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ABSTRACT 
This paper describes the first Intel® Pentium® 4 
processor manufactured on the 90nm process. We 
briefly review the NetBurst microarchitecture and 
discuss how this new implementation retains its key 
characteristics, such as the execution trace cache and a 
2x frequency execution core designed for high 
throughput.  

This Pentium 4 processor improves upon the 
performance of prior implementations of the NetBurst 
microarchitecture through larger caches, larger internal 
buffers, improved algorithms, and new features. This 
processor also implements Hyper-Threading 
Technology, which is the ability to simultaneously run 
multiple threads, allowing one physical processor to 
appear as two independent logical processors. This 
technology is another means of providing higher 
performance to the end user. We discuss how this 
processor not only maintains support for this key 

technology but also increases the benefit seen due to 
Hyper-Threading Technology. 

We also describe 13 new SSE3 instructions that have 
been added to the IA-32 instruction set and are 
implemented for the first time on this processor. These 
instructions can be used in multimedia algorithms, such 
as motion estimation, and for complex arithmetic. 
Additionally, two new instructions are added for 
improving thread synchronization. To conclude, 
performance data are presented that show the benefit of 
this Pentium 4 processor over prior implementations on 
key applications and benchmarks. 

INTRODUCTION 
The first Intel Pentium 4 processor manufactured on the 
90nm manufacturing process contains 125 million 
transistors with a die size of 112mm2. It builds upon the 
NetBurst microarchitecture that forms the foundation of 
prior Pentium 4 processors. Like its predecessors, this 
processor is designed to provide the end user with new 
levels of performance, enabling compute-intensive tasks 
to be undertaken by conventional desktop processors. 
One means of achieving this performance is by 
designing the processor to run at a high frequency. The 
frequency of a processor is a key component to 
determining overall performance, as the frequency 
determines the rate at which the processor can process 
data. We have extended the original Pentium 4 
processor pipeline to enable this processor to reach 

                                                           
® Intel and Pentium are registered trademarks of Intel 
Corporation or its subsidiaries in the United States and 
other countries. 
 NetBurst is a registered trademark of Intel Corporation 
or its subsidiaries in the United States and other 
countries. 
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higher frequencies than is possible with the original 
pipeline. Additionally, as the frequency of the processor 
continues to increase, the amount of time spent waiting 
for data to be retrieved if they are not located in the 
processor’s caches is becoming a larger and larger 
percentage of overall execution time. This effect reduces 
the performance impact of continually increasing the 

processor frequency. To alleviate this problem, several 
features are implemented to increase the number of 
times that data will be present in the caches. With these 
and other features, including a set of new instructions, 
the Pentium 4 processor is able to achieve new heights 
in performance. 
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Figure 1: Block diagram of the Intel® Pentium® 4 processor 

 

NETBURST® MICROARCHITECTURE 
OVERVIEW  
The NetBurst microarchitecture is the basis for the latest 
version of the Intel Pentium 4 processor. Elements of 
this microarchitecture include an Execution Trace 
Cache, an out-of-order core, and a Rapid Execution 
Engine [1]. This implementation also contains store-to-
load forwarding enhancements that were introduced in 
previous implementations. Figure 1 depicts the block 
diagram for the Pentium 4 processor. 

Execution Trace Cache 
The NetBurst microarchitecture has an advanced 
instruction cache called an Execution Trace Cache.  This 
cache stores decoded instructions in the form of uops 
rather than in the form of raw bytes such as are stored in 
more conventional instruction caches. Once stored in the 
trace cache, uops can be accessed repeatedly just like a 
conventional instruction cache.  Storing uops instead of 
bytes allows the complicated instruction decoding logic 
to be removed from the main execution loop.   

In addition to removing the cumbersome decode logic 
from the main execution loop, the Execution Trace 
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Cache takes the already decoded uops from the 
instruction decoder and assembles or builds them into 
program-ordered sequences of uops, called traces. It 
packs the uops into groups of up to six uops per trace 
cache line and these lines are combined to form traces. 
These traces consist of uops from the sequentially 
predicted path of the program execution. This allows the 
target of a branch to be included in the same trace cache 
line as the branch itself, even if the branch and its target 
instruction are thousands of bytes apart in the program. 
Thus, both the branch and its target instructions can be 
delivered to the out-of-order core at the same time. 
Conventional instruction caches typically provide 
instructions up to and including a taken branch in a 
given clock cycle but no instructions following the 
branch. If the branch is the first instruction in a cache 
line, only the single branch instruction is delivered that 
clock cycle. Conventional instruction caches also often 
add a clock delay getting to the target of the taken 
branch due to delays getting through the branch 
predictor and then accessing the new location in the 
instruction cache. The trace cache avoids both of these 
instruction delivery delays. 

The trace cache is able to deliver up to three uops per 
clock cycle to the out-of-order core. Most instructions in 
a program are fetched and executed from the trace 
cache.  Only when there is a trace cache miss does the 
machine fetch and decode instructions from the unified 
second-level (L2) cache. The Execution Trace Cache on 
the Pentium 4 processor can hold up to 12K uops and 
has a hit rate similar to an 8 to 16 kilobyte conventional 
instruction cache. 

Out-of-Order Core 
The Execution Trace Cache provides the out-of-order 
core with a stream of uops to prepare for the Rapid 
Execution Engine to consume. The main responsibility 
of the out-of-order core is to extract parallelism from the 
code stream, while preserving the correct execution 
semantics of the program. It accomplishes this by 
reordering the uops to execute them as quickly as 
possible.   

The out-of-order core will schedule for execution as 
many ready uops as possible each clock cycle, 
regardless of their original program order. By 
considering a larger number of uops from the program, 
the out-of-order core can usually find many independent 
uops that are ready to execute.  The maximum number 
of uops that the out-of-order core can contain is 126, of 
which 48 can be load operations and 32 can be store 
operations. 

At the heart of the out-of-order core are the uop 
schedulers. The schedulers determine when a uop is 

ready to execute by tracking its input register operands. 
When the input operands have been produced, the uop is 
considered to be ready to execute. The scheduler will 
then schedule the uop to execute when the execution 
resources required by the uop are available. Thus, uops 
are allowed to schedule and execute in what is called 
data-dependent order. In many code sequences, there are 
independent streams of execution. The scheduler 
identifies the streams of execution and allows these 
streams to execute in parallel with each other, regardless 
of their original program order.  

