
Intel®

Technology
Journal

Intel® Pentium® 4 Processor on 90nm Technology

Volume 08 Issue 01 Published, February 18, 2004 ISSN 1535-864X

The Microarchitecture of the
Intel® Pentium® 4 Processor

on 90nm Technology

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

The Microarchitecture of the Intel®
Pentium® 4 Processor on 90nm Technology

Darrell Boggs, Desktop Platforms Group, Intel Corporation
Aravindh Baktha, Desktop Platforms Group, Intel Corporation
Jason Hawkins, Desktop Platforms Group, Intel Corporation

Deborah T. Marr, Desktop Platforms Group, Intel Corporation
J. Alan Miller, Desktop Platforms Group, Intel Corporation

Patrice Roussel, Desktop Platforms Group, Intel Corporation
Ronak Singhal, Desktop Platforms Group, Intel Corporation

Bret Toll, Desktop Platforms Group, Intel Corporation
K.S. Venkatraman, Desktop Platforms Group, Intel Corporation

Index words: Pentium® 4 processor, Hyper-Threading Technology, microarchitecture

ABSTRACT
This paper describes the first Intel® Pentium® 4
processor manufactured on the 90nm process. We
briefly review the NetBurst microarchitecture and
discuss how this new implementation retains its key
characteristics, such as the execution trace cache and a
2x frequency execution core designed for high
throughput.

This Pentium 4 processor improves upon the
performance of prior implementations of the NetBurst
microarchitecture through larger caches, larger internal
buffers, improved algorithms, and new features. This
processor also implements Hyper-Threading
Technology, which is the ability to simultaneously run
multiple threads, allowing one physical processor to
appear as two independent logical processors. This
technology is another means of providing higher
performance to the end user. We discuss how this
processor not only maintains support for this key

technology but also increases the benefit seen due to
Hyper-Threading Technology.

We also describe 13 new SSE3 instructions that have
been added to the IA-32 instruction set and are
implemented for the first time on this processor. These
instructions can be used in multimedia algorithms, such
as motion estimation, and for complex arithmetic.
Additionally, two new instructions are added for
improving thread synchronization. To conclude,
performance data are presented that show the benefit of
this Pentium 4 processor over prior implementations on
key applications and benchmarks.

INTRODUCTION
The first Intel Pentium 4 processor manufactured on the
90nm manufacturing process contains 125 million
transistors with a die size of 112mm2. It builds upon the
NetBurst microarchitecture that forms the foundation of
prior Pentium 4 processors. Like its predecessors, this
processor is designed to provide the end user with new
levels of performance, enabling compute-intensive tasks
to be undertaken by conventional desktop processors.
One means of achieving this performance is by
designing the processor to run at a high frequency. The
frequency of a processor is a key component to
determining overall performance, as the frequency
determines the rate at which the processor can process
data. We have extended the original Pentium 4
processor pipeline to enable this processor to reach

® Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.
 NetBurst is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 1

Intel Technology Journal, Volume 8, Issue 1, 2004

higher frequencies than is possible with the original
pipeline. Additionally, as the frequency of the processor
continues to increase, the amount of time spent waiting
for data to be retrieved if they are not located in the
processor’s caches is becoming a larger and larger
percentage of overall execution time. This effect reduces
the performance impact of continually increasing the

processor frequency. To alleviate this problem, several
features are implemented to increase the number of
times that data will be present in the caches. With these
and other features, including a set of new instructions,
the Pentium 4 processor is able to achieve new heights
in performance.

Allocator / Register RenamerAllocator / Register Renamer

Memory Memory uop uop Queue Queue Integer/Floating Point Integer/Floating Point uop uop QueueQueue

FP Register / Bypass FP Register / Bypass

FPFP
MoveMove

Simple FP Simple FP Memory Scheduler Memory Scheduler Fast Fast Slow/General FP SchedulerSlow/General FP Scheduler

Integer Register File / Bypass NetworkInteger Register File / Bypass Network

ComplexComplex
Instr.Instr.

Slow ALUSlow ALU

Simple Simple
Instr. Instr.

2x ALU 2x ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

Load Load
Address Address

AGU AGU

Store Store
Address Address

AGU AGU

256 bits 256 bits

64-bits wide 64-bits wide

Bus
Interface

Unit

SystemSystem
Bus Bus

InstructionInstruction
TLB/TLB/ PrefetcherPrefetcher

Front-End BTB
4K Entries

Execution Trace Cache
(12K (12K µµ opsops))

Trace Cache BTB
2K Entries

MicrocodeMicrocode
ROMROM

µµopop Queue Queue

Quad
Pumped
6.4 GB/s

108GB/s

L2 Cache
(1M Byte

8-way)

L1 Data Cache (16Kbyte 8-way)

FP
MMX
SSE

SSE2
SSE3

Instruction Decoder

Figure 1: Block diagram of the Intel® Pentium® 4 processor

NETBURST® MICROARCHITECTURE
OVERVIEW
The NetBurst microarchitecture is the basis for the latest
version of the Intel Pentium 4 processor. Elements of
this microarchitecture include an Execution Trace
Cache, an out-of-order core, and a Rapid Execution
Engine [1]. This implementation also contains store-to-
load forwarding enhancements that were introduced in
previous implementations. Figure 1 depicts the block
diagram for the Pentium 4 processor.

Execution Trace Cache
The NetBurst microarchitecture has an advanced
instruction cache called an Execution Trace Cache. This
cache stores decoded instructions in the form of uops
rather than in the form of raw bytes such as are stored in
more conventional instruction caches. Once stored in the
trace cache, uops can be accessed repeatedly just like a
conventional instruction cache. Storing uops instead of
bytes allows the complicated instruction decoding logic
to be removed from the main execution loop.

In addition to removing the cumbersome decode logic
from the main execution loop, the Execution Trace

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 2

Intel Technology Journal, Volume 8, Issue 1, 2004

Cache takes the already decoded uops from the
instruction decoder and assembles or builds them into
program-ordered sequences of uops, called traces. It
packs the uops into groups of up to six uops per trace
cache line and these lines are combined to form traces.
These traces consist of uops from the sequentially
predicted path of the program execution. This allows the
target of a branch to be included in the same trace cache
line as the branch itself, even if the branch and its target
instruction are thousands of bytes apart in the program.
Thus, both the branch and its target instructions can be
delivered to the out-of-order core at the same time.
Conventional instruction caches typically provide
instructions up to and including a taken branch in a
given clock cycle but no instructions following the
branch. If the branch is the first instruction in a cache
line, only the single branch instruction is delivered that
clock cycle. Conventional instruction caches also often
add a clock delay getting to the target of the taken
branch due to delays getting through the branch
predictor and then accessing the new location in the
instruction cache. The trace cache avoids both of these
instruction delivery delays.

The trace cache is able to deliver up to three uops per
clock cycle to the out-of-order core. Most instructions in
a program are fetched and executed from the trace
cache. Only when there is a trace cache miss does the
machine fetch and decode instructions from the unified
second-level (L2) cache. The Execution Trace Cache on
the Pentium 4 processor can hold up to 12K uops and
has a hit rate similar to an 8 to 16 kilobyte conventional
instruction cache.

