Pipelining

Overlap execution of multiple instructions.
Implementation method similar to assembly line
concept.

Definitions:

Pipeline stage: smallest step of task

Gain from pipelining: Number of stages
Pipelining improves Throughput (number of in-
structions executed per unit time) not the time
to execute instruction

mMachine cycle time: time of slowest stage "to
move instruction one step”.

Pipelining improves performance by N fold where
N is number of stages.

Pipelining is invisible to programmer ' no software
change”

Limitation of pipelining: Partioning of instruc-
tion execution, slowest stage , overhead between
stages (latch), hazards.
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Instruction Execution

Instruction Format;—

1-R Type
opcode rsl rt rd function
' 0.. 5:/6... 10 11.. 15 16.. Zp 21... ' 31
Example:
add $17, $18, $19 ; $& [$18] + [$19]
add | 18 19 17 arith
2—- | Type
opcode rsl rd Immediate
- 0.. 5 6... 1011.. 153 16.... 31
Example:
lw $17, 100($18) ; $17<= MeM[100+ ($18)]
Iw 18 17 100
3-J Type
opcode PC Offset
- 0.. 56 31

Example: J L1 ; PC=L1+PC
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5 Steps to Execute Instructions:

o IF :
Instruction Fetch: Fetch Instruction from Mem-
ory to IR

o ID:
Instruction Decode: Decode Instruction, Get
operands

o EX:
Execute Instruction

e Mem:
Read /Write Memory for load/store instruc-
tions

e V\WB:
Write back results to Register File
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Executing Instructions (Fetch and Decode):

IF: IR=M[PC] , PC=PC +4

PC| aqdl MEM |data | R
R
—
> PC+4
4 |
ID: s | 6-10_ | Registers___|A
A=R[R 6..10] ; rs1 1115

—_—
B = R[IR11..15] ; rs2 ‘ 5

Imm = IR(16)"16 ## IR 16..31

sign Ext.
16..31

Imm.
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Executing Instructions (Execute and Mem-
ory):

Zero Cond.
PC+4
Execution: o MUux
-R type: add R1, R2, R3 A ALUout
=/
ALUout=A OPB; H U
ALUout= (R2 + R3) — Mo ALU
I- Type: addi R1, #500 B
ALUout= A OP Imm. | —
mm.
Load/store : LW R1, 100(R2)
ALUout = A + Imm = R2 + 100
Branch : Jeqz R1, 100 o
ALUout = (PC+4) + Imm = PC+4 + 100 (If R1 =0)
OR PC = PC +4 (If R1 = 10)
Memory: Load/store and branch completion Mux |5~
PC+4 -
LMD = M[ALUout] ; LW ALUout ——=
M[ALUout] =B ; SW Cond—/T\
PC=IF (cond) ALU out
else PC+4 LMD
Add | MEM
ALUout Dout
B
Din
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Executing Instructions (Write Back):

IR
Mux Registers

16..20 Mux

~ Port

Ad

- Di e

11..16
LMD
Write Back: ALUout

Register — Register (ALU operation)
ADD R1, R2, R3;
Reg {IR(16..20)] = ALUout ; R1= R2+R3

Reg-Imm

ADD R1, R2, 100
Reg[IR(16..20) = ALUout
R1=R2 + 100

Load Instruction

LW R1, 100(R2)
Reg[IR(16..20)] = LMD ; R1 = M[100+R2]

N. Mekhiel




Executing Instructions (ALU Operations):

ID
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Example: add R1, R2, R3 If PC =1000

DLX Pipeline Datapath
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Executing Instructions (Load):
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Example: LW R1, 100(R2) If PC =1000

DLX Pipeline Datapath

N. Mekhiel



Executing Instructions (Branch):

ID
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Example: begz R1, 200 If PC =1000

DLX Pipeline Datapath
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Example: Find the performance of unpipelined
DLX if each instruction takes 4 cycles and the
load takes 5 cycles. The frequency of use for
load is 26 %.

T=4x(1-.26)4 .26 x 5 = 4.26¢cycles

Pipelined DLX
Using the same data path with 5 stages:-
IF, ID, EX, Mem, WB
Each stage is responsible for completing one task
each clock cycle.
Executing one Instruction each cycle.
5 Instructions are being overlapped in pipeline (ex-
ecuting 5 instructions in parallel).
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Executing Instructions in Ideal Pipeline

Executing Instructions in the Pipeline

Example (Ideal Pipeline)

— Each instruction takes 5 cycles to complete.
— Pipline improves throughput by overlapping instruction executions.

