
PipeliningOverlap exeution of multiple instrutions.Implementation method similar to assembly lineonept.De�nitions:Pipeline stage: smallest step of taskGain from pipelining: Number of stagesPipelining improves Throughput (number of in-strutions exeuted per unit time) not the timeto exeute instrutionmMahine yle time: time of slowest stage "tomove instrution one step".Pipelining improves performane by N fold whereN is number of stages.Pipelining is invisible to programmer "no softwarehange"Limitation of pipelining: Partioning of instru-tion exeution, slowest stage , overhead betweenstages (lath), hazards.N. Mekhiel

opcode rs1 rt rd function
6... 10 11.. 15 16.. 20 21... 310.. 5

18 17 arithadd 19

add $17, $18, $19 ; $17 [$18] + [$19]

opcode rs1 rd Immediate
11.. 156... 100.. 5 16.... 31

lw $17, 100($18) ; $17 MeM[100+ ($18)]

lw 18 17 100

Instruction Format:−

Instruction Execution

1−R Type

Example:

2− I Type

Example:

3− J Type

Example: J L1 ; PC=L1+PC

opcode
0.. 5 6 31

PC Offset

N. Mekhiel

5 Steps to Exeute Instrutions:� IF :Instrution Feth: Feth Instrution from Mem-ory to IR� ID:Instrution Deode: Deode Instrution, Getoperands� EX:Exeute Instrution� Mem:Read /Write Memory for load/store instru-tions� WB:Write bak results to Register FileN. Mekhiel

Exeuting Instrutions (Feth and Deode):

PC+4

4

PC MEM IR
Add data

R

IR
Registers A

B

Imm.

sign Ext.

6..10

11..15

16..31

ID:

A = R[IR 6..10] ; rs1

B = R[IR11..15] ; rs2

Imm = IR(16)^16 ## IR 16..31

IF: IR = M[PC] , PC = PC +4

N. Mekhiel

Exeuting Instrutions (Exeute and Mem-ory):
Mux

Zero

Mux ALU

Cond.

ALUout

PC+4

Imm.

A

B

Execution:
−R type: add R1, R2, R3

ALUout = A OP B ;
ALUout= (R2 + R3)

I− Type: addi R1, #500
ALUout= A OP Imm.

Load/store : LW R1, 100(R2)
ALUout = A + Imm = R2 + 100

Branch : Jeqz R1, 100
ALUout = (PC+4) + Imm = PC+4 + 100 (If R1 =0)
OR PC = PC +4 (If R1 = !0)

Mux PCPC+4
ALUout

Cond.

Memory: Load/store and branch completion

LMD = M[ALUout] ; LW

M[ALUout] = B ; SW

PC= IF (cond) ALU out
 else PC+4

Dout

Din

LMD

MEM

B

Add
ALUout

N. Mekhiel

Exeuting Instrutions (Write Bak):
Registers

IR

Mux
Mux16..20

11..16
Di

LMD

ALUout

Reg {IR(16..20)] = ALUout ; R1= R2+R3

ADD R1, R2, R3 ;

Register − Register (ALU operation)

Write Back:

Reg[IR(16..20)] = LMD ; R1 = M[100+R2]
LW R1, 100(R2)

Load Instruction

Reg−Imm
ADD R1, R2, 100
Reg[IR(16..20) = ALUout
R1= R2 + 100

Port
Add

N. Mekhiel

Exeuting Instrutions (ALU Operations):
Mux

Mux

Mux
MuxPC

Inst.
Memory

Address

rd

rs1

rs2

Sign
Extend

16

Add

ALU
A

B

32

Zero?

4

Address

Memory
Data

LMD

Din

IF ID EX MEM WB

IR

DLX Pipeline Datapath

IF/ID

MEM/WBEX/MEMID/EX

Example: add R1, R2, R3 If PC =1000

1000

1004

2

3
Register
File1

R2

R3

R2+R3

R2+R3

N. Mekhiel

Exeuting Instrutions (Load):
Mux

Mux

Mux
MuxPC

Inst.
Memory

Address

rd

rs1

rs2

Sign
Extend

Add

ALU
A

B

Zero?

4

Address

Memory
Data

LMD

Din

IF ID EX MEM WB

IR

DLX Pipeline Datapath

IF/ID

MEM/WBEX/MEMID/EX

Example: LW R1, 100(R2) If PC =1000

1000

1004

2

Register
File1

R2

100

100

R2+100

LMD

N. Mekhiel

Exeuting Instrutions (Branh):
Mux

Mux

Mux
MuxPC

Inst.
Memory

Address

rd

rs1

rs2

Sign
Extend

Add

ALU
A

B

Zero?

