162 = Chapter Two Instruction Set Principles and Examples

24 [20/15/15/20] <2.2, 2.3, 2.10> Your task is to compare the memory efficiency of
four different styles of instruction set architectures. The architecture styles are

1. Accumulator—All operations occur between a single register and a memory
location.

2. Memory-memory—All instruction addresses reference only memory locations.

3. Stack—All operations occur on top of the stack. Push and pop are the only
instructions that access memory; all others remove their operands from the
stack and replace them with the result. The implementation uses a hardwired
stack for only the top two stack entries, which keeps the processor circuit very
small and low cost. Additional stack positions are kept in memory locations,
and accesses to these stack positions require memory references.

4. Load-store—All operations occur in registers, and register-to-register instruc-
tions have three register names per instruction.

To measure memory efficiency, make the following assumptions about all four
instruction sets:

® All instructions are an integral number of bytes in length.
® The opcode is always 1 byte (8 bits).

m Memory accesses use direct, or absolute, addressing.

B The variables A, B, C, and D are initially in memory.

k) a. [20] <2.2, 2.3> Invent your own assembly language mnemonics (Figure 2.2
provides a useful sample to generalize), and for each architecture write the
best equivalent assembly language code for this high-level language code

sequence:
A=B+C(C;
B=A+C;
D=A-B;

b. [15] <2.3> Label each instance in your assembly codes for part (a) where a
value is loaded from memory after having been loaded once. Also label each
instance in your code where the result of one instruction is passed to another
instruction as an operand, and further classify these events as involving stor-
age within the processor or storage in memory.

¢ [15] <2.10> Assume the given code sequence is from a small, embedded
computer application, such as a microwave oven controller, that uses 16-bit
memory addresses and data operands. If a load-store architecture is used,
assume it has 16 general-purpose registers. For each architecture answer the
following questions: How many instruction bytes are fetched? How many
bytes of data are transferred from/to memory? Which architecture is most
efficient as measured by code size? Which architecture is most efficient as
measured by total memory traffic (code + data)?

2.5

Exercises = 163

d. [20] <2.10> Now assume a processor with 64-bit memory addresses and data
operands. For each architecture answer the questions of part (c). How have
the relative merits of the architectures changed for the chosen metrics?

[20/20/20] <2.3> We are designing instruction set formats for a load-store archi-
tecture and are trying to decide whether it is worthwhile to have multiple offset
lengths for branches and memory references. The length of an instruction would
be equal to 16 bits + offset length in bits, so ALU instructions will be 16 bits.

Figure 2.42 contains data on offset size for the Alpha architecture with full opti-
mization for SPEC CPU2000. For instruction set frequencies, use the data for
MIPS from the average of the five benchmarks for the load-store machine in Fig-
ure 2.32. Assume that the miscellaneous instructions are all ALU instructions that
use only registers.

Number of offset
magnitude bits Cumulative data references Cumulative branches
0 30.4% 0.1%
1 33.5% 2.8%
2 35.0% 10.5%
3 40.0% 22.9%
4 47.3% 36.5%
5 54.5% 57.4%
6 60.4% 72.4%
7 66.9% 85.2%
8 71.6% 90.5%
9 73.3% 93.1%
10 74.2% 95.1%
11 74.9% 96.0%
12 76.6% 96.8%
13 87.9% 97.4%
14 91.9% 98.1%
15 100% 98.5%
16 100% 99.5%
17 100% 99.8%
17 100% 99.9%
19 100% 100%
20 100% 100%
21 100% 100%

Figure 2.42 The second and third columns contain the cumulative percentage of
the data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement. These are the aver-
age distances of all the integer and floating-point programs in Figure 2.8.

164 - Chapter Two Instruction Set Principles and Examples

a. [20] <2.3> Suppose offsets are permitted to be 0, 8, 16, or 24 bits in length.
including the sign bit. What is the average length of an executed instruction?

b. [20] <2.3> Suppose we want a fixed-length instruction and we chose a 24-bit
instruction length (for everything, including ALU instructions). For every of
set of longer than 8 bits, additional instruction(s) are required. Determine the
number of instruction bytes fetched in this machine with fixed instruction sizs ‘
versus those fetched with a byte-variable-sized instruction as defined in

part ().
c. [20] <2.3> Now suppose we use a fixed offset length of 24 bits so that
additional instruction is ever required. How many instruction bytes would b=
required? Compare this result to your answer to part (b).