There are five different schedulers connected to four 
different dispatch ports. On two of these ports, up to two 
uops can be dispatched each clock cycle. The fast 
Arithmetic and Logic Unit (ALU) schedulers can 
schedule on each half of a clock cycle, while the other 
schedulers can only schedule once per clock cycle. One 
fast ALU scheduler shares a dispatch port with the 
floating-point/media move scheduler, while the other 
fast ALU shares another dispatch port with the complex 
integer/complex floating-point/media scheduler. These 
schedulers arbitrate for a dispatch port when multiple 
schedulers have uops ready to execute at the same time. 
The remaining two dispatch ports allow one load and 
one store address uop to be dispatched every cycle. The 
collective dispatch bandwidth across all of the 
schedulers is six uops per clock cycle. This is twice the 
rate at which the out-of-order core can receive uops 
from the Execution Trace Cache and allows higher 
flexibility to issue ready uops on the different ports. 

Rapid Execution Engine 
The Rapid Execution Engine of the NetBurst 
microarchitecture executes up to six uops per main 
clock cycle. These uops are executed by several 
execution units: two double-speed integer ALUs, a 
complex integer unit, load and store Address Generation 
Units (AGUs), a complex floating-point/media unit, and 
a floating-point/media move unit. These highly tuned 
and optimized execution units are designed for low 
latency and high throughput. 

The double-speed integer ALUs are able to execute at a 
rate of two uops per clock cycle, providing for a very 
high ALU throughput. Being able to execute these uops 
at twice the rate of the main core clock enables 
application performance to be increased relative to 
running the ALUs at the main clock rate.   

The NetBurst microarchitecture is also able to execute 
one load and one store address uop every clock cycle 
through the AGUs. The AGUs are very tightly coupled 
to the low-latency first-level (L1) data cache. On this 
processor, the cache is 16 kilobytes in size and is used 
for both integer and floating-point/media loads and 
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stores. It is organized as an 8-way set associative write-
through cache containing 64-byte cache lines.   

The low latency of the L1 cache is very hard to achieve. 
This cache uses unique access algorithms to enable its 
low latency. The algorithms leverage the fact that almost 
all accesses hit the L1 data cache and the Data 
Translation Lookaside Buffer (DTLB). Generally, the 
schedulers assume that loads will hit the L1 data cache 
and will schedule dependent uops before the parent load 
has finished executing. Allowing these dependent uops 
to dispatch prior to knowing if the load has hit the cache 
is a form of data speculation. If the load misses the L1 
data cache, the dependent uops will already be well into 
their execution and will temporarily be bound to 
incorrect data. Using a mechanism known as replay, the 
processor tracks and re-executes instructions that 
received incorrect data. Only the dependent operations 
are replayed; all independent operations are allowed to 
complete. Using this form of data speculation allows 
more parallel execution streams to be extracted from the 
program and increases the performance of the processor. 

Floating-Point (x87), MMX, SSE (Streaming SIMD 
Extension), SSE2 (Streaming SIMD Extension 2), and 
the new SSE3 (Streaming SIMD Extension 3) 
operations are executed by the two floating-point 
execution blocks. One of the execution blocks is used 
for simple operations, such as SSE register-to-register 
moves and x87/MMX/SSE/SSE2 store data uops. The 
other execution block is used for more complex 
operations. 

Store-to-Load Forwarding Enhancements 
In all implementations of the NetBurst 
microarchitecture, stores are written to the L1 data cache 
in programmatic order and only after the store is 
guaranteed to be non-speculative. This requires that all 
operations older than the store must be completed before 
the store’s data are committed to the cache. The 
forwarding mechanism implemented enables a load 
dependent on a store’s data to have its data “forwarded” 
prior to the commitment of the store’s data into the L1 
cache. Forwarding is accomplished by doing a partial 
address match between the load and all older stores in 
the Store Forwarding Buffer (SFB) in parallel with the 
load’s L1 data cache access. If the load’s partial address 
matches that of an older store in the SFB, then the load 
gets its data from the SFB instead of the cache. The 
forwarding mechanism is optimized for speed such that 
it has the same latency as a cache lookup. To meet this 

latency requirement, the SFB cannot afford to do a full 
address and access size check. This function is 
accomplished by the Memory Ordering Buffer (MOB) 
later in the pipeline. The role of the MOB is to ensure 
that the forwarded load got the correct data from the 
most recent dependent store. In the event that the 
forwarding from the SFB was incorrect, the load in 
question must be re-executed after the dependent store 
writes to the L1 cache. The load can then pick up its 
data from the cache. 

The latency from when a store has valid data to when 
these data are written into the cache can be high because 
of the deep pipeline of the NetBurst microarchitecture. 
So in cases where a load must wait for a store to commit 
its data for the load to complete, a significant reduction 
in performance can occur. Most of these cases are rare 
in real-world applications. However, there a few 
instances where applications do see a performance loss:  

• Forwarding disabled due to address misalignment.  

• Wrong forwarding due to a partial address match. 

Mechanisms have been implemented on recent 
implementations of the Intel Pentium 4 processor to 
improve the performance in the above cases. 

Force forwarding is a mechanism that allows the MOB 
to control the forwarding in the SFB. Figure 2 shows the 
block diagram for this mechanism. Two new selection 
points were added to the existing store-forwarding path. 
The forwarding-entry-selection mux allows the MOB to 
override the SFB’s partial address match-based entry 
selection, while the data alignment mux allows for 
misaligned data to be rotated, based on the shift 
information provided by the MOB. 