4

Address

Memory
Data

LMD

Din

IF ID EX MEM WB

IR

DLX Pipeline Datapath

IF/ID

MEM/WBEX/MEMID/EX

Example: beqz R1, 200 If PC =1000

1000

1004

Register
File

R1

200

1004

200

1004

1204

N. Mekhiel

Example: Find the performane of unpipelinedDLX if eah instrution takes 4 yles and theload takes 5 yles. The frequeny of use forload is 26 %.T = 4� (1� :26) + :26� 5 = 4:26ylesPipelined DLXUsing the same data path with 5 stages:-IF, ID, EX, Mem, WBEah stage is responsible for ompleting one taskeah lok yle.Exeuting one Instrution eah yle.5 Instrutions are being overlapped in pipeline (ex-euting 5 instrutions in parallel).N. Mekhiel

Exeuting Instrutions in Ideal Pipeline

F5 D5 EX5 M5 WB5

M1 WB1F1 D1 EX1

F2 EX2D2 M2 WB2

EX3F3 D3 M3 WB3

M4F4 D4 EX4 WB4

Executing Instructions in the Pipeline

Instruction # Clock cycle number

1 2 3 4 5 6 7 8 9

1

5

4

3

2

1 2 3 4 5

− Ideal pipeline executes 1 Instruction per cycle.

− Each instruction takes 5 cycles to complete.

− Pipline improves throughput by overlapping instruction executions.

Example (Ideal Pipeline)

N. Mekhiel

Requirements to Support Pipelining:� Need separate Instrution and Data Memory.� Memory BandWidth is 5 Times (1 per lokyle ompared to 1 every 5 yles)� Need Lathes between pipeline stages to allownew instrution to hange the result of stage.This ould limit speed of lok due to lathdelay (Max number of stages limited by lathdelay).� Control must forward Data and ontrol signalsfrom stage to stage by opying it to next stagelathExample: ADD R1, R2, R3In WB stage , the results of ALU must bewritten to R1, so (IR 16..20) must be in WBlath.N. Mekhiel

Performane Issues in PipeliningIdeal Throughput = 1 Instrution per yleLimitations due to: Overhead of lathes betweenpipeline stages, imbalane between stages, andHazards.Example: In unpipelined proessor that has alokyle= 1 ns, and all ALU operations and branhesuses 4 yles and 5 yles fro memory. Frequen-ies are: 40% for ALU, 20% branhes and 40%memory. If lok yle time inreases by .2 ns,�nd speedup of pipelined proessor.Tforunpipelined = :4� 4+ :2� 4+ :4� 4 = 4:4nsTofpipelinedinstrution = 1� 1:2speedup = 4:4� 1:2 = 3:7Pipeline HazardsHazard: Situation that prevent next instrutionfrom exeutingN. Mekhiel

Types of Hazards:1- Strutural Hazards: Hardware annot supportall possible ombinations due to resoure on-its. (Example Inst. Mem, Data Mem)Data Hzards: An instrution depends on the re-sults of previous instrution that has not yet om-pleted.Control Hazards: In branhes, the fething of nextinstrution is not known in time.Dealing with HazardsSimplest solution: stall pipeline, all instrutionsafter stalled instrution must stall too.Performane of Pipeline with Stall:speedup = (average�instrution�time�unpipelined)�(average� instrution� time� pipelined)speedup = ((pipeline�depth)�lok�unpipelined)�((1+ stall� yles� per� inst)� lok� pipelined)Example: If FP multiply stall pipeline by 5 yles,and has frequeny of 14%. Find performane ofpipeline.T = (1+ :14� 5) = 1:7Cyles N. Mekhiel

Exeuting Instrutions in Pipeline
Mux

Mux

Mux
MuxPC

Inst.
Memory

Address

rd

rs1

rs2 Register
File

Sign
Extend

16

Add

ALU
A

B

32

Zero?

4

Address

Memory
Data

LMD

Din

IF ID EX MEM WB

IR

DLX Pipeline Datapath

IF/ID

MEM/WBEX/MEMID/EX

N. Mekhiel

Execution Steps in Pipeline:−

1− IF : Instruction Fetch
IR Mem[PC]

NPC PC+4

2− ID: Instruction Decode

A IR(6..10)

B IR(11..16)

Decode Instruction

a−memory refrences

b−ALU operations

16

3− EX: Execution

ALUout A op B

ALUout A + [(IR16) ## IR(16..31)]

 if store SMD B

c−Branch or Jump

Cond A op 0
ALUout NPC + [(IR16) ## IR(16..31)]