Out-of-Order Core
The Execution Trace Cache provides the out-of-order
core with a stream of uops to prepare for the Rapid
Execution Engine to consume. The main responsibility
of the out-of-order core is to extract parallelism from the
code stream, while preserving the correct execution
semantics of the program. It accomplishes this by
reordering the uops to execute them as quickly as
possible.

The out-of-order core will schedule for execution as
many ready uops as possible each clock cycle,
regardless of their original program order. By
considering a larger number of uops from the program,
the out-of-order core can usually find many independent
uops that are ready to execute. The maximum number
of uops that the out-of-order core can contain is 126, of
which 48 can be load operations and 32 can be store
operations.

At the heart of the out-of-order core are the uop
schedulers. The schedulers determine when a uop is

ready to execute by tracking its input register operands.
When the input operands have been produced, the uop is
considered to be ready to execute. The scheduler will
then schedule the uop to execute when the execution
resources required by the uop are available. Thus, uops
are allowed to schedule and execute in what is called
data-dependent order. In many code sequences, there are
independent streams of execution. The scheduler
identifies the streams of execution and allows these
streams to execute in parallel with each other, regardless
of their original program order.

There are five different schedulers connected to four
different dispatch ports. On two of these ports, up to two
uops can be dispatched each clock cycle. The fast
Arithmetic and Logic Unit (ALU) schedulers can
schedule on each half of a clock cycle, while the other
schedulers can only schedule once per clock cycle. One
fast ALU scheduler shares a dispatch port with the
floating-point/media move scheduler, while the other
fast ALU shares another dispatch port with the complex
integer/complex floating-point/media scheduler. These
schedulers arbitrate for a dispatch port when multiple
schedulers have uops ready to execute at the same time.
The remaining two dispatch ports allow one load and
one store address uop to be dispatched every cycle. The
collective dispatch bandwidth across all of the
schedulers is six uops per clock cycle. This is twice the
rate at which the out-of-order core can receive uops
from the Execution Trace Cache and allows higher
flexibility to issue ready uops on the different ports.

Rapid Execution Engine
The Rapid Execution Engine of the NetBurst
microarchitecture executes up to six uops per main
clock cycle. These uops are executed by several
execution units: two double-speed integer ALUs, a
complex integer unit, load and store Address Generation
Units (AGUs), a complex floating-point/media unit, and
a floating-point/media move unit. These highly tuned
and optimized execution units are designed for low
latency and high throughput.

The double-speed integer ALUs are able to execute at a
rate of two uops per clock cycle, providing for a very
high ALU throughput. Being able to execute these uops
at twice the rate of the main core clock enables
application performance to be increased relative to
running the ALUs at the main clock rate.

The NetBurst microarchitecture is also able to execute
one load and one store address uop every clock cycle
through the AGUs. The AGUs are very tightly coupled
to the low-latency first-level (L1) data cache. On this
processor, the cache is 16 kilobytes in size and is used
for both integer and floating-point/media loads and

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 3

Intel Technology Journal, Volume 8, Issue 1, 2004

stores. It is organized as an 8-way set associative write-
through cache containing 64-byte cache lines.

The low latency of the L1 cache is very hard to achieve.
This cache uses unique access algorithms to enable its
low latency. The algorithms leverage the fact that almost
all accesses hit the L1 data cache and the Data
Translation Lookaside Buffer (DTLB). Generally, the
schedulers assume that loads will hit the L1 data cache
and will schedule dependent uops before the parent load
has finished executing. Allowing these dependent uops
to dispatch prior to knowing if the load has hit the cache
is a form of data speculation. If the load misses the L1
data cache, the dependent uops will already be well into
their execution and will temporarily be bound to
incorrect data. Using a mechanism known as replay, the
processor tracks and re-executes instructions that
received incorrect data. Only the dependent operations
are replayed; all independent operations are allowed to
complete. Using this form of data speculation allows
more parallel execution streams to be extracted from the
program and increases the performance of the processor.

Floating-Point (x87), MMX, SSE (Streaming SIMD
Extension), SSE2 (Streaming SIMD Extension 2), and
the new SSE3 (Streaming SIMD Extension 3)
operations are executed by the two floating-point
execution blocks. One of the execution blocks is used
for simple operations, such as SSE register-to-register
moves and x87/MMX/SSE/SSE2 store data uops. The
other execution block is used for more complex
operations.

Store-to-Load Forwarding Enhancements
In all implementations of the NetBurst
microarchitecture, stores are written to the L1 data cache
in programmatic order and only after the store is
guaranteed to be non-speculative. This requires that all
operations older than the store must be completed before
the store’s data are committed to the cache. The
forwarding mechanism implemented enables a load
dependent on a store’s data to have its data “forwarded”
prior to the commitment of the store’s data into the L1
cache. Forwarding is accomplished by doing a partial
address match between the load and all older stores in
the Store Forwarding Buffer (SFB) in parallel with the
load’s L1 data cache access. If the load’s partial address
matches that of an older store in the SFB, then the load
gets its data from the SFB instead of the cache. The
forwarding mechanism is optimized for speed such that
it has the same latency as a cache lookup. To meet this

latency requirement, the SFB cannot afford to do a full
address and access size check. This function is
accomplished by the Memory Ordering Buffer (MOB)
later in the pipeline. The role of the MOB is to ensure
that the forwarded load got the correct data from the
most recent dependent store. In the event that the
forwarding from the SFB was incorrect, the load in
question must be re-executed after the dependent store
writes to the L1 cache. The load can then pick up its
data from the cache.

The latency from when a store has valid data to when
these data are written into the cache can be high because
of the deep pipeline of the NetBurst microarchitecture.
So in cases where a load must wait for a store to commit
its data for the load to complete, a significant reduction
in performance can occur. Most of these cases are rare
in real-world applications. However, there a few
instances where applications do see a performance loss:

• Forwarding disabled due to address misalignment.

• Wrong forwarding due to a partial address match.

Mechanisms have been implemented on recent
implementations of the Intel Pentium 4 processor to
improve the performance in the above cases.

Force forwarding is a mechanism that allows the MOB
to control the forwarding in the SFB. Figure 2 shows the
block diagram for this mechanism. Two new selection
points were added to the existing store-forwarding path.
The forwarding-entry-selection mux allows the MOB to
override the SFB’s partial address match-based entry
selection, while the data alignment mux allows for
misaligned data to be rotated, based on the shift
information provided by the MOB.

When a load first executes, the SFB detects a
dependency with older stores based on a partial address
match. When this load comes to the MOB to determine
its “true” dependencies, the MOB can either agree with
the SFB’s decision to forward or it can cause the load to
be re-executed. The load can be re-executed because the
SFB detected either an incorrect dependency or because
it failed to detect a dependency when a dependency did
exist. If the SFB’s dependency check is wrong, the
MOB can correct the forwarding logic when the load re-
executes by directing the SFB in one of two ways:
forward to the load from the right entry and rotate the
data as necessary or disable forwarding to the load if
there is no dependent store in the SFB.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 4

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 2: Force forwarding block diagram

The misaligned address cases that are fixed by the force
forwarding mechanism are shown in Figure 3. In the
figure, for each load at a given starting address, the data
access sizes for which force forwarding is supported are
listed. These cases can be categorized as follows:

• DWord/QWord Store forwarding to Byte/Word
loads whose data are fully contained in either the
lower or upper DWord.