When a load first executes, the SFB detects a 
dependency with older stores based on a partial address 
match. When this load comes to the MOB to determine 
its “true” dependencies, the MOB can either agree with 
the SFB’s decision to forward or it can cause the load to 
be re-executed. The load can be re-executed because the 
SFB detected either an incorrect dependency or because 
it failed to detect a dependency when a dependency did 
exist. If the SFB’s dependency check is wrong, the 
MOB can correct the forwarding logic when the load re-
executes by directing the SFB in one of two ways: 
forward to the load from the right entry and rotate the 
data as necessary or disable forwarding to the load if 
there is no dependent store in the SFB.  
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Figure 2: Force forwarding block diagram 

The misaligned address cases that are fixed by the force 
forwarding mechanism are shown in Figure 3. In the 
figure, for each load at a given starting address, the data 
access sizes for which force forwarding is supported are 
listed. These cases can be categorized as follows: 

• DWord/QWord Store forwarding to Byte/Word 
loads whose data are fully contained in either the 
lower or upper DWord. 

• QWord Store forwarding to DWord Load to the 
upper DWord of the Store. 

For each of these cases, the MOB “forces” the SFB to 
forward from a specific store by a given shift amount in 
order to align the store’s data to the load.  

 
Figure 3: Supported cases of misaligned forwarding 

False forwarding occurs when the SFB detects a partial 
address match between a load and a store, but their full 
addresses do not match. The MOB detects the false 
forward condition and determines if there exists another 
store that the load should have forwarded from. If a 
store exists that can be forwarded, then the MOB will 
direct the SFB to forward from this store entry using the 

force forwarding mechanism when the load re-executes. 
If the MOB detects that there is no dependent store in 
the forwarding buffer, then the MOB instructs the SFB 
to not forward to this load. When the load is re-
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NEW MICROARCHITECTURAL 
FEATURES AND ENHANCEMENTS 
The 90nm Intel Pentium 4 processor improves 
performance over prior processor implementations 
through increasing the sizes of key resources, while also 
improving existing algorithms and introducing new 
microarchitectural features. These changes were made 
throughout the various parts of the processor as detailed 
below. 

Front End 
The instruction fetch and decode portions of this Intel 
Pentium 4 processor remain largely unchanged from 
previous implementations, but some performance 
enhancements have been made.  

The simple static branch prediction scheme that is used 
when the Branch Target Buffer (BTB) has no prediction 
for a conditional branch has been enhanced. At the time 
the instruction decoder realizes that an instruction is a 
branch that was not predicted by the BTB, a static 
branch prediction is made. Making this prediction at 
decode time allows for a faster restart, and therefore 
better performance, rather than waiting for the normal 
execution time detection of a mispredicted branch.   

In prior Pentium 4 processor implementations, the static 
prediction algorithm was to predict that a branch was 
taken if the branch direction was backwards and to 
predict that the branch was not taken if the branch jumps 
forward. This helped by correctly predicting taken for 
the first iteration of most loops. This works well for 
backwards branches that are in loops, but not all 
backwards branches are loop-ending branches. 

We can try to ascertain the difference between loop-
ending branches and other backwards branches by 
looking at the distance of the branch and the condition 
on which the branch is dependent. Our studies showed 
that a threshold exists for the distance between a 
backwards branch and its target; if the distance of the 
branch is larger than this threshold, the branch is 
unlikely to be a loop-ending branch. If the BTB has no 
prediction for a backwards branch, the Intel Pentium 4 
processor will then predict taken for the branch only if 
the branch distance is less than this threshold. 

We also discovered that branches with certain 
conditions were more often not taken, regardless of their 
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direction and distance. The conditions that they used are 
not common loop-ending conditions, so for branches 
with these conditions and no BTB prediction, the static 
prediction algorithm predicts them as not taken. 

Table 1: Comparison of mispredicted branches per 
100 instructions  

 130nm 90nm 
164.gzip 1.03 1.01 
175.vpr 1.32 1.21 
176.gcc 0.85 0.70 
181.mcf 1.35 1.22 
186.crafty 0.72 0.69 
197.parser 1.06 0.87 
252.eon 0.44 0.39 
253.perlbmk 0.62 0.28 
254.gap 0.33 0.24 
255.vortex 0.08 0.09 
256.bzip2 1.19 1.12 
300.twolf 1.32 1.23 

In addition to these changes in the static prediction 
algorithm, we also enhanced the dynamic branch 
prediction algorithms to reduce the number of times that 
a branch is mispredicted. Each time a branch is 
mispredicted, the pipeline must be flushed. Thus, large 
performance gains can be had by reducing the number 
of branch mispredictions. To this end, one of the 
dynamic branch predictor enhancements we made was 
to add an indirect branch predictor. This was motivated 
by results from the Intel Pentium M processor team, 
who saw good performance improvements on some 
applications [3]. Table 1 compares the number of branch 
mispredictions per 100 instructions on the 90nm version 
of the Intel Pentium 4 processor versus the 130nm 
version of the processor on the components of 
SPECint*_base2000. The data were collected using the 
performance counters available on each processor, and 
they show the reduction in mispredictions on almost all 
components, due to the algorithmic enhancements. 

 

Another performance enhancement was to expand the 
set of instructions where the processor detects that 
dependence chains can be broken. A common technique 
to zero a register is to xor the register with itself, rather 
than to move an immediate of 0 into the register. This 
technique is preferred because of the smaller resulting 
code size. The result is logically equivalent, but the xor 
method adds a dependency on the previous contents of 
the register. In an out-of-order machine, this extra 
dependency can result in a performance loss. Previous 
processor implementations recognized when the xor, 
pxor, and sub instructions were used in this manner, 
and they removed the dependency on the source register, 
since the same answer is arrived at regardless of the 
value of the sources. On this Intel Pentium 4 processor, 
additional instructions that are used for the same 
purpose are now detected. Among these are the SSE 
instruction xorps and the SSE2 psub and xorpd 
instructions. 

We can also now encode more types of uops inside the 
trace cache than could be encoded in prior processors. If 
an instruction uses a uop that cannot be encoded in the 
trace cache, then the uops for the entire instruction have 
to be sequenced from the Microcode ROM. This 
enhancement allows for higher average uop bandwidth 
from the front end of the machine to the execution core 
by removing transitions to the Microcode ROM. Indirect 
calls with a register source operand and software 
prefetch instructions are the best examples of 
instructions that can now be encoded in the trace cache. 

                                                           
 Pentium is a registered trademark of Intel Corporation 
or its subsidiaries in the United States and other 
countries. 