— ldeal pipeline executes 1 Instruction per cycle.

Instruction # Clock cycle number
1 2 3 4 5 6 7 8 9
1 F1 | pD1| EX1 M1 WB1
5 F2 | D2 | EX2 [ M2 | wB2
3 F3 | D3 EX3| M3| wBj
4 F4 | D4 | EXx4| M4 | w4
5 F5 | D5 | EX5| M5| WB5
1 2 3 4 5
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Requirements to Support Pipelining:
e Need separate Instruction and Data Memory.

e Memory BandWidth is 5 Times (1 per clock
cycle compared to 1 every 5 cycles)

e Need Latches between pipeline stages to allow
new instruction to change the result of stage.
This could limit speed of clock due to latch
delay (Max number of stages limited by latch
delay).

e Control must forward Data and control signals
from stage to stage by copying it to next stage
latch
Example: ADD R1, R2, R3
In WB stage , the results of ALU must be
written to R1, so (IR 16..20) must be in WB
latch.
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Performance Issues in Pipelining
Ideal Throughput = 1 Instruction per cycle
Limitations due to: Overhead of latches between
pipeline stages, imbalance between stages, and
Hazards.
Example: In unpipelined processor that has aclock
cycle= 1 ns, and all ALU operations and branches
uses 4 cycles and 5 cycles fro memory. Frequen-
cies are: 40% for ALU, 20% branches and 40%
memory. If clock cycle time increases by .2 ns,
find speedup of pipelined processor.
T forunpipelined = .4 X4+ .2 x4+ .4x4=4.4ns
Tofpipelinedinstruction = 1 x 1.2
speedup = 4.4 +-1.2 =3.7

Pipeline Hazards

Hazard: Situation that prevent next instruction
from executing
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Types of Hazards:

1- Structural Hazards: Hardware cannot support
all possible combinations due to resource con-
flicts. (Example Inst. Mem, Data Mem)

Data Hzards: An instruction depends on the re-
sults of previous instruction that has not yet com-
pleted.
Control Hazards: In branches, the fetching of next
instruction is not known in time.
Dealing with Hazards
Simplest solution: stall pipeline, all instructions
after stalled instruction must stall too.
Performance of Pipeline with Stall:
speedup = (average—instruction—time—unpipelined) -+
(average — instruction — time — pipelined)
speedup = ((pipeline—depth) x clock —unpipelined)
((1 + stall — cycles — per — inst) X clock — pipelined)
Example: If FP multiply stall pipeline by 5 cycles,
and has frequency of 14%. Find performance of
pipeline.
T= (14 .14 x5) =1.7Cycles N. Mekhiel



Executing Instructions in Pipeline

ID
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DLX Pipeline Datapath
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Instruction Execution

Execution Steps in Pipeline:—

1- IF : Instruction Fetch
IR =— Mem|[PC]

NPC<- PC+4

2— ID: Instruction Decode
A <— IR(6..10)

B = IR(11..16)

Decode Instruction

3— EX: Execution

a—memory refrences 16
ALUout =— A +[(IR16) ## IR(16..31)]
if store SMD<=— B

b—ALU operations

ALUout = Aop B 16
if immediate ALUout =— A +[(IR16) ## IR(16..31)]

c—Branch or Jump
ALUout =- NPC + [(|R16) ## IR(16..31)]

Cond=- AopO
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Execution Steps in Pipeline

4— Mem: Memory

a— memory references
LMD =— Mem|ALUout] if load

Mem[ALUout] =— SMD if store
b— Branch

If (Cond) then PC<=— ALUout
else P& PC+4

5-WB: Write Back
a— ALU operations
Reg[IR(16..20)] =— ALUout
If Inmediate: Reg[IR(11..158—

b—-load
Reg[IR(11..15)] =— LMD

N. Mekhiel
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Pipeline Hazards

Example (Pipeline Hazards)

1- Structural Hazards:
Not enough resources or unit is not pipelined

Examples:—
—Cycle 4, both instruction1 and instruction4 use the memory.
solution: use separate Instruction and Data Memory

—Cycle 5, Register file is used for WB and also read operand in Decode
solution: use different read and write ports.