26 [15/10] <2.3> Several researchers have suggested that adding a register-memor;
addressing mode to a load-store machine might be useful. The idea is to replace

sequences of

LOAD R1,0(Rb)

ADD R2,R2,R1
by

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 5%. Use
instruction frequencies for the gec benchmark on the load-store machine T
Figure 2.32. The new instruction affects only the clock cycle and not the CPL

[15] <2.3> What percentage of the loads must be eliminated for the mact

a.
with the new instruction to have at least the same performance?

b. [10] <2.3> Show a situation in a multiple instruction sequence where & |
of R1 followed immediately by a use of R1 (with some type of opcode}
not be replaced by a single instruction of the form proposed, assuming
the same opcode exists.

27 [25]<2.2-2.5> Find an instruction set manual for some older machine (1
and private bookshelves are good places to look). Summarize the instructos
with the discriminating characteristics used in Figures 2.3 and 2.4. Write the
sequence for this machine for the statements in Exercise 2.1(b). The size o
data need not be the same as in Exercise 2.1(b) if the word size is smaller &

older machine.
O 28 [201<2.2, 2.12> Consider the following fragment of C code:
for (i=0; i<=100; i++)
{A[i] = B[i] + C3}
Assume that A and B are arrays of 64-bit integers, and C and 1 are 64-bit
Assume that all data values and their addresses are kept in memory (at

0, 5000, 1500, and 2000 for A, B, C, and 1, respectively) except when
operated on. Assume that values in registers are lost between itera

the loop.

2.9

2.10

2.1

2.12

Exercises 165

Write the code for MIPS. How many instructions are required dynamically? How
many memory-data references will be executed? What is the code size in bytes?

[20] <2.2, 2.12> For this question use the code sequence of Exercise 2.8, but put
the scalar data—the value of i, the value of C, and the addresses of the array
variables (but not the actual array)—in registers and keep them there whenever
possible.

Write the code for MIPS. How many instructions are required dynamically? How
many memory-data references will be executed? What is the code size in bytes?

[15] <2.12> When designing memory systems it becomes useful to know the fre-
quency of memory reads versus writes and also accesses for instructions versus
those for data. Using the average instruction mix information for MIPS in Figure
2.32, find

m the percentage of all memory accesses for data

B the percentage of data accesses that are reads

® the percentage of all memory accesses that are reads
Ignore the size of a datum when counting accesses.

[18] <2.12> Compute the effective CPI for MIPS using Figure 2.32. Suppose we
have made the following measurements of average CPI for instructions:

Instruction Clock cycles
All ALU instructions 1.0
Loads-stores 14

Conditional branches

Taken 2.0
Not taken 1.5
Jumps 1.2

Assume that 60% of the conditional branches are taken and that all instructions in
the “other” category of Figure 2.32 are ALU instructions. Average the instruction
frequencies of gap and gcc to obtain the instruction mix.

[20/10] <2.3, 2.12> Consider adding a new index addressing mode to MIPS. The
addressing mode adds two registers and an 11-bit signed offset to get the effective
address.

Our compiler will be changed so that code sequences of the form

ADD R1, R1, R2
LW Rd, 100(R1) (or store)

will be replaced with a load (or store) using the new addressing mode. Use the
overall average instruction frequencies from Figure 2.32 in evaluating this
addition.

166

Chapter Two Instruction Set Principles and Examples

213

O 2.14

2415

2.16

a. [20]<2.3,2.12> Assume that the addressing mode can be used for 10% of the
displacement loads and stores (accounting for both the frequency of this type
of address calculation and the shorter offset). What is the ratio of instruction
count on the enhanced MIPS compared to the original MIPS?

b. [10]<2.3,2.12> If the new addressing mode lengthens the clock cycle by 5%,
which machine will be faster and by how much?

[30] <2.7> Many computer manufacturers now include tools or simulators that
allow you to measure the instruction set usage of a user program. Among the
methods in use are machine simulation, hardware-supported trapping, and a com-
piler technique that instruments the object code module by inserting counters.
Find a processor available to you that includes such a tool. Use it to measure the
instruction set mix for one of the SPEC CPU2000 benchmarks reported on in this
chapter. Compare the results to those shown in this chapter.