• QWord Store forwarding to DWord Load to the
upper DWord of the Store.

For each of these cases, the MOB “forces” the SFB to
forward from a specific store by a given shift amount in
order to align the store’s data to the load.

Figure 3: Supported cases of misaligned forwarding

False forwarding occurs when the SFB detects a partial
address match between a load and a store, but their full
addresses do not match. The MOB detects the false
forward condition and determines if there exists another
store that the load should have forwarded from. If a
store exists that can be forwarded, then the MOB will
direct the SFB to forward from this store entry using the

force forwarding mechanism when the load re-executes.
If the MOB detects that there is no dependent store in
the forwarding buffer, then the MOB instructs the SFB
to not forward to this load. When the load is re-
executed, it can then pick up its data from the cache
instead. Memory Ordering

Buffer (MOB)

Alignment
Mux

Store Forwarding
Buffer
(SFB)

F
or

w
ar

di
ng

En
try

 M
ux

Forwarding entry
selection based
on partial virtual
address match

Shift Control

“Forced” forwarding entry

Load’s forwarded data

NEW MICROARCHITECTURAL
FEATURES AND ENHANCEMENTS
The 90nm Intel Pentium 4 processor improves
performance over prior processor implementations
through increasing the sizes of key resources, while also
improving existing algorithms and introducing new
microarchitectural features. These changes were made
throughout the various parts of the processor as detailed
below.

Front End
The instruction fetch and decode portions of this Intel
Pentium 4 processor remain largely unchanged from
previous implementations, but some performance
enhancements have been made.

The simple static branch prediction scheme that is used
when the Branch Target Buffer (BTB) has no prediction
for a conditional branch has been enhanced. At the time
the instruction decoder realizes that an instruction is a
branch that was not predicted by the BTB, a static
branch prediction is made. Making this prediction at
decode time allows for a faster restart, and therefore
better performance, rather than waiting for the normal
execution time detection of a mispredicted branch.

In prior Pentium 4 processor implementations, the static
prediction algorithm was to predict that a branch was
taken if the branch direction was backwards and to
predict that the branch was not taken if the branch jumps
forward. This helped by correctly predicting taken for
the first iteration of most loops. This works well for
backwards branches that are in loops, but not all
backwards branches are loop-ending branches.

We can try to ascertain the difference between loop-
ending branches and other backwards branches by
looking at the distance of the branch and the condition
on which the branch is dependent. Our studies showed
that a threshold exists for the distance between a
backwards branch and its target; if the distance of the
branch is larger than this threshold, the branch is
unlikely to be a loop-ending branch. If the BTB has no
prediction for a backwards branch, the Intel Pentium 4
processor will then predict taken for the branch only if
the branch distance is less than this threshold.

We also discovered that branches with certain
conditions were more often not taken, regardless of their

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 5

Intel Technology Journal, Volume 8, Issue 1, 2004

direction and distance. The conditions that they used are
not common loop-ending conditions, so for branches
with these conditions and no BTB prediction, the static
prediction algorithm predicts them as not taken.

Table 1: Comparison of mispredicted branches per
100 instructions

 130nm 90nm
164.gzip 1.03 1.01
175.vpr 1.32 1.21
176.gcc 0.85 0.70
181.mcf 1.35 1.22
186.crafty 0.72 0.69
197.parser 1.06 0.87
252.eon 0.44 0.39
253.perlbmk 0.62 0.28
254.gap 0.33 0.24
255.vortex 0.08 0.09
256.bzip2 1.19 1.12
300.twolf 1.32 1.23

In addition to these changes in the static prediction
algorithm, we also enhanced the dynamic branch
prediction algorithms to reduce the number of times that
a branch is mispredicted. Each time a branch is
mispredicted, the pipeline must be flushed. Thus, large
performance gains can be had by reducing the number
of branch mispredictions. To this end, one of the
dynamic branch predictor enhancements we made was
to add an indirect branch predictor. This was motivated
by results from the Intel Pentium M processor team,
who saw good performance improvements on some
applications [3]. Table 1 compares the number of branch
mispredictions per 100 instructions on the 90nm version
of the Intel Pentium 4 processor versus the 130nm
version of the processor on the components of
SPECint*_base2000. The data were collected using the
performance counters available on each processor, and
they show the reduction in mispredictions on almost all
components, due to the algorithmic enhancements.

Another performance enhancement was to expand the
set of instructions where the processor detects that
dependence chains can be broken. A common technique
to zero a register is to xor the register with itself, rather
than to move an immediate of 0 into the register. This
technique is preferred because of the smaller resulting
code size. The result is logically equivalent, but the xor
method adds a dependency on the previous contents of
the register. In an out-of-order machine, this extra
dependency can result in a performance loss. Previous
processor implementations recognized when the xor,
pxor, and sub instructions were used in this manner,
and they removed the dependency on the source register,
since the same answer is arrived at regardless of the
value of the sources. On this Intel Pentium 4 processor,
additional instructions that are used for the same
purpose are now detected. Among these are the SSE
instruction xorps and the SSE2 psub and xorpd
instructions.

We can also now encode more types of uops inside the
trace cache than could be encoded in prior processors. If
an instruction uses a uop that cannot be encoded in the
trace cache, then the uops for the entire instruction have
to be sequenced from the Microcode ROM. This
enhancement allows for higher average uop bandwidth
from the front end of the machine to the execution core
by removing transitions to the Microcode ROM. Indirect
calls with a register source operand and software
prefetch instructions are the best examples of
instructions that can now be encoded in the trace cache.

 Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

Execution Core
The execution core of the Intel Pentium 4 processor is
similar to previous implementations in that the two
integer ALUs run at 2x the frequency of the rest of the

* Other names and brands are the property of their
respective owners.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 6

Intel Technology Journal, Volume 8, Issue 1, 2004

processor, allowing for high throughput of common
arithmetic and logical operations. An enhancement we
implemented in this processor was to add a
shifter/rotator block to one of the ALUs. This block
allows the most common forms of shift and rotate
instructions to be executed on a fast ALU. On prior
Pentium 4 processor implementations, these operations
were executed as complex integer operations that took
multiple cycles to execute.

Another key operation whose latency has been reduced
on this processor is integer multiply. Previously, the
Intel Pentium 4 processor executed integer multiplies
using the floating-point multiplier. This introduced
latency by paying the cost of moving the source
operands to the floating-point side and then moving the
result back to the integer side. On this processor, we
added a dedicated integer multiplier to service these
operations.

On top of the changes to the execution units, we also
changed the L1 data cache. As with all implementations
of the NetBurst microarchitecture, the cache is designed
to minimize the load-to-use latency by using a partial
virtual address match to detect early in the pipeline
whether a load is likely to hit or miss in the cache. On
this processor, we significantly increased the size of the
partial address match from previous implementations,
thus reducing the number of false aliasing cases. More
importantly, we increased the size of the cache.
Previously, the L1 data cache was 8 kilobytes in size
and 4-way associative. Now the size of the cache has
been increased to 16 kilobytes by increasing the
associativity to 8-ways.

The schedulers in the NetBurst microarchitecture are
critical, as they must run at a high speed in order to
continually feed the high-speed execution core. The
schedulers in this implementation of the
microarchitecture remain largely the same, as the rate at
which they can feed the core is unchanged from prior
implementations. In all implementations, the schedulers
are capable of scheduling up to six uops per clock cycle.

