Exercises A-81

Weiss, S., and J. E. Smith [1984]. “Instruction issue logic for pipelined supercomputers,”
Proc. 11th Symposium on C omputer Architecture (June), Ann Arbor, Mich., 110-118.

Exercises

Solutions to the “starred” exercises appear in Appendix B.
A1 [15/15/15] <A.2> Use the following code fragment:

Loop: LD R1,0(R2) ;load Rl from address 0+R2
DADDI R1,R1,#1 sR1=R1+1
SD 0(R2),R1 ;store R1 at address 0+R2
DADDI R2,R2,#4 sR2=R2+4
DSUB R4,R3,R2 sR4=R3-R2
BNEZ R4, Loop sbranch to Loop if R4!=0

Assume that the initial value of R3 is R2 + 396.

Throughout this exercise use the classic RISC five-stage integer pipeline (see Fig-
ure A.1) and assume all memory accesses take 1 clock cycle.

a. [15] <A.2> Show the timing of this instruction sequence for the RISC pipe-
line without any forwarding or bypassing hardware but assuming a register
read and a write in the same clock cycle “forwards” through the register file,
as in Figure A.6. Use a pipeline timing chart like Figure A.6. Assume that the
branch is handled by flushing the pipeline. If all memory references take |
cycle, how many cycles does this loop take to execute?

b. [15] <A.2> Show the timing of this instruction sequence for the RISC pipe-
line with normal forwarding and bypassing hardware. Use a pipeline timing
chart like Figure A.6. Assume that the branch is handled by predicting it as
not taken. If all memory references take 1 cycle, how many cycles does this
loop take to execute?

¢ [15] <A.2> Assume the RISC pipeline with a single-cycle delayed branch and
normal forwarding and bypassing hardware. Schedule the instructions in the
loop including the branch delay slot. You may reorder instructions and mod-
ify the individual instruction operands, but do not undertake other loop trans-
formations that change the number or opcode of the instructions in the loop
(that’s for Chapter 4!). Show a pipeline timing diagram and compute the
number of cycles needed to execute the entire loop.

O A2 [15/15]1<A.2, A4, A5> Use the following code fragment:

Loop: L.D FO0,0(R2)

L.D F4,0(R3)

MUL.D FO,F0,F4 ~
ADD.D F2,F0,F2

DADDUI ~ R2,R2,#8

DADDUI ~ R3,R3,#8

DSUBU R5,R4,R2

BNEZ R5,Loop

M B - e R S

A-82 Appendix A Pipelining: Basic and Intermediate Concepts

Assume that the initial value of R;l is R2 + 792,

- For this exercise assume the standard five-stage integer pipeline and the MIPS FP
pipeline as described in Section A.5. If structural hazards are due to write-back
contention, assume the earliest instruction gets priority and other instructions are
stalled.

a. [15] <A.2, A4, A.5> Show the timing of this instruction sequence for the
MIPS FP pipeline without any forwarding or bypassing hardware but assum-
ing a regi&mdﬁndmmmmwSycle “forwards” through the
register file. Assume that the branch is handled by flushing the pipeline. If all
memory references hit in the cache, how many cycles does this loop take to
execute?

b. [15] <A.2, A4, A5> Show the timing of this instruction sequence for the
MIPS FP pipeline with normal forwarding and bypassing hardware. Assume
that the branch is handled by predicting it as not taken. If all memory refer-
ences hit in the cache, how many cycles does this loop take to execute?

@ A3 [15] <A.2> Suppose the branch frequencies (as percentages of all instructions)
are as follows: '

Conditional branches 15%
Jumps and calls 1%
Conditional branches 60% are taken

We are examining a four-deep pipeline where the branch is resolved at the end of
the second cycle for unconditional branches and at the end of the third cycle for
conditional branches. Assuming that only the first pipe stage can always be done
independent of whether the branch goes and ignoring other pipeline stalls, how
much faster would the machine be without any branch hazards?

@ A4 [15] <A.1, A.2> A reduced hardware implementation of the classic five-stage
RISC pipeline might use the EX stage hardware to perform a branch instruction
comparison and then not actually deliver the branch target PC to the IF stage until
the clock cycle in which the branch instruction reaches the MEM stage. Control
hazard stalls can be reduced by resolving branch instructions in ID, but improv-
ing performance in one respect may reduce performance in other circumstances.
How does determining branch outcome in the ID stage have the potential to
increase data hazard stall cycles?

A5 [12/13/20/20/15/15] <A.2, A.3> For these problems, we will explore a pipeline for
a register-memory architecture. The architecture has two instruction formats: a
register-register format and a register-memory format. There is a single-memory
addressing mode (offset + base register).

There is a set of ALU operations with format
ALUop Rdest, Rsrc;, Rsrc,

or
ALUop Rdest, Rsrc,, MEM