Instruction Clock cycle number
1 2| 3| 4| 5| 6| 7| 8 9
hazard#1
1 |[w$2,20($16) F1 | D1 Ex1@ //
I
— hazard#2

e

2 |add$4, $2, $6 F2 | D2 | EX2| M2 |wWB2

A4

3 | bnz $7, Loop F3 | D3 |EX3| M3|wB3

il
4 |sub%l, $3, $% @@ EX4| M4 | wB4
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Data Hazards

Pipeline changes the order of read/write accesses
to operands causing Data hazards. This causes it
to not be the same as seen by sequential order.
Types:-

o RAW:;
Write to X
Read X
If read X before write to X

o WAW:
Write 5 to X
Write 7 to X
If write 7 is before write 5

e WAR:
Read X
Write to X
If write to X before Read X

o RAR:
Not a Hazard
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Data Hazards

Example (with data hazards)
—Last four Instructions depend on results in $2
—Result in $2 available at end of WB (Clock#5)

—Source operands for four instructions need $2 at ID (2nd cycle)
—Can split Write, read in register file to remove data hazard at cycle #5

Instruction 1 2

lan Yo )

uii?“

sub$2,$1,$#3 M ﬂ}—[ Reg {

e
/
and$19\$2,$5 M {i Reg

&

DM [ H Reg

@jfeg
\ 7
or$13,\§¥\$2 M ﬂ}[Reg{ LLH

e

dd NN IM —[LReg:{ DM [ [ Reg
add$14,%$2,$2 il

L)

\_‘

\
AR
IM —H—[Reg hDM j - Reg

sw$15,100($2

N—r

hazard hazard okay by no
splitting hazard
wr,rd
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Example (with data hazards)
Dealing with Data Hazards
Example with data hazards
Solution: Stall Pipeline (use nop)

Instruction 1 2 3 4 5 6 7 8 9
SubP.SL#YM FReg{ﬂmJRg’z\
nop\\ " {LREQ{%ﬂX{ Seg
W\
nop \\\\ IM }[Reg {EH}@VJ} Reg
and$1\%%2,$5 IM —[LReg:{% }Reg
Reg

Reg :[

V
add$14\$2,$2

%DM:I

\ i

or$13,i%“,l$2 M }ER‘eng@Y om ||
IM —'j

DM

sw$15,1(ﬁ$2 M {i Reg|]

=

okay by Tno no
split){(ijng] hazard hazard hglz%rd
wWr,r

Performance= 11 cycles compared to 9 cycles for ideal pipeline

22% slower (too much)
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Data Hazards

Example (with data hazards)
Solution with forwarding (zero stalls)

1-Results are valid and ready at the end of EX stage (early than WB).
2—-Source operands are needed in EX stage (later than ID).
3-Keep ALUout (results) around and forward it to ALUin (source).

4-Need fowarding paths, multiplexors and detection of dependency.

Instruction 1 2 3 4 5 6 7 8 9

Sub$§\,$1,$#3 IM —H—[ Reg :H%—{mj Ré’g‘

§\ —
and$12,$2,$5 IM —[LReg:{ Dpijeg

N\
0r$13,$6,$2 IM 4H_E Reg :{%H}T DM 1} Reg

add$14,$2,$2 IM —[L Reg {@ﬂm Reg

=]

sw$15,100(%$2) IM ﬂ}—i Reg % h DM j Reg

— ]

forward forward
WA |toB
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Data Hazards

Solution: Data Forwarding

Dependency Detection

hazards conditions:—
1-EX/MEM.Reg.Rd = ID/EX.Reg.(Rs/Rt)
2-MEM/WB.Reg.Rd = ID/EX.Reg.(Rs/Rt)

Dependency Detection in the given Example:-

1- sub$2,$1,$2 (EX/MEM.Reg.$2) = and$12,$2,$5(ID/EX.Reg.
2—- sub%$2,$1,$2 (MEM/WB.Reg.$2) = 0r$13,$6,$2(ID/EX.Reg.$

ID/EX

Rsl

Rt

EX/IMEM

xnw )

)