Even though the rate of scheduling remains the same,
we made several enhancements to the schedulers to
improve performance on the implementation. The two
schedulers that are used to hold uops used in
x87/SSE/SSE2/SSE3 instructions were increased in size.
By increasing the size of these schedulers, the window
of opportunity to find parallelism in multimedia
algorithms is increased. And we increased the effective
size of the queues that feed all the schedulers, such that
more uops can now be buffered between the allocator
and the scheduler before the allocator has to stall. This
allows the allocation and renaming logic to continue to

look ahead in the instruction stream even when the
schedulers are full.

Additionally, we changed the mechanism used to
schedule load uops to improve performance. As on prior
implementations, store instructions are broken up into
two pieces: a store address and a store data uop. In the
previous implementations, loads were scheduled
asynchronously to store data uops. Thus, if a load
needed to receive forwarded data from a store, it was
possible that the load would execute before the store
data uop. If this occurred, the load would have to be re-
executed after the store data uop had finally executed.
Because of this, latency could be introduced because the
minimum latency between a store data uop and a
dependent load was not the common case latency for
loads that had been re-executed. On top of that penalty,
having to re-execute the load meant that precious load
bandwidth was being wasted on loads that executed
more than once. To alleviate both of these issues, we
added a simple predictor to the processor that marks
whether specific load uops are likely to receive
forwarded data, and, if so, from which store they are
likely to forward. Given this information, the load
scheduler now holds a load that is predicted to forward
in the scheduler until the store data uop that produces
the data it depends on is scheduled. In doing so, both of
these performance penalties are reduced significantly.

We also added a performance feature to enhance
applications that use the SSE/SSE2/SSE3 instructions.
On the x87 side, the Floating-Point Control Word
(FCW) is often modified as the programmer wants to
change the rounding mode and precision of the data that
are being worked with. To avoid serializing the
processor each time that the FCW is modified, a simple
prediction scheme was implemented on the NetBurst
microarchitecture to capture common renaming cases.
This same idea is now extended on this implementation
of the microarchitecture to also handle the MXCSR,
which is the corollary of the FCW for instructions that
use the SSE registers. On prior implementations,
changes to the MXCSR would serialize the machine. On
this processor, the common case modifications of
MXCSR will not incur a serialization.

Memory System
In the memory subsystem of the processor, we made a
number of changes to increase overall performance. The
changes made focus on trying to reduce the amount of
time spent waiting for data to be fetched from DRAM
and on increasing the size of critical resources so as to
limit the number of times the processor is forced to stall
because of a resource shortfall.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 7

Intel Technology Journal, Volume 8, Issue 1, 2004

One mechanism to reduce the amount of time spent
waiting for data to be returned from DRAM is to
increase the size of the caches. Previous
implementations of the Intel Pentium 4 processor
contained unified L2 caches of either 256 or 512
kilobytes. On the 90nm version of the Intel Pentium 4,
we implemented a 1MB L2 unified cache. Similar to the
previous implementations, the cache is a writeback 8-
way set associative cache and contains 128-byte lines.

A second way to reduce the time waiting for DRAM is
by using software prefetch instructions that are inserted
by the programmer to bring data into the cache before
the data are actually used. On all Pentium 4 processors,
software prefetch instructions bring in data from DRAM
into the L2 cache. These instructions opportunistically
look up the L2 cache and on a miss, initiate a data
prefetch cycle on the front-side bus. The data are filled
only to the L2 cache so as not to pollute the much
smaller L1 data cache.

On previous Pentium 4 processor implementations,
these operations were dropped on a DTLB miss. The
Pentium 4 processor adds a mechanism to allow the
software prefetch instructions to initiate page table
walks and allow data TLB fills if the prefetch access is
to a page currently not cached in the TLB. We added
special fault-handling logic to handle cases where page
faults were detected on the software prefetch
instructions. These instructions are dropped silently
without reporting the fault to the operating system, and
the prefetch operation is not performed. In effect, the
90nm version of the Pentium 4 processor allows
software prefetch instructions to not only prefetch data,
but also to prefetch page table entries into the DTLB. As
we previously mentioned, the cost of software prefetch
instructions has been greatly reduced on this processor,
as software prefetches can now be cached in the trace
cache; they used to have to be fetched from the
Microcode ROM.

A third mechanism used to reduce the time waiting for
DRAM is through a hardware prefetching scheme. The
hardware prefetcher looks for streams of data and tries
to predict what data will be needed next by the
processor and proactively tries to fetch these data. This
mechanism can be superior to software prefetching, as it
requires no effort from the programmer and can improve
performance on code that has no software prefetch
instructions. All Intel Pentium 4 processors contain a
hardware prefetcher that can prefetch both code and data
streams, where the data stream can be accessed by loads
and/or stores. This implementation of the processor
improves upon the previous implementations in its
ability to detect when to prefetch data and what data
needs to be prefetched. Figure 4 shows the effect of the

hardware prefetcher. We show the performance of this
processor with the hardware prefetcher enabled versus
the hardware prefetcher disabled on the most hardware
prefetcher-sensitive components in the
SPECint_base2000 and SPECfp∗_base2000
benchmarks1. These are the components that gain more
than 10% in performance by enabling the hardware
prefetcher.

Addressing resource constraints was the other means of
improving performance in the memory system. On
previous Intel Pentium 4 processors, only 24 stores
could be simultaneously outstanding in the processor.
This number has now been increased to 32.
Additionally, the number of write-combining buffers
that are used to track streams of stores was increased
from 6 to 8, which also alleviates pressure on the
number of stores that can be in the machine
simultaneously by allowing stores to be processed
faster. Finally, the number of unique outstanding loads
that have missed the L1 data cache and can be serviced
has been increased from 4 to 8.

1.16 1.18 1.21 1.26 1.29 1.30 1.32 1.40 1.45 1.49

1.97

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

25
4.g

ap

19
1.fm

a3
d

17
8.g

alg
el

18
7.fa

cer
ec

17
1.s

wim

168
.wupw

ise

17
3.a

pp
lu

189
.luc

as

181
.mcf

17
2.m

gri
d

183
.eq

uak
e

Re
la

tiv
e P

er
fo

rm
an

ce

HWP Disabled
HWP Enabled

Figure 4: Effect of the hardware prefetcher

HYPER-THREADING TECHNOLOGY
Hyper-Threading Technology was introduced on
previous implementations of the Intel Pentium 4
processor and is also present on many versions of this
latest processor. Hyper-Threading Technology allows
one physical processor to appear to the operating system
as two logical processors [2]. This allows two program
software threads, either related or unrelated, to execute

∗ Other names and brands are the property of their
respective owners.
1 Estimated performance through measurements on non-
production hardware.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 8

Intel Technology Journal, Volume 8, Issue 1, 2004

simultaneously throughout the processor. Prior to
Hyper-Threading Technology, only one thread could be
executed at a time on a processor, and each switch to a
different thread would incur a context-switching
overhead penalty.