Execution Core 
The execution core of the Intel Pentium 4 processor is 
similar to previous implementations in that the two 
integer ALUs run at 2x the frequency of the rest of the 

* Other names and brands are the property of their 
respective owners. 
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processor, allowing for high throughput of common 
arithmetic and logical operations. An enhancement we 
implemented in this processor was to add a 
shifter/rotator block to one of the ALUs. This block 
allows the most common forms of shift and rotate 
instructions to be executed on a fast ALU. On prior 
Pentium 4 processor implementations, these operations 
were executed as complex integer operations that took 
multiple cycles to execute.  

Another key operation whose latency has been reduced 
on this processor is integer multiply. Previously, the 
Intel Pentium 4 processor executed integer multiplies 
using the floating-point multiplier. This introduced 
latency by paying the cost of moving the source 
operands to the floating-point side and then moving the 
result back to the integer side. On this processor, we 
added a dedicated integer multiplier to service these 
operations. 

On top of the changes to the execution units, we also 
changed the L1 data cache. As with all implementations 
of the NetBurst microarchitecture, the cache is designed 
to minimize the load-to-use latency by using a partial 
virtual address match to detect early in the pipeline 
whether a load is likely to hit or miss in the cache. On 
this processor, we significantly increased the size of the 
partial address match from previous implementations, 
thus reducing the number of false aliasing cases. More 
importantly, we increased the size of the cache. 
Previously, the L1 data cache was 8 kilobytes in size 
and 4-way associative. Now the size of the cache has 
been increased to 16 kilobytes by increasing the 
associativity to 8-ways.  

The schedulers in the NetBurst microarchitecture are 
critical, as they must run at a high speed in order to 
continually feed the high-speed execution core. The 
schedulers in this implementation of the 
microarchitecture remain largely the same, as the rate at 
which they can feed the core is unchanged from prior 
implementations. In all implementations, the schedulers 
are capable of scheduling up to six uops per clock cycle.  

Even though the rate of scheduling remains the same, 
we made several enhancements to the schedulers to 
improve performance on the implementation. The two 
schedulers that are used to hold uops used in 
x87/SSE/SSE2/SSE3 instructions were increased in size. 
By increasing the size of these schedulers, the window 
of opportunity to find parallelism in multimedia 
algorithms is increased. And we increased the effective 
size of the queues that feed all the schedulers, such that 
more uops can now be buffered between the allocator 
and the scheduler before the allocator has to stall. This 
allows the allocation and renaming logic to continue to 

look ahead in the instruction stream even when the 
schedulers are full. 

Additionally, we changed the mechanism used to 
schedule load uops to improve performance. As on prior 
implementations, store instructions are broken up into 
two pieces: a store address and a store data uop. In the 
previous implementations, loads were scheduled 
asynchronously to store data uops. Thus, if a load 
needed to receive forwarded data from a store, it was 
possible that the load would execute before the store 
data uop. If this occurred, the load would have to be re-
executed after the store data uop had finally executed. 
Because of this, latency could be introduced because the 
minimum latency between a store data uop and a 
dependent load was not the common case latency for 
loads that had been re-executed. On top of that penalty, 
having to re-execute the load meant that precious load 
bandwidth was being wasted on loads that executed 
more than once. To alleviate both of these issues, we 
added a simple predictor to the processor that marks 
whether specific load uops are likely to receive 
forwarded data, and, if so, from which store they are 
likely to forward. Given this information, the load 
scheduler now holds a load that is predicted to forward 
in the scheduler until the store data uop that produces 
the data it depends on is scheduled. In doing so, both of 
these performance penalties are reduced significantly.  

We also added a performance feature to enhance 
applications that use the SSE/SSE2/SSE3 instructions. 
On the x87 side, the Floating-Point Control Word 
(FCW) is often modified as the programmer wants to 
change the rounding mode and precision of the data that 
are being worked with. To avoid serializing the 
processor each time that the FCW is modified, a simple 
prediction scheme was implemented on the NetBurst 
microarchitecture to capture common renaming cases. 
This same idea is now extended on this implementation 
of the microarchitecture to also handle the MXCSR, 
which is the corollary of the FCW for instructions that 
use the SSE registers. On prior implementations, 
changes to the MXCSR would serialize the machine. On 
this processor, the common case modifications of 
MXCSR will not incur a serialization. 

Memory System 
In the memory subsystem of the processor, we made a 
number of changes to increase overall performance. The 
changes made focus on trying to reduce the amount of 
time spent waiting for data to be fetched from DRAM 
and on increasing the size of critical resources so as to 
limit the number of times the processor is forced to stall 
because of a resource shortfall.  
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One mechanism to reduce the amount of time spent 
waiting for data to be returned from DRAM is to 
increase the size of the caches. Previous 
implementations of the Intel Pentium 4 processor 
contained unified L2 caches of either 256 or 512 
kilobytes. On the 90nm version of the Intel Pentium 4, 
we implemented a 1MB L2 unified cache. Similar to the 
previous implementations, the cache is a writeback 8-
way set associative cache and contains 128-byte lines.  

A second way to reduce the time waiting for DRAM is 
by using software prefetch instructions that are inserted 
by the programmer to bring data into the cache before 
the data are actually used. On all Pentium 4 processors, 
software prefetch instructions bring in data from DRAM 
into the L2 cache. These instructions opportunistically 
look up the L2 cache and on a miss, initiate a data 
prefetch cycle on the front-side bus. The data are filled 
only to the L2 cache so as not to pollute the much 
smaller L1 data cache.  

On previous Pentium 4 processor implementations, 
these operations were dropped on a DTLB miss. The 
Pentium 4 processor adds a mechanism to allow the 
software prefetch instructions to initiate page table 
walks and allow data TLB fills if the prefetch access is 
to a page currently not cached in the TLB. We added 
special fault-handling logic to handle cases where page 
faults were detected on the software prefetch 
instructions. These instructions are dropped silently 
without reporting the fault to the operating system, and 
the prefetch operation is not performed. In effect, the 
90nm version of the Pentium 4 processor allows 
software prefetch instructions to not only prefetch data, 
but also to prefetch page table entries into the DTLB. As 
we previously mentioned, the cost of software prefetch 
instructions has been greatly reduced on this processor, 
as software prefetches can now be cached in the trace 
cache; they used to have to be fetched from the 
Microcode ROM. 