R

ALU

xnw )
™

=

MEM/WB
Data ]
MEM
DMEM
Do
addres

Di

N. Mekhiel
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Data Hazards

When Forwarding Fails
Cannot forward in negative time

must stall the pipeline

Instruction 1 2 3 4 5 6 7 8
M($8+20)
|W$2, 20($8) IM —H—E Reg:{%ﬁ DM #J Reg

and$4,$2,$5 IM —[LReg:{@—[ DM | | Reg

\_‘

or$6,$1,$2 IM ﬂ}—ERegﬂ\M@—{ DM ]} Reg

i

add$9,$3,$7 IM {L Reg{ MJ Reg

forward fforward
fails

okay
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Data Hazards

When Forwarding Fails

Solution: Stall pipeline (insert bubble)

N
(&)
o
~
Qo
©

Instruction 1 2 3

=
5e
(00]

+20)

lw$2, 20($8)

o i

)
E
—
Ry
19
«Q

DM Reg

and$4,$2,$5 M {i Reg

DM | t{Reg

0r$6,$1,%$2 IM ﬂ} 1] Reg:[

add$9,$3,$7

=

1agqnq 3|q4qnq ‘9Iqu
]

B

o
M FReg @m Reg

—
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Data Hazards
Performance of Pipeline with stalls

SPEC Benchmarks show % of loads causing stalls as ;-

compress 24% gcc 23%
espresso 12% eqntott 41%

average = 34%

assume that 50% of instructions are loads

CPI=1 + .5%.34*1 = 1.17 cycle per instruction

Solution: Pipeline Scheduling

1- Static scheduling using Compiler
Compiler can schedule instructions between loads and the follow
instructions to avoid stalls.

2— Dynamic scheduling using Hardware
Could use scoarboard to detect dependency and allow out of ord
instruction execution to eliminate the stalls.

N. Mekhiel



Forwarding to DM for Store Instruction
Example:

ADD R1, R2, R3
NN

: R1

LW R4,\0(R1) ; RAW DMEM

SW 12 (R1), R4; RAW

ALU-out
Di
R4

Instruction 1 2 3 4 5 6 7
Add R1, R2,R3 F1| D1 EXl\ M1WB1
LW R4\ O(R1) F2 | D2 | EXZ M2|\WB2

\

SW 12(R1), R4

F3 | D3| EX3 M3 | WB3J

1-ALUout is valid at end of cycle 3=R1,
LW Instruction needs R1 at start ofcycle 4 (forward from ALUout)

2-Data from memory for LW is valid at end of cycle 5, SW needs it on cycle 6 (forward from DM)

N. Mekhiel



Software Scheduling to Avoid Load Data
Hazard

Compiler can schedule and rearrange code to avoid
load hazards.

Compiler uses " pipeline scheduling” to avoid hav-
ing the following instruction using dest of load.
Example: C=A+4B; D=E-F;

LW R1, B ; R1=B

LW R2, A : R2=A
ADD R3, R1, R2 ; STALL FOR ONE CYCLE
due to load R2
SW C, R3; C= A+B

LW R4, E ;

LW R5, F
SUB R6, R4, R5 ; STALL ONE CYCLE due to
load R5
SW D, R6
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Scheduling the Code
LW R1, B ; R1=B
LW R2, A ; R2=A
LW R4, E
ADD R3, R1, R2 ;
LW R5, F
SW C, R3
SUB R6, R4, R5 ; STALL ONE CYCLE due to
load R5
SW D, R6

Tradeoffs: Need to use different register for E
(More registers)

Control for Pipeline

Must be able to forward data to different units
Must be able to stall if forwarding cannot be used
Details depend on Implementation.
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Control Hazards
Control Hazards cost more performance loss than

data hazards.
The problem is more complex because:-

e branch target address unknpwn until Execu-
tion stage

e CC result of zero detect unit to decide if branch
is taken/not taken at Memory stage

e Don’'t know that instruction is a branch until
ID Stage

N. Mekhiel



Dealing with Control Hazards:
Simple solution: Stall pipeline for 3 cycles
After stall pipeline, must repeat IF stage
Performance cost due to control stalls

1 2| 3 41 5 6 |7 | 8 9
40 beq R1,R3,3q9 F1 | D1| EX1 M1{ WBL

44 AND R12, R2, R5  |F2 Qétan

stalll §tall
48 OR R13, R6, R? \
52 ADD R14, R2, R2 \
N cC
80 LW R4,100(R7) F5 | D5| EX4 M5 WBb

Need to stall 3 cycles, CC results are detected in Mem stage
Do not know that instruction is a branch until ID stage

Simple solution: stall pipeline
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Assume 30% branch frequency, control stalls 3
cycles.