In addition to these changes, this processor also contains
an enhancement for Hyper-Threading Technology
performance known as the context identifier that was
included in some prior processor implementations. With
Hyper-Threading Technology, the partial virtual address
indexing scheme used for the L1 cache creates conflicts
when each logical processor’s access pattern matches
the partial virtual tag even when accessing separate
regions of physical memory. For example, this situation
can occur if the stacks of the two threads are offset by a
fixed amount that is greater than the size of the partial
match, such that these two addresses, although different,
alias to the same partial tag. This causes contention in
the cache, leading to a reduced cache hit rate. In order to
reduce the likelihood of contention, a context identifier
bit is added to the partial virtual tag for each logical
processor. This bit is dynamically set or reset based on
the page-table structure initialization for each logical
processor and serves as an indication of data sharing
intent across logical processors.

Many of the changes mentioned previously were
motivated mainly by Hyper-Threading Technology
performance. For instance, increasing the number of
outstanding loads that miss the L1 data cache from 4 to
8 has very little performance impact on the majority of
single-threaded applications. This resource, however, is
more important when two threads are being executed.
Increasing the size of the resource that controls this
behavior provides for better threaded performance while
also slightly enhancing single-threaded performance.
Similarly, the size of the queue that sits between the
front end of the processor and the allocation/rename
logic was also increased in this processor
implementation. Again this change was motivated by the
need for increased performance when running multiple
threads, as the size increase provides minimal benefit
when only running a single thread.

For example, assume that two logical processors share
the same page directory base in physical memory. This
gives a strong indication that data are intended to be
shared between the logical processors. In such a case,
the additional context-identifier bit for each logical
processor is set to the same value, allowing for sharing
of the L1 data cache. Conversely, if the page-directory
bases are different, it is likely that both logical
processors are working on separate data regions. In such
a case, sharing of the L1 data cache is disallowed by
keeping the context-identifier bit different across logical
processors.

Other changes that were made in this processor
implementation to help support Hyper-Threading
Technology performance include additions to the type of
operations that can be conducted in parallel. For
instance, on previous implementations, the processor
could either work on a page table walk or on handling a
memory access that splits a cache line, but not on both
simultaneously. For single-thread performance, this
limitation was rarely seen as a bottleneck. However,
when running multiple threads, the effect of this
bottleneck becomes much more acute as the behavior of
one thread can have a significant negative impact on the
other thread. In this processor, this bottleneck has been
fixed such that a page table walk can occur at the same
time as a memory access that splits a cache line is being
handled. Similarly, on prior implementations, if a page
table walk missed all the caches and had to go to
DRAM, no new page table walks could be started. This
again was very rarely seen as a bottleneck for single-
threaded performance but was detrimental when running
multiple threads as one poorly behaving thread could
effectively stall both threads. Now, in this
implementation, a page table walk that misses all of the
caches and goes to DRAM does not block other page
table walks from being initiated.

There may be uncommon cases where logical processors
use different page directory bases but still share the
same physical memory region through page-table
aliasing. These arise when two different page table
entries across logical processors point to the same
physical page frame. The processor detects such cases
and implements a reservation mechanism to prevent
repetitive L1 cache access conflicts among different
logical processors.

SSE3 INSTRUCTIONS
The Intel Pentium 4 processor extends the IA-32 ISA
with a set of 13 new instructions. With the exception of
three (fisttp, monitor, mwait), these
instructions use the SSE registers. These new
instructions are designed to improve performance in the
following areas:

Changes were also made to some of the thread selection
points in this version of the Pentium 4 processor in order
to improve overall bandwidth. For example, the trace
cache now responds faster to stalling events in the core,
dedicating all of its resources to the thread that is not
stalled, thereby generating better overall performance.

• x87 to integer conversion (fisttp)

• Complex arithmetic (addsubps, addsubpd,
movsldup, movshdup, movddup)

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 9

Intel Technology Journal, Volume 8, Issue 1, 2004

Code without SSE3: • Video encoding (lddqu)
fstcw <old FCW>

• Graphics (haddps, hsubps, haddpd,
hsubpd)

movw ax, <old FCW>
or ax, 0xc00
movw <new FCW>, ax

• Thread synchronization (monitor, mwait) fldcw <new FCW>
fistp <INT>

Improved x87 Conversions to Integer fldcw <old FCW>
 Fisttp has been added to provide the ability of IA-32

to ignore the value of the Floating-Point Control Word
(FCW) when converting a value from x87 to an integer.
Currently on IA-32, a conversion to integer is done with
the convert-store instruction fistp. The rounding
mode used for the conversion is taken from the FCW. In
order to meet Fortran and C/C++’s specifications for
conversion to integer, the rounding mode has to be set to
chop, whereas the default rounding mode is usually set
to even to minimize rounding errors. Because fistp
gets its rounding mode from FCW, the user has to create
a new FCW that is equal to the default one, but with the
rounding mode changed to chop. Once FCW is changed,
fistp can be used to do the conversion. Finally, the
user has to restore the default value of FCW. The whole
operation involves changing FCW twice, and since
fldcw is a relatively slow instruction, it can degrade
the performance of an application. To alleviate this
problem, fisttp has been added. It is a new fistp
instruction that ignores FCW and always uses chop as
its rounding mode.

Code with SSE3:
fisttp <INT>

Complex Arithmetic
Complex arithmetic usage is ubiquitous, as it is used in
Discrete/Fast Fourier Transform (DFT/FFT), Discrete
Multi Tone (DMT) modulators, frequency domain
filtering, etc. A typical example of the importance of
complex arithmetic in a multimedia context is given by
the implementation of an Acoustic Echo Canceller
(AEC). In an AEC, a long Finite Impulse Response
(FIR) filter is used to model the inverse of the acoustic
channel. It is not uncommon for this filter to have 1024
or more taps. The operation done by a FIR filter is
called a convolution, and its execution time is O(n2).
With filters of such large length, and with the quadratic
cost of a convolution, the operation of filtering in the
time domain can be prohibitive, to the point of not
meeting, for example, a real-time constraint. By moving
from the time domain to the frequency domain, the
execution time can be significantly reduced. Because the
execution time of a DFT is also O(n2), moving to the
frequency domain does not appear to have saved
anything. But DFT has fast implementations with
execution time O(nlogn). Such fast implementations of
DFT are collectively called FFT. In the frequency
domain, a convolution (O(n2)) is simply a point-product
(O(n)). For a filter with fixed coefficients, the n-element
input array can be transformed into the frequency
domain in O(nlogn) operations; the point-multiplication
(with the frequency domain transformed set of
coefficients) takes O(n) operations; the conversion of
the result back to the time domain (using an inverse
FFT) takes also O(nlogn) operations. For large n, the
complexity behaves as O(nlogn), significantly faster
than O(n2).

As shown below, the benefit of fisttp is two-fold:
fewer instructions are needed and there is no need to
modify FCW. The instruction is available in three
precisions: Word (16-bit), DWord (32-bit), and QWord
(64-bit).

Three benchmarks out of SPEC* CPU2000* make heavy
use of complex arithmetic: 168.wupwise (BLAS3
ZGEMM – complex matrix multiply), 189.lucas
(FFT_SQUARE – a FFT-based function to square large
integer numbers), and 187.facerec (FFT).

Five instructions have been added to significantly
accelerate complex arithmetic. Two instructions
(addsubps and addsubpd) perform a mix of
floating-point addition and subtraction, hence removing
the need for changing the sign of some operands. The

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 10

Intel Technology Journal, Volume 8, Issue 1, 2004

three others (movsldup, movshdup, movddup), in
their memory version, combine loads with some level of
duplication, hence saving the need for a shuffle
instruction on the loaded data.