A third mechanism used to reduce the time waiting for 
DRAM is through a hardware prefetching scheme. The 
hardware prefetcher looks for streams of data and tries 
to predict what data will be needed next by the 
processor and proactively tries to fetch these data. This 
mechanism can be superior to software prefetching, as it 
requires no effort from the programmer and can improve 
performance on code that has no software prefetch 
instructions. All Intel Pentium 4 processors contain a 
hardware prefetcher that can prefetch both code and data 
streams, where the data stream can be accessed by loads 
and/or stores. This implementation of the processor 
improves upon the previous implementations in its 
ability to detect when to prefetch data and what data 
needs to be prefetched. Figure 4 shows the effect of the 

hardware prefetcher. We show the performance of this 
processor with the hardware prefetcher enabled versus 
the hardware prefetcher disabled on the most hardware 
prefetcher-sensitive components in the 
SPECint_base2000 and SPECfp∗_base2000 
benchmarks1. These are the components that gain more 
than 10% in performance by enabling the hardware 
prefetcher.  

Addressing resource constraints was the other means of 
improving performance in the memory system. On 
previous Intel Pentium 4 processors, only 24 stores 
could be simultaneously outstanding in the processor. 
This number has now been increased to 32. 
Additionally, the number of write-combining buffers 
that are used to track streams of stores was increased 
from 6 to 8, which also alleviates pressure on the 
number of stores that can be in the machine 
simultaneously by allowing stores to be processed 
faster. Finally, the number of unique outstanding loads 
that have missed the L1 data cache and can be serviced 
has been increased from 4 to 8.   
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Figure 4: Effect of the hardware prefetcher 

HYPER-THREADING TECHNOLOGY 
Hyper-Threading Technology was introduced on 
previous implementations of the Intel Pentium 4 
processor and is also present on many versions of this 
latest processor. Hyper-Threading Technology allows 
one physical processor to appear to the operating system 
as two logical processors [2]. This allows two program 
software threads, either related or unrelated, to execute 

                                                           
∗ Other names and brands are the property of their 
respective owners. 
1 Estimated performance through measurements on non-
production hardware. 
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simultaneously throughout the processor. Prior to 
Hyper-Threading Technology, only one thread could be 
executed at a time on a processor, and each switch to a 
different thread would incur a context-switching 
overhead penalty.  

In addition to these changes, this processor also contains 
an enhancement for Hyper-Threading Technology 
performance known as the context identifier that was 
included in some prior processor implementations. With 
Hyper-Threading Technology, the partial virtual address 
indexing scheme used for the L1 cache creates conflicts 
when each logical processor’s access pattern matches 
the partial virtual tag even when accessing separate 
regions of physical memory. For example, this situation 
can occur if the stacks of the two threads are offset by a 
fixed amount that is greater than the size of the partial 
match, such that these two addresses, although different, 
alias to the same partial tag. This causes contention in 
the cache, leading to a reduced cache hit rate. In order to 
reduce the likelihood of contention, a context identifier 
bit is added to the partial virtual tag for each logical 
processor. This bit is dynamically set or reset based on 
the page-table structure initialization for each logical 
processor and serves as an indication of data sharing 
intent across logical processors. 

Many of the changes mentioned previously were 
motivated mainly by Hyper-Threading Technology 
performance. For instance, increasing the number of 
outstanding loads that miss the L1 data cache from 4 to 
8 has very little performance impact on the majority of 
single-threaded applications. This resource, however, is 
more important when two threads are being executed. 
Increasing the size of the resource that controls this 
behavior provides for better threaded performance while 
also slightly enhancing single-threaded performance. 
Similarly, the size of the queue that sits between the 
front end of the processor and the allocation/rename 
logic was also increased in this processor 
implementation. Again this change was motivated by the 
need for increased performance when running multiple 
threads, as the size increase provides minimal benefit 
when only running a single thread. 

For example, assume that two logical processors share 
the same page directory base in physical memory. This 
gives a strong indication that data are intended to be 
shared between the logical processors. In such a case, 
the additional context-identifier bit for each logical 
processor is set to the same value, allowing for sharing 
of the L1 data cache. Conversely, if the page-directory 
bases are different, it is likely that both logical 
processors are working on separate data regions. In such 
a case, sharing of the L1 data cache is disallowed by 
keeping the context-identifier bit different across logical 
processors.  

Other changes that were made in this processor 
implementation to help support Hyper-Threading 
Technology performance include additions to the type of 
operations that can be conducted in parallel. For 
instance, on previous implementations, the processor 
could either work on a page table walk or on handling a 
memory access that splits a cache line, but not on both 
simultaneously. For single-thread performance, this 
limitation was rarely seen as a bottleneck. However, 
when running multiple threads, the effect of this 
bottleneck becomes much more acute as the behavior of 
one thread can have a significant negative impact on the 
other thread. In this processor, this bottleneck has been 
fixed such that a page table walk can occur at the same 
time as a memory access that splits a cache line is being 
handled. Similarly, on prior implementations, if a page 
table walk missed all the caches and had to go to 
DRAM, no new page table walks could be started. This 
again was very rarely seen as a bottleneck for single-
threaded performance but was detrimental when running 
multiple threads as one poorly behaving thread could 
effectively stall both threads. Now, in this 
implementation, a page table walk that misses all of the 
caches and goes to DRAM does not block other page 
table walks from being initiated.  

There may be uncommon cases where logical processors 
use different page directory bases but still share the 
same physical memory region through page-table 
aliasing. These arise when two different page table 
entries across logical processors point to the same 
physical page frame. The processor detects such cases 
and implements a reservation mechanism to prevent 
repetitive L1 cache access conflicts among different 
logical processors.  

SSE3 INSTRUCTIONS 
The Intel Pentium 4 processor extends the IA-32 ISA 
with a set of 13 new instructions. With the exception of 
three (fisttp, monitor, mwait), these 
instructions use the SSE registers. These new 
instructions are designed to improve performance in the 
following areas: 

Changes were also made to some of the thread selection 
points in this version of the Pentium 4 processor in order 
to improve overall bandwidth. For example, the trace 
cache now responds faster to stalling events in the core, 
dedicating all of its resources to the thread that is not 
stalled, thereby generating better overall performance. 