Per formance =1+ .3 x3 =1.9CPI
This is about 50% reduction in performance (Too
much )

Methods For Reducing branch Penalty

e Find result of condition code earlier
e compute the branch target earlier

e can perform both in ID stage by ading extra
circuits(adder, comparator)

N. Mekhiel



Methods For Reducing branch Penalty

|
! I
IF D - EX " MEM ' WB
: Add | | : :
Mux 1 [ [ |
A; i | i
1 o) 1 | |
IE/D Zero” | : |
1 T | :
Add || IDI/EX EX/MEM MEN/WB
4 I | I
- : : |
' ALOY | :
3l | . [ Data |
PCl,.| Address rs2 Red A . |Memory ' Mux
) IR | ?:%Istel i I et Address | LM
Inst. rd | B |, | : :U—
Memory ! ! :
——{Din : - :
| 16 [ sign | 32 | l !
| = Exten | ! !
l I : I
| | | |
I I ' |
! | .

DLX Pipéline Datapath

Branch Hazard reduced by moving Zero detect and branch target calculation to ID
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Cost of reduced branch penalty

Cost of branch penalty is still 1 cycle.

Always stall until branch direction is known in
ID stage, must fetch instruction again if it is a
branch.

Performance with 1 stall and 30% frequency of
branch Performance =1+ .3 x 1= 1.3, 30% loss
in performance.

Improving cost of control hazard by predic-
tion

e Predict branch is not taken
Execute successor Instructions in sequence
If branch is taken, need to turn fetch instruc-
tion to no op.
If 47% of branches are not taken, then it will
save 47% of branch cost.
per formancecost = 1+ .3x (1 —-.47)x1 =1.15
cost only 15% loss in performance.
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Improving cost of control hazard by predic-
tion

e Predict branch is taken
53% of branches are taken
But BTA is not known until ID stage
Always need 1 cycle stall
Per formance = 14+.3x1 = 1.3 ;No advantage
in DLX

e Delayed branch
Define branch to take place after a following
instruction. This instruction will be executed
whether the branch is taken or not.
Example: 3 cycles delayed branch
branch instruction
sequential instructionl
sequential instruction?2
sequential instruction3
branch target if taken
1 delay slot for DLX allows proper decision to
hide branch latency
The important task is where to get instruc-
tions to fill the delay slot:



Instruction

i—untaken branch| Fi

Di

EXi

Mi

WBI

. i+1 Delay Slot

Fi+1

Di+1

Ei+1

Mi+1Wi+1

Ki+2 Instruction j

i+3 Instruction /

—

Branch Target Inst.

Branch Target Inst

+1

Instruction

i—taken branch | Fl

Di

EXi

Mi

WBi

i+1 Delay Slot
/ AN

Fi+1

Di+1

Ei+1

Mi+1

Wi+1

\
/4-2 Instruction

i+3 Instruction

\Branch Target Ingt

Branch Target Inst

N. Mekhiel
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Where to get Instructions to fill Branch De-
lay Slot

e From before branch. It is always okay

e From Target: Valuable only when branch is
taken, and must be okay to execute if branch
not taken

e From Fall Through: Valuable only when branch
IS not taken. Must be okay to execute if
branch is taken

From before From Target From fall through
ADD R1, R2, R3 < UB Re. RS, R ADD R1, R2, R3
if R2=0 then— v RS, if R2=0 then

delay slot ADD R1, R2, R3

delay slot
if R2=0 then SUB R4, R5, R6
- delay slot
Becomes Becomes Becomes
ADD R1, R2, R3
if R2=0 then— if R2=0 then
ADD R1, R2, R3 ADD R1, R2, R
SUB R4, R5, R6
if R2=0 then
~ SUB R4, R5, R§
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Improving cost of control hazard by predic-
tion

e Cancelling Branches:
Need prediction for direction of branch
If branches behaves as predicted, then branch
delay slot instruction is executed as above
If prediction is wrong, the instruction in delay
slot is turned to NOOP.
Advantages: More freedom for compiler to
find instructions to fill slot.