Code without SSE3:
movapd xmm0, <mem_X>
movapd xmm1, <mem_Y>
movapd xmm2, <mem_Y>
unpcklpd xmm1, xmm1
unpckhpd xmm2, xmm2
mulpd xmm1, xmm0
mulpd xmm2, xmm0
xorpd xmm2, xmm7
shufpd xmm2, xmm2, 0x1
addpd xmm2, xmm1
movapd <mem_Z>, xmm2

Code with SSE3:
movapd xmm0, <mem_X>
movddup xmm1, <mem_Y>
movddup xmm2, <mem_Y+8>
mulpd xmm1, xmm0
mulpd xmm2, xmm0

 shufpd xmm2, xmm2, 0x1
addsubpd xmm2, xmm1

movapd <mem_Z>, xmm2

The code sequence above shows how to implement a
double-precision complex multiplication using SSE2
only or with the new SSE3 instructions, where mem_X
contains one complex operand and mem_Y the other;
mem_Z is used to store the complex result; and xmm7 is
a constant used to change the sign of one data element.
Since the main speed limiter of this code is the number
of execution uops (7 for SSE2, 4 for SSE3), the new
instructions can improve complex multiplications by up
to 75%. On SPEC CPU2000, the compiler is able to use
SSE3 to improve 168.wupwise by 10-15%.

Video Encoding
The most compute-intensive part of a video encoder is
usually Motion Estimation (ME) where blocks from the
current frame are checked against blocks from the
previous frame to find the best match. Many metrics can
be used to define the best match. The most common is
the L1 metric: the sum of absolute differences. Due to
the nature of ME, loads of the blocks from the previous
frame are unaligned whereas loads of the blocks from
the current frame are aligned. Unaligned loads suffer
two penalties:

• cost of handling the unaligned access

• impact of the cache line splits

The NetBurst microarchitecture does not support a uop
to load 128-bit unaligned data. For that reason, 128-bit

unaligned load instructions, such as movups and
movdqu, are emulated with microcode, using two 64-
bit loads whose results are merged to form the 128-bit
result. In addition to the cost of the emulation, unaligned
loads are penalized by the cost of handling cache line
splits if the access crosses a 64-byte boundary.

SSE3 adds lddqu to solve the cache line split problem
on 128-bit unaligned loads. The instruction works by
loading a 32-byte block aligned on a 16-byte boundary,
extracting the 16 bytes corresponding to the unaligned
access. Because the instruction loads more bytes than
requested, some usage restrictions apply. Lddqu should
be avoided on Uncached (UC) and Write-Combining
(USWC) memory regions. Also, by its implementation,
lddqu should be avoided in situations where store-load
forwarding is expected. In load-only situations, and with
memory regions that are not UC or USWC, lddqu can
advantageously replace movdqu/movups/movupd.

The code below shows an example of using the new
instruction. Both code sequences are similar except that
the load unaligned (movdqu) is replaced by the new
unaligned load (lddqu). With the assumption that 25%
of the unaligned loads are across a cache line, the new
instruction can improve the performance of ME by up to
30%. MPEG∗ 4 encoders have demonstrated speedups
greater than 10%.

Motion Estimator without SSE3:
movdqa xmm0, <current>
movdqu xmm1, <previous>
psadbw xmm0, xmm1
paddw xmm2, xmm0

Motion Estimator with SSE3:
movdqa xmm0, <current>
lddqu xmm1, <previous>
psadbw xmm0, xmm1
paddw xmm2, xmm0

Graphics
Most (graphics) vertex databases are organized as an
array of structures (AOS), where each vertex structure
contains data fields such as the following:

• x, y, z, w: coordinates of the vertex

• nx, ny, nz, nw: coordinates of the normal at the vertex

• r, g, b, a: colors at the vertex

• u0, v0: 1st set of 2D texture coordinates

• u1, v1: 2nd set of 2D texture coordinates

∗ Other names and brands are the property of their
respective owners.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 11

Intel Technology Journal, Volume 8, Issue 1, 2004

Thread Synchronization By its very nature, SSE does not deliver optimal results
when operating on vertex databases organized as an
AOS. SSE is much better at handling vertex databases
organized as a structure of arrays (SOA), where the first
array contains the x of all the vertices; the second array,
the y of all the vertices; etc. Because AOS is the favored
way vertex databases are organized, in order to use SSE,
the data have to be loaded and reorganized using shuffle
instructions.

Monitor and mwait instructions provide a solution to
address Hyper-Threading Technology performance of
the operating system idle loop and other spin-wait loops
in operating systems and device drivers. Software can
use the monitor and mwait instructions to hint that a
thread is not doing useful work (e.g., spinning and
waiting for work). The processor may then go into a
low-power and performance-optimized state. Monitor
and mwait provide a way for software to wake up the
processor from this low-power/performance-optimized
state via a store to a specified memory location (e.g., a
store to the work queue).

The most common operation performed in a vertex
shader is the scalar product, where 3 (or 4) pairs of
single-precision data elements are multiplied and the 3
(or 4) results summed. Due to the AOS organization of
the vertex database, evaluating the scalar product can be
challenging with SSE because of the lack of horizontal
instructions. We have added horizontal floating-point
addition/subtraction instructions to speed up the
evaluation of scalar products.

Monitor sets up hardware to detect stores to an
address range, generally a cache line. The monitor
instruction relies on a state in the processor called the
monitor event pending flag. The monitor event pending
flag is either set or clear and its value is not
architecturally visible except through the behavior of the
mwait instruction. The monitor event pending flag is
set by multiple events including a write to the address
range being monitored and reset by the monitor
instruction.

The code sequence below illustrates how a scalar
product of four single-precision pairs of elements can be
evaluated with and without the new instructions:

Code without SSE3:
mulps xmm0, xmm1
movaps xmm1, xmm0
shufps xmm0, xmm1, 0xb1
addps xmm0, xmm1

The monitor instruction sets up the address monitoring
hardware using the address specified in EAX and resets
the monitor event pending flag. A store to the address
range will set the monitor event pending flag. Other
events will also set the monitor event pending flag,
including interrupts or any event that may change the
page tables. The content of ECX and EDX are used to
communicate other information to the monitor
instruction.

movaps xmm1, xmm0
shufps xmm0, xmm0, 0x0a
addps xmm0, xmm1

Code with SSE3:

mulps xmm0, xmm1
haddps xmm0, xmm0
haddps xmm0, xmm0 Mwait puts the processor into the special low-

power/optimized state until a store, to any byte in the
address range being monitored, is detected, or if there is
an interrupt, exception, or fault that needs to be handled.
There may also be other time-outs or implementation-
dependent conditions that may cause the processor to
exit the optimized state. The mwait instruction is
architecturally identical to a nop instruction. It is
effectively a hint to the processor to indicate that the
processor may choose to enter an implementation-
dependent optimized state while waiting for an event or
for a store to the address range set up by the preceding
monitor instruction in program flow. For example, a
Hyper-Threading Technology-capable processor may
enter a state that allows the other thread to execute
faster, or it may enter a state that allows for lower power
consumption, or both.