• x87 to integer conversion (fisttp) 

• Complex arithmetic (addsubps, addsubpd, 
movsldup, movshdup, movddup) 

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 9 



Intel Technology Journal, Volume 8, Issue 1, 2004 

Code without SSE3: • Video encoding (lddqu) 
fstcw <old FCW>   

• Graphics (haddps, hsubps, haddpd, 
hsubpd) 

movw ax, <old FCW> 
or ax, 0xc00 
movw <new FCW>, ax 

• Thread synchronization (monitor, mwait) fldcw <new FCW> 
fistp <INT> 

Improved x87 Conversions to Integer  fldcw <old FCW> 
 Fisttp has been added to provide the ability of IA-32 

to ignore the value of the Floating-Point Control Word 
(FCW) when converting a value from x87 to an integer. 
Currently on IA-32, a conversion to integer is done with 
the convert-store instruction fistp. The rounding 
mode used for the conversion is taken from the FCW. In 
order to meet Fortran and C/C++’s specifications for 
conversion to integer, the rounding mode has to be set to 
chop, whereas the default rounding mode is usually set 
to even to minimize rounding errors. Because fistp 
gets its rounding mode from FCW, the user has to create 
a new FCW that is equal to the default one, but with the 
rounding mode changed to chop. Once FCW is changed, 
fistp can be used to do the conversion. Finally, the 
user has to restore the default value of FCW. The whole 
operation involves changing FCW twice, and since 
fldcw is a relatively slow instruction, it can degrade 
the performance of an application. To alleviate this 
problem, fisttp has been added. It is a new fistp 
instruction that ignores FCW and always uses chop as 
its rounding mode.  

Code with SSE3: 
fisttp  <INT> 

Complex Arithmetic 
Complex arithmetic usage is ubiquitous, as it is used in 
Discrete/Fast Fourier Transform (DFT/FFT), Discrete 
Multi Tone (DMT) modulators, frequency domain 
filtering, etc. A typical example of the importance of 
complex arithmetic in a multimedia context is given by 
the implementation of an Acoustic Echo Canceller 
(AEC). In an AEC, a long Finite Impulse Response 
(FIR) filter is used to model the inverse of the acoustic 
channel. It is not uncommon for this filter to have 1024 
or more taps. The operation done by a FIR filter is 
called a convolution, and its execution time is O(n2). 
With filters of such large length, and with the quadratic 
cost of a convolution, the operation of filtering in the 
time domain can be prohibitive, to the point of not 
meeting, for example, a real-time constraint. By moving 
from the time domain to the frequency domain, the 
execution time can be significantly reduced. Because the 
execution time of a DFT is also O(n2), moving to the 
frequency domain does not appear to have saved 
anything. But DFT has fast implementations with 
execution time O(nlogn). Such fast implementations of 
DFT are collectively called FFT. In the frequency 
domain, a convolution (O(n2)) is simply a point-product 
(O(n)). For a filter with fixed coefficients, the n-element 
input array can be transformed into the frequency 
domain in O(nlogn) operations; the point-multiplication 
(with the frequency domain transformed set of 
coefficients) takes O(n) operations; the conversion of 
the result back to the time domain (using an inverse 
FFT) takes also O(nlogn) operations. For large n, the 
complexity behaves as O(nlogn), significantly faster 
than O(n2).  

As shown below, the benefit of fisttp is two-fold: 
fewer instructions are needed and there is no need to 
modify FCW. The instruction is available in three 
precisions: Word (16-bit), DWord (32-bit), and QWord 
(64-bit).  

Three benchmarks out of SPEC* CPU2000* make heavy 
use of complex arithmetic: 168.wupwise (BLAS3 
ZGEMM – complex matrix multiply), 189.lucas 
(FFT_SQUARE – a FFT-based function to square large 
integer numbers), and 187.facerec (FFT). 

Five instructions have been added to significantly 
accelerate complex arithmetic. Two instructions 
(addsubps and addsubpd) perform a mix of 
floating-point addition and subtraction, hence removing 
the need for changing the sign of some operands. The 
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three others (movsldup, movshdup, movddup), in 
their memory version, combine loads with some level of 
duplication, hence saving the need for a shuffle 
instruction on the loaded data.  

Code without SSE3: 
movapd   xmm0, <mem_X>   
movapd   xmm1, <mem_Y>   
movapd   xmm2, <mem_Y>    
unpcklpd xmm1, xmm1      
unpckhpd xmm2, xmm2       
mulpd    xmm1, xmm0       
mulpd    xmm2, xmm0      
xorpd    xmm2, xmm7       
shufpd   xmm2, xmm2, 0x1 
addpd    xmm2, xmm1 
movapd   <mem_Z>, xmm2 

Code with SSE3: 
movapd   xmm0, <mem_X> 
movddup  xmm1, <mem_Y> 
movddup  xmm2, <mem_Y+8> 
mulpd    xmm1, xmm0 
mulpd    xmm2, xmm0 

      shufpd   xmm2, xmm2, 0x1 
addsubpd xmm2, xmm1 

movapd   <mem_Z>, xmm2 

The code sequence above shows how to implement a 
double-precision complex multiplication using SSE2 
only or with the new SSE3 instructions, where mem_X 
contains one complex operand and mem_Y the other; 
mem_Z is used to store the complex result; and xmm7 is 
a constant used to change the sign of one data element.  
Since the main speed limiter of this code is the number 
of execution uops (7 for SSE2, 4 for SSE3), the new 
instructions can improve complex multiplications by up 
to 75%. On SPEC CPU2000, the compiler is able to use 
SSE3 to improve 168.wupwise by 10-15%. 