Compiler Effectivness in Filling Delay Slot
Fills about 60% of branch delay slots
80% of instructions on delay slot do useful work
Per formanceimprovements = .8 X .6 = .48 or 48%
of slots are eliminated

Methods of Static Predictions:-

1-From behavior of programs of most applications
(backward branches are most likely taken)

2-Use profile information collected from earlier
runs.
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Evaluating the Performance of the 4 Schemes
of branch handling
Pipelinespeedup = pipelinedepth(Ideal)-~(1+4branch—
frequency X branch — penalty)

Example: Assume branch frequency = 16%, taken
branch = 67%, delay slot could fill only 70% and

only 65% are useful instructions.

1-Always stall per formance = 14+.16x1 = 1.16CPI
2-Predict branch not taken performance = 1 +

16 x (.67) =1.11CPI

3-Predict branch taken in DLX performance =

14+ .16 x1=1.16CPI

4-Delayed branch performance = 1 + .16 x (.3 4+

.7 x .35) = 1.08CPI
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Dealing with Exceptions
Harder to handle in a pipeline architecture
Instructions are executed in steps, and we do not
know if the instruction should change the state of
the CPU sfely so it can restart from same condi-
tion if an exception occurs.
Types of Exceptions:-

e 1-1/O device request

e 2-OS service call

e 3-Arithmetic errors

e 4-Page Fault

e 5-Memory protection violation

e 7/-Hardware malfunction



Types of Exception based on their behavior

e 1-Synchronous versus Asynchronous:
Synchronous occurs at the same place in pro-
gram execution.

Asynchronous occurs at any place and most
likely from external events.

e 2-User requested versus coerced (coerced caused
by hardware that is not under user control).

e 3-User maskable versus nonmaskable (disabled
or not)

e 4- \Within versus between instructions: in the
middle of instruction execution (harder), VS
between instructions

e 5-Resume versus terminate: If program stops
after the interrupt, it terminate.
If program continues execution it resumes.
Terminte is easier to implement.

It is harder to implement interrupts that require
to resume if they are within instruction.
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Handling Interrupts

e Collect State

e Correct cause of interrupt
e Restore state

e [Try instruction in progress

Handling Interrupts in Pipeline It is difficult
to handle interrupts in pipeline architecture be-
cause:
1-They might occure within instruction (EX or
MEM stages)
2-They must be restartable . For example if vir-
tual memory page fault result from data fetch
(MEM stage), By the time it is seen, several
other instructions will be executed. The page
fault must be restartable.
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Handling interrupts in pipeline requires the
following:-

e Force a trap into pipeline on next IF

e Until trap is taken, turn off all writes for fault-
ing instruction and all that follow

e After OS receives control, it saves PC of fault-
ing instruction (return from exception)

When using delayed branch, then we need to
save more than one PC value (taken and not
taken).
Precise Interrupts:
If we can stop pipeline so that the instruction just
before interrupt causing instruction completes and
those after it can restart from scratch.
Some machines does not support precise inter-
rupts.
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Types of Exceptions on MIPS:

pipeline stage | Exception

IF Page fault on fetch;
memory protection

ID Illegal OP Code

EX Arithmetic fault

MEM Data fetch page fault;
memory protection

WB None

Handling Exceptions in MIPS:

Multiple exceptions might occur in same clock cy-
cle from pipeline stages (MEM and EX) or they
might occur out of order. EXxceptions must be
handled as in nonpipelined datapath (in order).

Hardware posts each interrupt in a status vector
associated wuth each instruction as it goes down
the pipeline. If the status vector indicates an ex-
ception, any control signal that may cause data
to be written must be turned off (REG, MEM).
When instruction enters WB , status vector is
checked and any exception if set are handled as
iIf they would occur in a nonpipelined machine.
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Extending MIPS Pipeline to Handle Multi-
cycle Operations

FP operations take longer to perform, need to

allow pipeline to handle longer operations by re-
peating EX cycle.

Can use multiple floating point function units to
allow overlapping of operations.