The monitor and mwait instructions must be coded
in the same loop because execution of the mwait
instruction will clear the monitor address range. It is not

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 12

Intel Technology Journal, Volume 8, Issue 1, 2004

possible to execute monitor once and then execute
mwait in a loop. Setting up monitor without
executing mwait has no adverse effects.

Typically the monitor/mwait pair is used in a sequence
like this:

EAX = Logical Address(Trigger)
ECX = EDX = 0 // Hints
While (!trigger_store_happened) {
 MONITOR EAX, ECX, EDX
 If (!trigger_store_happened) {
 MWAIT EAX, ECX
 }
}
The above code sequence makes sure that a triggering
store does not happen between the first check of the

trigger and the execution of the monitor instruction.
Without the second check that triggering store would go
un-noticed.

It is expected that operating systems will use the
monitor and mwait instructions to significantly
improve the performance of idle loop handling and
allow the system to provide higher performance at lower
power consumption.

PERFORMANCE
Given all of these changes in the 90nm version of the
Intel Pentium 4 processor, the real question is how much
performance benefit will be realized on applications
from making these changes.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 13

Intel Technology Journal, Volume 8, Issue 1, 2004

Table 2: Detailed system configuration for results shown in Figure 5

Processor Pre-production Intel® Pentium® 4 processor 3.40 GHz supporting Hyper-
Threading Technology

Pre-production Intel® Pentium® 4 processor 3.40E
GHz supporting Hyper-Threading Technology

Motherboard Intel Desktop Board D875PBZ AA-204 Intel Desktop Board

Motherboard
BIOS BZ87510A.86A.0041.P09 Pre-production BIOS

Cache 512KB full-speed Advanced Transfer Cache 1MB full-speed Advanced Transfer Cache

Memory Size 1 GB (2x512MB) PC3200 DDR400 (Samsung* PC3200U-30331-B2
M368L6423ETM-CCC CL3 Double-Sided DDR400 memory)

1 GB (2x512MB) PC3200 DDR400 (Samsung*
PC3200U-30331-B2 M368L6423ETM-CCC CL3
Double-Sided DDR400 memory)

Hard Disk Seagate* ST3160023AS 160 GB Serial ATA (SATA) (7200 RPM, 8MB
cache)

Seagate* ST3160023AS 160 GB Serial ATA (SATA)
(7200 RPM, 8MB cache)

Hard Disk
Driver Intel Application Accelerator RAID Edition 3.5 with RAID ready Intel Application Accelerator RAID Edition 3.5 with

RAID ready

Video
Controller/Bus ATI* Radeon* 9800 Pro 8x AGP ATI* Radeon* 9800 Pro 8x AGP

Video
Memory 128 MB DDRAM 128 MB DDRAM

Operating
System

Microsoft* Windows* XP Professional, Build 2600, Service pack 1 on NTFS
Default Microsoft DirectX* 9.0b

Microsoft* Windows* XP Professional, Build 2600,
Service pack 1 on NTFS
Default Microsoft DirectX* 9.0b

Video Driver
Revision ATI Catalyst* 3.5 Driver Suite: display driver version: 6.14.10.6360 ATI Catalyst* 3.5 Driver Suite: display driver version:

6.14.10.6360

Graphics 1024x768 resolution, 32-bit color 1024x768 resolution, 32-bit color

SPEC*
CINT2000

Intel C++ Compiler Plug-in V8.0
Microsoft Visual Studio* .NET V7.0 (for libraries)

Intel C++ Compiler Plug-in V8.0
Microsoft Visual Studio* .NET V7.0 (for libraries)

SPEC*
CFP2000

Intel C++ Compiler Plug-in V8.0 and Intel FORTRAN Compiler Plug-in V8.0
Microsoft Visual Studio .NET V7.0 (for libraries)

Intel C++ Compiler Plug-in V8.0 and Intel FORTRAN
Compiler Plug-in V8.0
Microsoft Visual Studio .NET V7.0 (for libraries)

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 14

Intel Technology Journal, Volume 8, Issue 1, 2004

Table 3: Detailed system configuration for results in Figure 6

Processor Pre-production Intel® Pentium® 4 processor 3.40E GHz
supporting Hyper-Threading Technology

Motherboard Intel Desktop Board

Motherboard BIOS Pre-production BIOS

Cache 1MB full-speed Advanced Transfer Cache

Memory Size 512MB (4x128MB) Samsung PC3200U-30330-C3 M368L1624DTM-
CCC 128MB DDR PC3200 CL3 Single-Sided DDR400 memory

Hard Disk IBM 120GXP 80 GB IC35L080AVVA07-0 ATA-100

Hard Disk Driver MS default UDMA-5

Video Controller/Bus ATI Radeon 9700 Pro AGP graphcis

Video Memory 128 MB DDRAM

Operating System Microsoft* Windows* XP Professional, Build 2600, Service pack 1 on
NTFS Default Microsoft DirectX* 9.0b

Video Driver Revision ATI CATALYST 6.13.10.6166 driver

Graphics 1024x768 resolution, 32-bit color

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 15

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 5: Performance comparison (estimated
SPEC* CPU2000* performance as measured on pre-

production hardware)

Figure 5 compares the performance of this new
processor with the performance of the 130nm version of
the Intel Pentium 4 processor with a 512kb L2 cache on
SPEC CPU2000, as estimated on pre-production
hardware. Detailed system configuration information is
shown in Table 2. As can be seen here, the performance
enhancements that have been described in this paper do
have a noticeable effect on overall performance.

Figure 6: Performance benefit of Hyper-Threading
Technology

Hyper-Threading Technology on this processor also
shows significant benefits on popular consumer
applications and for various multi-tasking scenarios.
Figure 6 compares the performance on some of these
applications and scenarios when Hyper-Threading
Technology is enabled and disabled on this processor.

Table 3 lists the detailed system configuration for these
results.

CONCLUSION
The NetBurst microarchitecture that was introduced
with the Intel Pentium 4 processor brought

unprecedented levels of performance to the end user
through its unique features such as the Execution Trace
Cache and an execution core that ran at 2x the core
frequency. Now, we are building upon the strength of
those previous processors with the new Intel Pentium 4
processor manufactured on the 90nm process. With
these new performance features and enhancements, the
performance of desktop processors continues to reach
new heights. With capabilities like Hyper-Threading
Technology and a set of new instructions, building
blocks are being provided for software to be created to
take advantage of this power and deliver to users a new
level of functionality on their desktop.

1.07
1.14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

SPECint*_base2000 SPECfp*_base2000

R
el

at
iv

e
Pe

rf
or

m
an

ce

Intel Pentium® 4 Processor with HT Technology 3.40 GHz

Intel Pentium® 4 Processor with HT Technology 3.40E GHz

ACKNOWLEDGMENTS
The authors thank all of the architects, designers, and
validators around the world who collaborated in the
creation of this product.

REFERENCES
[1].

[2].

Hinton, G.; Sager, D.; Upton, M.; Boggs, D.;
Carmean, D.; Kyker, A.; Roussel, P., “The
Microarchitecture of the Pentium® 4 Processor,”
Intel Technology Journal Q1, 2001.

