ; V1(i) = M [R1 +i]

SV R1, V1 ; M[R1 +i] = V1(i)

LVWS V1, (R1,R2) ; V1(i) = M[R1 + ixR2]

SVWS (R1,R2), V1 ; M[R1 +ixR2] =V1(i)

SEQV V1, V2; if(V1(i)==V2(i))

VM(i) =1 where VM is mask Reg

MOVI2S VLR, R1; VLR=R1 strip mining

Example: Compare the performance of DLX

to DLXV for DAXPY routine assume vector

register= 64 elements

Y = A × X + Y

DLX Code:

LD F0,B R

ADDI R4, RX, #512 ; R4= Last address

lOOP LD F2, 0(RX); F2=X[i]

MultD F2, F0, F2; F2=A.X[i]

LD F4, 0(Ry) ; F4= Y[i]

ADDD F4, F4, F2 ; F4=A.X[i]+y[I]

SD 0(Ry), F4 ; Y[i]=A.X[i] + Y[i]

ADDI Rx, Rx, #8 ; i+1 for X

ADDI Ry, Ry, #8 ; i+1 for Y

SUB R20, R4, Rx ; R20=64 -I

BNZ R20,lOOP

number of instructions = 2 + 64x9=578

Total time = 578 cycles with no hazards

DLXV Code:

LD F0, A; 1 cycle

LV V1, Rx ; V1[i]= X[i] 64 cycles

MULTV V2, V1, F0 ; V2[i]=AX[i] 64 cycles

LV V3, Ry ; V3[i]=Y[i] 64 cycles

ADDV V4, V2, V3 ; V4[i]=AX[i] + Y[i] 64 cycles

SV Ry, V4 ; Y[i]=AX[i] + Y[i] 64 cycles

only 6 Instructions

Instruction memory bandwidth =578/6 = 1/100

No control hazards or overhead (BNZ, SUB, ADDI)

total time 321 cycles

Applications For Vector Operations

1-Multimedia Processing (Compress, graphics,..)

2- Standard Scientific computing (Matrix Multi-

plication, FFT, CONVL, SORT)

3-Database (data mining, image/video serving)

4-Operating SystemsNetworking (memcpy,..)

5-Speech, handwriting recognition

EXAMPLE: MMX

MMX Technology is a set of Instructions for mul-

timedia and communication applications.

• Single Instruction Multiple Data (SIMD) tech-

nique for vector operations

• 57 New Instructions

• Uses eight 64 bit MMX Registers

• four new data types:

– 1-Packed byte - 8 bytes packed into 64 bit

– 2-Packed word - four 16 bit words

– 3-Packed double words - two 32 bit words

– 4- Quadword - one 64 bit word

Graphics Pixel Data use 8 bits integers, 8 of

these pixels can be packed together and moved

to MMX register.

When MMX instruction executes, it operates on

all the 8 Pixels at once (SIMD) to perform arith-

metic or logic operations.

MMX 64 bit 63 56 7 0

Register ----------- -------

| pixel8| | pixel1 |

---------- ----------

MMX is integrated to Intel architecture

MMX is fully compatible with exisisting applica-

tions and operating system by aliasing its registers

and stste on FP registers and state.

MMX Instruction Set It operates on byte (B),

word (W), double word (DW) or quad word (QW).

• Basic arithmetic operations (add, sub, multi-

ply, shift, and multiply-add)

PADD[B,W,D] = add with wrap around

PMULHW = packed multiply high on words

• Comparison operations:

PCMPEQ[B,W,D] = packed compare for equal-

ity

• Conversion between data types:

PACKUSWB = pack words into bytes (un-

signed)

• Data transfer

MOV[D,Q] = move [double word, QW] to

MMX register or from MMX register

• shift

PSLL[W,D,Q] = packed shift left logical by

Immediate

Examples

PADD[W]:

MMX1 a3 a2 a1 FFFF

+ + + +

MMX2 -----------------------------

b3 b2 b1 8000

= -----------------------------

a3+b3 a2+b2 a1+b1 7FFF warp around

PMADDWD: 16bX16b ---> 32 b

MMX1 a3 a2 a1 a0

X X X X

MMX2 -----------------------------

b3 b2 b1 a0

-----------------------------=

= -----------------------------

a3Xb3+ a2Xb2 a1Xb1+ a0Xb0

Examples

PCMPGT[W]:

MMX1 23 45 16 39

gt? gt? gt? gt?

MMX2 ---------------------

31 7 16 67

= ---------------------

0000 FFFF 0000 0000

Application Example: Chroma Keying

Conditional selection of pixels and overlay on a

baclground

TV Weatherman overlaid on the Image of waether

map

Assume a person picture to overlay it on a

picture of spring blossom

1-Assume that person picture has green back-

ground

2-Compare each pixel of person picture with pixel

of green colour using PCMPEQ (mask for per-

son’s face)

3-USE AND NOT instruction between MASK and

person’s picture, get person’s face only

4-Use AND instruction between MASK and spring

blossom, get the spring blossom only in place of

green background

Use OR instruction for results of 3 and 4, get

person’s picture with spring blossom in the back-

ground

1-

Person --------------------

picture x1 x2 x3 x4

PCMPEQW

green green green green

=MASK FFFF 0000 0000 FFFF

PANDN

Person x1 x2 x3 x4

picture -----------------

= -------------------

0000 x2 x3 0000

3- -------------------

MASK FFFF 0000 0000 FFFF

PAND

spring y1 y2 y3 y4

blossom ------------------

y1 0000 0000 y4

4- -----------------

0000 x2 x3 0000

POR

y1 0000 0000 y4

=

y1 x2 x3 y4