Modified MIPS Pipeline

Function units allow pipeline operations and mul-
tiple operations

Each function unit has different latency and through-
put (pipelined/non pipelined) as:-

e ALU INT unit has 1 cycle EX, latency=0
e FP Multiply has 7 cycles EX, latency= 6
e FP Add has 4 cycles EX, latency =3

e FP Divide has 25 cycles EX, latency=24 (non-
pipelined)
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MultiCycle Pipeline

INT

EX

|- ID

———

- MULT

N. Mekhiel

FP
ADD

FP
DIV

MEM

WB




Int

EX

IF | ID M1 = m2 = M3 = M4 M5= | M6 |= M7 MEM| WB
Al AZ A3 A
25 Cycles
FP
DVIVDE

Pipeline with Multiple Cycle Function Units
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The Problems with variable length Pipeline
to support Multicycle:

e Structural hazards for using nonpipelined Di-
vide function unit. Any other Divide instruc-
tion must wait until the first Divide instruction
completes

e Increase the frequency of RAW hazards be-
cause the WB is delayed.

e Structural hazard due to having two writes at
the same cycle. FP Register file has one write
port.

e WAW hazards are possible

e Instructions can complete out of order affect-
ing exceptions

N. Mekhiel



Example of Multi-Cycle Pipeline

Instruction 1 |23 |4 |5 |6 ]| 7|8 9 | 10| 11| 12| 1314 | 15| 1617 |18
LD F4, 0(R2) F1 | D1 | EX1| MEIW\ WB1
RAW
Multd FO, F4, F6 F2 | D2 |STL| M1 |M2 | M3 | M4 | M5 [M6 | M7 Q/IEZ WB2
N\ RAW q/
ADDD F2, FO, F8 F3 |STL| D3| STY STU STU STL STILSTL|'A1l | A2 | A3 | A4 @WBS
/,
7 RAW
SD F2, 0(R2) sTU F4 | ST sTU STU STU STUSTL| D4 | EX4 STL STL@ ME4 |WB4

J

structure hazard

N. Mekhiel



Problems with Multicycle Pipeline:
Structural Hazard (one write port in FP RF)

9| 10| 11| 12| 13|14 | 15| 1617

Instruction 1 213 4 |5 6 7 |8

Multd FO, F4,F6 | F1 | p1 M1 | M2 |M3 | M4 | M5 | M6 | M7 ME1@

Instruction2 F2 | D2 |EX2|ME2| WB2 ( \
Instruction3 F3 | D3 |EX3|ME3| wWB3 \ )
F4 | D4| AL| A2 | A3 | A4 | ME4 @4
ADDD F2, FO, F8 /
\\\ STL| Al | A2 |A3 | a4 MEA\\ WBA4

Structural Hazard (one write port)
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Dealing with structural hazard: two writes
at same time

e 1-Use shift register that indicates when an in-
struction that has been isuued can use the
RF.

If an instruction is in ID needs to use RF the
same time as the isseued instruction, the in-
struction inID is stalled for one cycle.

Shift one bit the register and repeat the above

e 2- Second scheme is to Stall a conflicting in-
struction at MEM stage.
Simpler but not optimal as it might allow stalls
to occur from more than one place complicat-
ing control.
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WAW Hazard in Multicycle Pipeline
Example of WAW Hazard

Instruction 1 213 (4|5 6 7

8
ADDDF2,FO0,F8 | F1 | p1| A1 | A2 | A3 |A4 MEl@
Instruction2 F2 | D2 | Ex2 ME2 |WB32 /R

Yz

LD F2, 0(R2) F3 | D3 |EX3 ME3 @

WAW Hazard

Dealing With WAW Hazard

e Delay Issuing LD instruction until ADD is in
MEM stage

e STAMP out ADD results, so it does not write
and let LD issue right away

Detection of WAW
If an instruction in ID wants to write to same

register as an instruction already issued.
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Before Issuing FP Instruction, Control Check
the following:

e Check for structural hazards.
Wait until required function unit is not busy
(Divide, one write port).

e Check for RAW hazards.
Wait until source registers are not listed as
destination by any Exec unit

e Check WAW hazards.
If any instruction in pipeline has same desti-
nation as this instruction, stall issue in ID.

e Check forwarding
If destination register in MEM /WB or EX/MEM
or A4/ MEM , M7/MEM D/MEM is source
register of FP instruction, activate MUX to
forward it.
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Maintaining Precise Exceptions with MIPS

Multiple Cycle Execution Units
Example:

DIVF FO, F2, F4 ; finishes at C28
ADDF F10, F10, F8 ; finishes at C9
SUBF F12, F12, F14 ; finishes at C14

Example:

DIVF FO, F2, F4

ADDF F10, F10, F8 Cycle9

SUBF F12, F12, F14 Cyclel4

Complication for precise exception due to out of order completion

Cycle2¢

Instructions ADDF, SUBF complete before DIVF

OUT OF ORDER.