 

Video Encoding 
The most compute-intensive part of a video encoder is 
usually Motion Estimation (ME) where blocks from the 
current frame are checked against blocks from the 
previous frame to find the best match. Many metrics can 
be used to define the best match. The most common is 
the L1 metric: the sum of absolute differences. Due to 
the nature of ME, loads of the blocks from the previous 
frame are unaligned whereas loads of the blocks from 
the current frame are aligned. Unaligned loads suffer 
two penalties: 

• cost of handling the unaligned access 

• impact of the cache line splits 

The NetBurst microarchitecture does not support a uop 
to load 128-bit unaligned data. For that reason, 128-bit 

unaligned load instructions, such as movups and 
movdqu, are emulated with microcode, using two 64-
bit loads whose results are merged to form the 128-bit 
result. In addition to the cost of the emulation, unaligned 
loads are penalized by the cost of handling cache line 
splits if the access crosses a 64-byte boundary.  

SSE3 adds lddqu to solve the cache line split problem 
on 128-bit unaligned loads. The instruction works by 
loading a 32-byte block aligned on a 16-byte boundary, 
extracting the 16 bytes corresponding to the unaligned 
access. Because the instruction loads more bytes than 
requested, some usage restrictions apply. Lddqu should 
be avoided on Uncached (UC) and Write-Combining 
(USWC) memory regions. Also, by its implementation, 
lddqu should be avoided in situations where store-load 
forwarding is expected. In load-only situations, and with 
memory regions that are not UC or USWC, lddqu can 
advantageously replace movdqu/movups/movupd. 

The code below shows an example of using the new 
instruction. Both code sequences are similar except that 
the load unaligned (movdqu) is replaced by the new 
unaligned load (lddqu). With the assumption that 25% 
of the unaligned loads are across a cache line, the new 
instruction can improve the performance of ME by up to 
30%. MPEG∗ 4 encoders have demonstrated speedups 
greater than 10%. 

Motion Estimator without SSE3: 
movdqa xmm0, <current> 
movdqu xmm1, <previous> 
psadbw xmm0, xmm1 
paddw  xmm2, xmm0 

Motion Estimator with SSE3: 
movdqa xmm0, <current> 
lddqu  xmm1, <previous> 
psadbw xmm0, xmm1 
paddw  xmm2, xmm0 

Graphics 
Most (graphics) vertex databases are organized as an 
array of structures (AOS), where each vertex structure 
contains data fields such as the following:  

• x, y, z, w: coordinates of the vertex 

• nx, ny, nz, nw: coordinates of the normal at the vertex 

• r, g, b, a: colors at the vertex 

• u0, v0: 1st set of 2D texture coordinates 

• u1, v1: 2nd set of 2D texture coordinates 

                                                           
∗ Other names and brands are the property of their 
respective owners. 
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Thread Synchronization By its very nature, SSE does not deliver optimal results 
when operating on vertex databases organized as an 
AOS. SSE is much better at handling vertex databases 
organized as a structure of arrays (SOA), where the first 
array contains the x of all the vertices; the second array, 
the y of all the vertices; etc. Because AOS is the favored 
way vertex databases are organized, in order to use SSE, 
the data have to be loaded and reorganized using shuffle 
instructions. 

Monitor and mwait instructions provide a solution to 
address Hyper-Threading Technology performance of 
the operating system idle loop and other spin-wait loops 
in operating systems and device drivers. Software can 
use the monitor and mwait instructions to hint that a 
thread is not doing useful work (e.g., spinning and 
waiting for work). The processor may then go into a 
low-power and performance-optimized state. Monitor 
and mwait provide a way for software to wake up the 
processor from this low-power/performance-optimized 
state via a store to a specified memory location (e.g., a 
store to the work queue).  

The most common operation performed in a vertex 
shader is the scalar product, where 3 (or 4) pairs of 
single-precision data elements are multiplied and the 3 
(or 4) results summed. Due to the AOS organization of 
the vertex database, evaluating the scalar product can be 
challenging with SSE because of the lack of horizontal 
instructions. We have added horizontal floating-point 
addition/subtraction instructions to speed up the 
evaluation of scalar products.  

Monitor sets up hardware to detect stores to an 
address range, generally a cache line. The monitor 
instruction relies on a state in the processor called the 
monitor event pending flag. The monitor event pending 
flag is either set or clear and its value is not 
architecturally visible except through the behavior of the 
mwait instruction. The monitor event pending flag is 
set by multiple events including a write to the address 
range being monitored and reset by the monitor 
instruction.  

The code sequence below illustrates how a scalar 
product of four single-precision pairs of elements can be 
evaluated with and without the new instructions: 

Code without SSE3: 
mulps  xmm0, xmm1        
movaps xmm1, xmm0       
shufps xmm0, xmm1, 0xb1  
addps  xmm0, xmm1         

The monitor instruction sets up the address monitoring 
hardware using the address specified in EAX and resets 
the monitor event pending flag. A store to the address 
range will set the monitor event pending flag. Other 
events will also set the monitor event pending flag, 
including interrupts or any event that may change the 
page tables. The content of ECX and EDX are used to 
communicate other information to the monitor 
instruction.  

movaps xmm1, xmm0 
shufps xmm0, xmm0, 0x0a 
addps  xmm0, xmm1 

 
Code with SSE3: 

mulps   xmm0, xmm1 
haddps  xmm0, xmm0 
haddps  xmm0, xmm0 Mwait puts the processor into the special low-

power/optimized state until a store, to any byte in the 
address range being monitored, is detected, or if there is 
an interrupt, exception, or fault that needs to be handled. 
There may also be other time-outs or implementation-
dependent conditions that may cause the processor to 
exit the optimized state. The mwait instruction is 
architecturally identical to a nop instruction. It is 
effectively a hint to the processor to indicate that the 
processor may choose to enter an implementation-
dependent optimized state while waiting for an event or 
for a store to the address range set up by the preceding 
monitor instruction in program flow. For example, a 
Hyper-Threading Technology-capable processor may 
enter a state that allows the other thread to execute 
faster, or it may enter a state that allows for lower power 
consumption, or both.   

The monitor and mwait instructions must be coded 
in the same loop because execution of the mwait 
instruction will clear the monitor address range. It is not 
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possible to execute monitor once and then execute 
mwait in a loop. Setting up monitor without 
executing mwait has no adverse effects. 