[10/10] <2.8> One use of saturating arithmetic is for real-time applications that
may fail their response time constraints if processor effort is diverted to handling
arithmetic exceptions. Another benefit is that the result may be more desirable.
Take, for example, an image array of 24-bit picture elements (pixels), each com-
prised of three 8-bit unsigned integers, representing red, green, and blue color
brightness, that represent an image. Larger values are brighter.

a. [10] <2.8> Brighten the two pixels ESF1D7 and AAC4DE by adding 20 to
each color component using unsigned arithmetic and ignoring overflow to
maintain a fixed total instruction-processing time. The values are given in
hexadecimal. What are the resulting pixel values? Are the pixels brightened?

b. [10] <2.8> Repeat part (a) but use saturating arithmetic instead. What are the
resulting pixel values? Are the pixels brightened?

[20] <2.9> A condition code is a bit of processor state updated each time certain
ALU operation(s) execute to reflect some aspect of the execution. For example,
a subtract instruction may set a bit if the result is negative and reset it for a posi-
tive result. A later operation can refer to this specific “result sign” condition
code bit to glean information about the subtract result, provided no other instruc-
tion of the set that updates the result sign condition code has executed in the
meantime. The concept of dedicated condition codes can be generalized to an
array of general-purpose condition bits. An instruction is encoded to use any one
of the general-purpose condition bits, as selected by the compiler. What are the
advantages and disadvantages of a collection of general-purpose condition bits
as compared to those of dedicated condition codes (see Figure 2.21)?

[25/15] <2.7,2.11> Find a C compiler and compile the code shown in Exercise
2.8 for one of the machines covered in this book. Compile the code both opti-
mized and unoptimized.

a. [25]1<2.7,2.11> Find the instruction count, dynamic instruction bytes fetched.
and data accesses done for both the optimized and unoptimized versions.

138 - Chapter Two Instruction Set Principles and Examples

Integer
Instruction gap gcc gzip mcf perl average
load 26.5% 25.1% 20.1% 30.3% 28.7% 26%
store 10.3% 13.2% 5.1% 4.3% 16.2% 10%
add 21.1% 19.0% 26.9% 10.1% 16.7% 19%
sub 1.7% 2.2% 5.1% 3.7% 2.5% 3%
mul 1.4% 0.1% 0%
compare 2.8% 6.1% 6.6% 6.3% 3.8% 5%
load imm 4.8% 2.5% 1.5% 0.1% 1.7% 2%
cond branch 9.3% 12.1% 11.0% 17.5% 10.9% 12%
cond move 0.4% 0.6% 1.1% 0.1% 1.9% 1%
jump 0.8% 0.7% 0.8% 0.7% 1.7% 1%
call 1.6% 0.6% 0.4% 3.2% 1.1% 1%
return 1.6% 0.6% 0.4% 3.2% 1.1% 1%
shift 3.8% 1.1% 2.1% 1.1% 0.5% 2%
and 4.3% 4.6% 9.4% 0.2% 1.2% 4%
or 7.9% 8.5% 4.8% 17.6% 8.7% 9%
Xor 1.8% 2.1% 4.4% 1.5% 2.8% 3%
other logical 0.1% 0.4% 0.1% 0.1% 0.3% 0%
load FP 0%
store FP 0%
add FP 0%
sub FP 0%
mul FP 0%
div FP 0%
mov reg-reg FP 0%
compare FP 0%
cond mov FP 0%
other FP 0%

Figure 2.32 MIPS dynamic instruction mix for five SPECint2000 programs. Note that integer register-register
move instructions are included in the or instruction. Blank entries have the value 0.0%.

be issued at the same time. If there are not five independent instructions availa e
for the compiler to schedule together—that is, the rest are dependent—then
NOPs are placed in the leftover slots. This instruction coding technique is callec.
naturally enough, very long instruction word (VLIW), and it predates the Trime-
dia processors. VLIW is the subject of Chapter 4, so we will just give a preview
of VLIW here. An example helps explain how the Trimedia TM32 CPU works.