NoO problem because there is no data dependency,

but will result in imprecise exception.
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Example
If SUBF causes FP Exception, when ADDF com-
pleted and has overwritten its source F10 before
DIVF complete, it is very difficult to restore the
state to what it was before.

Dealing with Exception

1-Ignore the problem and settle for imprecise ex-
ception

2-Buffer results until all operations that were is-
sued earlier are complete.

3-Allow exceptions to become some what impre-
cise, but keep enough information for trap handler
to create precise exception (software)

4-Hybrid scheme that allows instructions to issue
If all previous instructions are gauranteed to com-
plete without causing exception

Performance of FP Pipeline: FP SPEC bench-
marks, total number of stalls/ FP instruction ranges
from .65 to 1.21 cycles.
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A.l.a

Assume R3=R2+396

Find timing without forwarding and flush branch.

L: LW R1, O0(R2) F1D1E1M1W1
ADDI R1, R1, #1 F2D2S-D2E2M2W2

SW R1, 0(R2) F3D3S-D3E3M3W3

ADDI R2, R2, #4 FAD4E4M4W4

SUB R4, R3, R2 F5D5S-D5ESMEWS

BNZ R4, Loop F6D6S-DEE6GM6E!

]
1234567389 1011121314151617

Time=18+ 17x98



A.1.b

with forwarding

Loop: LW R1, O0(R2) F1D1E1IM1W1
ADDI R1, R1, #1 F2D2S-E2M2W2

SW R1, O(R2) F3S-D3E3M3W3

ADDI R2, R2, #4 FADAE4AMAW4

SUB R4, R3, R2 F5D5SESM5W5
BNZ R4, Loop F6DBE6M6W6

FN
1234567389 10

Time= 11 + 10x98

{\bf A.1.c}
Use forwarding + Scheduling
Loop: LW R1, 0(R2)

ADDI R2, R2, #4

ADDI R1, R1, #1

SUB R4, R3, R2

BNZ R4, Loop

SW R1, -4(R2)

time=10 + 6x98
N. Mekhiel



A.2

Show the timing of FP Pipeline with no forwarding
Branch after D

LD FO, 0(R2) FDEMW

LD F4, 0(R3) FDEMW

MUL FO,FO,F4  FDSDEEEEEEEMW

ADD F2,FO,F2 FSSSSSSSSDEEEEMW

ADD R2,R2,#8 FDEMW

ADD R3,R3,#8 FDEMW

SUB R5,R4,R2 FSDEMW

BNZ R5, Loop FSSDEMW
F

1234567891234567891234
Time=9+9+5=22



A2

Show the timing of FP Pipeline with
Branch after D

LD FO, O(R2) FDEMW

LD F4, O0(R3) FDEMW

MUL FO,FO,F4  FDSEEEEEEEMW

ADD F2,F0,F2 FSDSSSSSSEEEEMW

ADD R2,R2,#8 FSSSSSSDEMW
ADD R3,R3,#8 FDEMW
SUB R5,R4,R2 FDSEMW
BNZ R5, Loop FSDEMW
F
123456789123456789

Time=9+9=18

forwarding



A.3 Forwarding and scheduling and delayed branch
LD FO, O0(R2) FDEMW

LD F4, O0(R3) FDEMW

ADD R2,R2,#8  FDEMW

MUL FO,FO,F4 FDEEEEEEEMW

SUB R5,R4,R2 FDEMW
ADD F2,FO0,F2 FDSSSSSEEEEMW
BNZ R5, Loop FSSSSSDEMW
ADD R3,R3,#8 FDEMW
FSDEMW
12345678912345

Time=9+5= 14