Typically the monitor/mwait pair is used in a sequence 
like this: 

EAX = Logical Address(Trigger) 
ECX = EDX = 0    // Hints 
While ( !trigger_store_happened) { 
 MONITOR EAX, ECX, EDX 
 If ( !trigger_store_happened ) { 
  MWAIT EAX, ECX 
 } 
} 
The above code sequence makes sure that a triggering 
store does not happen between the first check of the 

trigger and the execution of the monitor instruction. 
Without the second check that triggering store would go 
un-noticed. 

It is expected that operating systems will use the 
monitor and mwait instructions to significantly 
improve the performance of idle loop handling and 
allow the system to provide higher performance at lower 
power consumption. 

PERFORMANCE 
Given all of these changes in the 90nm version of the 
Intel Pentium 4 processor, the real question is how much 
performance benefit will be realized on applications 
from making these changes.  
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Table 2: Detailed system configuration for results shown in Figure 5 

Processor Pre-production Intel® Pentium® 4 processor 3.40 GHz supporting Hyper-
Threading Technology 

Pre-production Intel® Pentium® 4 processor 3.40E 
GHz supporting Hyper-Threading Technology 

Motherboard Intel Desktop Board D875PBZ AA-204 Intel Desktop Board  

Motherboard 
BIOS BZ87510A.86A.0041.P09 Pre-production BIOS 

Cache 512KB full-speed Advanced Transfer Cache 1MB full-speed Advanced Transfer Cache 

Memory Size 1 GB (2x512MB) PC3200 DDR400 (Samsung* PC3200U-30331-B2 
M368L6423ETM-CCC CL3 Double-Sided DDR400 memory)  

1 GB (2x512MB) PC3200 DDR400 (Samsung* 
PC3200U-30331-B2 M368L6423ETM-CCC CL3 
Double-Sided DDR400 memory)  

Hard Disk  Seagate* ST3160023AS 160 GB Serial ATA (SATA) (7200 RPM, 8MB 
cache) 

Seagate* ST3160023AS 160 GB Serial ATA (SATA) 
(7200 RPM, 8MB cache) 

Hard Disk 
Driver Intel Application Accelerator RAID Edition 3.5 with RAID ready  Intel Application Accelerator RAID Edition 3.5 with 

RAID ready  

Video 
Controller/Bus ATI* Radeon* 9800 Pro 8x AGP  ATI* Radeon* 9800 Pro 8x AGP  

Video 
Memory  128 MB DDRAM 128 MB DDRAM 

Operating 
System 

Microsoft* Windows* XP Professional, Build 2600, Service pack 1 on NTFS 
Default Microsoft DirectX* 9.0b 

Microsoft* Windows* XP Professional, Build 2600, 
Service pack 1 on NTFS 
Default Microsoft DirectX* 9.0b 

Video Driver 
Revision  ATI Catalyst* 3.5 Driver Suite: display driver version: 6.14.10.6360  ATI Catalyst* 3.5 Driver Suite: display driver version: 

6.14.10.6360  

Graphics  1024x768 resolution, 32-bit color  1024x768 resolution, 32-bit color  

SPEC* 
CINT2000  

Intel C++ Compiler Plug-in V8.0 
Microsoft Visual Studio* .NET V7.0 (for libraries)  

Intel C++ Compiler Plug-in V8.0 
Microsoft Visual Studio* .NET V7.0 (for libraries)  

SPEC* 
CFP2000  

Intel C++ Compiler Plug-in V8.0 and Intel FORTRAN Compiler Plug-in V8.0 
Microsoft Visual Studio .NET V7.0 (for libraries)  

Intel C++ Compiler Plug-in V8.0 and Intel FORTRAN 
Compiler Plug-in V8.0 
Microsoft Visual Studio .NET V7.0 (for libraries) 
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Table 3: Detailed system configuration for results in Figure 6

Processor Pre-production Intel® Pentium® 4 processor 3.40E GHz 
supporting Hyper-Threading Technology 

Motherboard Intel Desktop Board  

Motherboard BIOS Pre-production BIOS 

Cache 1MB full-speed Advanced Transfer Cache 

Memory Size 512MB (4x128MB) Samsung PC3200U-30330-C3 M368L1624DTM-
CCC 128MB DDR PC3200 CL3 Single-Sided DDR400 memory 

Hard Disk  IBM 120GXP 80 GB IC35L080AVVA07-0 ATA-100 

Hard Disk Driver MS default UDMA-5 

Video Controller/Bus ATI Radeon 9700 Pro AGP graphcis 

Video Memory  128 MB DDRAM 

Operating System Microsoft* Windows* XP Professional, Build 2600, Service pack 1 on 
NTFS Default Microsoft DirectX* 9.0b 

Video Driver Revision  ATI CATALYST 6.13.10.6166 driver 

Graphics  1024x768 resolution, 32-bit color  
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Figure 5: Performance comparison (estimated 
SPEC* CPU2000* performance as measured on pre-

production hardware) 

Figure 5 compares the performance of this new 
processor with the performance of the 130nm version of 
the Intel Pentium 4 processor with a 512kb L2 cache on 
SPEC CPU2000, as estimated on pre-production 
hardware. Detailed system configuration information is 
shown in Table 2. As can be seen here, the performance 
enhancements that have been described in this paper do 
have a noticeable effect on overall performance.  

Figure 6: Performance benefit of Hyper-Threading 
Technology 

Hyper-Threading Technology on this processor also 
shows significant benefits on popular consumer 
applications and for various multi-tasking scenarios. 
Figure 6 compares the performance on some of these 
applications and scenarios when Hyper-Threading 
Technology is enabled and disabled on this processor.  

Table 3 lists the detailed system configuration for these 
results. 

CONCLUSION 
The NetBurst microarchitecture that was introduced 
with the Intel Pentium 4 processor brought 

unprecedented levels of performance to the end user 
through its unique features such as the Execution Trace 
Cache and an execution core that ran at 2x the core 
frequency. Now, we are building upon the strength of 
those previous processors with the new Intel Pentium 4 
processor manufactured on the 90nm process. With 
these new performance features and enhancements, the 
performance of desktop processors continues to reach 
new heights. With capabilities like Hyper-Threading 
Technology and a set of new instructions, building 
blocks are being provided for software to be created to 
take advantage of this power and deliver to users a new 
level of functionality on their desktop. 
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