Marr, D.; Binns, F.; Hill, D.; Hinton, G.; Koufaty,
D.; Miller, J.; Upton, M., “Hyper-Threading
Technology Architecture and Microarchitecture: A
Hypertext History,” Intel Technology Journal, Q1,
2002.
http://developer.intel.com/technology/itj/2002/volu
me06issue01/

1.201.19 1.26 1.30
1.13

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

MainConcept*
1.3.1

Windows*
Media Encoder

9.0

Cinema* 4D Adobe*
Photoshop*

7.01

Magix* MP3
2004 Diamond

Re
la

tiv
e

Pe
rfo

rm
an

ce

HT Technology Disabled HT Technology Enabled

[3]. Gochman, S.; Ronen, R.; Anati, I.; Berkovits, A.;
Kurts, T.; Naveh, A.; Saeed, A.; Sperber, Z.; and
Valentine, R., “The Intel® Pentium® M Processor:
Microarchitecture and Performance,” Intel
Technology Journal, Q2, 2003.
http://developer.intel.com/technology/itj/2003/volu
me07issue02/

AUTHORS’ BIOGRAPHIES
Darrell Boggs is a senior principal engineer/architect
with Intel Corporation and has been working as a
microarchitect for 12 years. He graduated from Brigham
Young University with a M.S. degree in Electrical
Engineering. Darrell played a key role on the Intel®

Pentium Pro processor design, and was one of the key

 Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 16

http://www.intel.com/technology/itj/2002/volume06issue01/
http://www.intel.com/technology/itj/2002/volume06issue01/
http://developer.intel.com/technology/itj/2003/volume07issue02/
http://developer.intel.com/technology/itj/2003/volume07issue02/

Intel Technology Journal, Volume 8, Issue 1, 2004

architects of the Pentium 4 processor. Darrell holds
many patents in the areas of register renaming;
instruction decoding; events and state recovery
mechanisms; speculative architectures; and Hyper-
Threading Technology. His e-mail address is
darrell.boggs at intel.com.

Aravindh Baktha has been with Intel for 12 years. He
worked on the design and microarchitecture of the
Pentium 4 processor. Prior to joining the Pentium 4
processor team, Aravindh worked on the design of the
80960HA processor in Arizona and the Itanium
processor in California. Aravindh received his
undergraduate degree from the University of Zambia
and his M.S. degree in Electrical and Computer
Engineering from Illinois Institute of Technology. His e-
mail address is aravindh.baktha at intel.com

Jason M. Hawkins received his B.S. degree in
Electrical and Computer Engineering from Brigham
Young University. He joined Intel in 1997 and has
focused on validation and microarchitecture of the
Pentium 4 family of processors. His e-mail address is
jason.hawkins at intel.com.

Deborah T. Marr is the CPU architect responsible for
Hyper-Threading Technology in the Desktop Products
Group. Deborah has been at Intel for over thirteen years.
She first joined Intel in 1988 and made significant
contributions to the Intel 386SX processor, the Pentium
Pro processor, and the Pentium 4 processor. Her
interests are in high-performance microarchitecture and
performance analysis. Deborah received her B.S. degree
in EECS from the University of California at Berkeley
in 1988 and her M.S. degree in ECE from Cornell
University in 1992. Her e-mail address is debbie.marr at
intel.com.

John (Alan) Miller has worked at Intel for over seven
years. During that time, he has worked on design and
architecture for the Pentium 4 processor. Alan obtained
his M.S. degree in Electrical and Computer Engineering
from Carnegie Mellon University. His e-mail address is
alan.miller at intel.com.

Patrice Roussel graduated from the University of
Rennes in 1980 and L’Ecole Supérieure d’Electricité in
1982 with a M.S. degree in signal processing and VLSI
design. Upon graduation, he worked at Cimatel, an
Intel/Matra Harris joint design center. He moved to the
USA in 1988 to join Intel in Arizona and worked on the

960CA microprocessor. In late 1991, he moved to Intel
in Oregon to work on the Pentium Pro processor. Since
1995, he has been the floating-point architect of the
Pentium 4 processor. His e-mail address is
patrice.roussel at intel.com.

 Itanium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

Ronak Singhal received his B.S. and M.S. degrees in
Electrical and Computer Engineering from Carnegie
Mellon University. He subsequently joined Intel in 1997
and has spent the majority of his time focused on
microarchitecture performance analysis and verification
for the Pentium 4 processors. His e-mail address is
ronak.singhal at intel.com.

Bret Toll received his B.S. degree in Electrical
Engineering from Portland State University and M.S.
degree in Computer Science and Engineering from
Oregon Graduate Institute. He joined Intel in 1993 and
has focused on microcode, machine check architecture,
and instruction decode microarchitecture for the
Pentium 4 processor. In his spare time he likes to tinker
with cars and is currently building a 1965 Ford roadster
from a kit of components and hand-picked items from
junkyards. His e-mail address is bret.toll at intel.com.

K. S. Venkatraman received his B.S. degree from Birla
Institute of Technology and M.S. degree from Villanova
University. He joined Intel in 1997 and has focused on
microarchitecture as well as post-silicon performance
analysis for the Pentium 4 processor. In his spare time,
he enjoys amateur radio and riding his motorcycle. His
e-mail address is k.s.venkatraman at intel.com.

Copyright © Intel Corporation 2004. This publication
was downloaded from http://developer.intel.com

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 17

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 18

Copyright © 2004 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	1_Microarchitecture Web2QAr1 - Marian12forprogramming.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Foreword webQAforprogramming.pdf
	Foreword

	blank_page.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_Compilers Final11ForProg_REV.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	2_extra.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_Performance Validation FinalQAr1for prog_REV.pdf
	INTRODUCTION
	PRE-SILICON PERFORMANCE VALIDATION
	Tracing and Workload Collection
	Performance Simulator Development
	RTL Correlation

	PERFORMANCE PROJECTION METHODOLOGY
	POST-SILICON PERFORMANCE VALIDATION
	First Boot and Bring-up Activities
	Performance Parameter Characterization
	Life Cycle of a Performance Sighting
	Interaction with Other Teams
	Tools Used for Post-Silicon Performance Analysis
	The EMON Performance Monitoring Tool
	The Intel VTune™ Performance Analyzer

	Optimal CPU Performance Feature Tuning

	��
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_LVS Technology Final1ForProg_REV.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	5_Library Architecture Challenges Final2ForProg.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	5_extra.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full Hold Scan Systems WebForProg.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Foreword_Renumbered.pdf
	Foreword

	1_Microarchitecture_Renumbered.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_Compilers_Renumbered.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_Performance_Validation_Renumbered.pdf
	INTRODUCTION
	PRE-SILICON PERFORMANCE VALIDATION
	Tracing and Workload Collection
	Performance Simulator Development
	RTL Correlation

	PERFORMANCE PROJECTION METHODOLOGY
	POST-SILICON PERFORMANCE VALIDATION
	First Boot and Bring-up Activities
	Performance Parameter Characterization
	Life Cycle of a Performance Sighting
	Interaction with Other Teams
	Tools Used for Post-Silicon Performance Analysis
	The EMON Performance Monitoring Tool
	The Intel VTune™ Performance Analyzer

	Optimal CPU Performance Feature Tuning

	��
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_LVS_Technology_Renumbered.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol8_art05.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	5_extra.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full_Hold_Scan_Renumbered.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Untitled
	Untitled
	 55 55
	6_Full_Hold_Scan_Renumbered.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full Hold Scan Systems WebForProg.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol8_art01_cover.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