16

ALUout A + [(IR16) ## IR(16..31)]
16

 if immediate

Instruction Execution

N. Mekhiel

 a− memory references

 LMD Mem[ALUout] if load

b− Branch

 if (Cond) then PC ALUout

 else PC PC+4

5−WB: Write Back

a− ALU operations

 Reg[IR(16..20)] ALUout

 if Immediate: Reg[IR(11..15)] ALUout

b−load

 Reg[IR(11..15)] LMD

 Mem[ALUout] SMD if store

4− Mem: Memory

Execution Steps in Pipeline

N. Mekhiel

M1 WB1F1 D1 EX1

F2 EX2D2 M2 WB2

EX3F3 D3 M3 WB3

1− Structural Hazards:
 Not enough resources or unit is not pipelined

Pipeline Hazards

Example (Pipeline Hazards)

Instruction Clock cycle number

1 2 3 4 5 6 7 8 9

lw$2, 20($16)

add$4, $2, $6

bnz $7, Loop

sub$1, $3, $5

2

4

3

1

M4F4 D4 EX4 WB4

hazard#1

hazard#2

Examples:−
 −Cycle 4, both instruction1 and instruction4 use the memory.
 solution: use separate Instruction and Data Memory

−Cycle 5, Register file is used for WB and also read operand in Decode.
 solution: use different read and write ports.

N. Mekhiel

Data HazardsPipeline hanges the order of read/write aessesto operands ausing Data hazards. This auses itto not be the same as seen by sequential order.Types:-� RAW:Write to XRead XIf read X before write to X� WAW:Write 5 to XWrite 7 to XIf write 7 is before write 5� WAR:Read XWrite to XIf write to X before Read X� RAR:Not a HazardN. Mekhiel

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

Instruction 1 2 3 4 5 6 7 8 9

sub$2,$1,$#3

and$12,$2,$5

or$13,$6,$2

add$14,$2,$2

sw$15,100($2)

$2

hazard hazard okay by no
hazardsplitting

wr,rd

Data Hazards

−Source operands for four instructions need $2 at ID (2nd cycle)

Example (with data hazards)

−Last four Instructions depend on results in $2

−Result in $2 available at end of WB (Clock#5)

−Can split Write, read in register file to remove data hazard at cycle #5

N. Mekhiel

Example (with data hazards)

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

Performance= 11 cycles compared to 9 cycles for ideal pipeline

Solution: Stall Pipeline (use nop)

Dealing with Data Hazards

Example with data hazards

 22% slower (too much)

Instruction 1 2 3 4 5 6 7 8 9

sub$2,$1,$#3
$2

sw$15,100($2)

add$14,$2,$2

and$12,$2,$5

or$13,$6,$2

nop

nop

okay by
splitting
wr,rd

hazard
no

hazard
no no

hazard

IM Reg ALU DM

IM Reg ALU

N. Mekhiel

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

Data Hazards

Instruction 1 2 3 4 5 6 7 8 9

sub$2,$1,$#3

and$12,$2,$5

or$13,$6,$2

add$14,$2,$2

sw$15,100($2)

$2

forward
to A

forward
to B

Example (with data hazards)

Solution with forwarding (zero stalls)

4−Need fowarding paths, multiplexors and detection of dependency.

3−Keep ALUout (results) around and forward it to ALUin (source).

2−Source operands are needed in EX stage (later than ID).

1−Results are valid and ready at the end of EX stage (early than WB).

N. Mekhiel

hazards conditions:−

1−EX/MEM.Reg.Rd = ID/EX.Reg.(Rs/Rt)

Dependency Detection in the given Example:−

2−MEM/WB.Reg.Rd = ID/EX.Reg.(Rs/Rt)

1− sub$2,$1,$2 (EX/MEM.Reg.$2) = and$12,$2,$5(ID/EX.Reg.$2)

Dependency Detection

2− sub$2,$1,$2 (MEM/WB.Reg.$2) = or$13,$6,$2(ID/EX.Reg.$2)

A

B

Rs1

Rt

ID/EX EX/MEM MEM/WB

forwrd.
unit

Di

address
Do

Data
MEM

DMEM

m
ux

m
ux

ALU

Rd

Data Hazards

Solution: Data Forwarding

N. Mekhiel

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

Instruction 1 2 3 4 5 6 7 8 9

lw$2, 20($8)

add$9,$3,$7

or$6,$1,$2

and$4,$2,$5

M($8+20)

forward
fails okay

forward

Data Hazards

When Forwarding Fails

must stall the pipeline

Cannot forward in negative time

N. Mekhiel

ALU DM Reg

Reg ALU DM Reg

IM Reg ALU DM Reg

Instruction 1 2 3 4 5 6 7 8 9

lw$2, 20($8)

add$9,$3,$7

or$6,$1,$2

and$4,$2,$5

M($8+20)

IM Reg ALU DM Reg

IM Reg

IM

bubble
bubble

bubble

When Forwarding Fails

Data Hazards

Solution: Stall pipeline (insert bubble)

N. Mekhiel

SPEC Benchmarks show % of loads causing stalls as :−

 1− Static scheduling using Compiler

 Compiler can schedule instructions between loads and the following

2− Dynamic scheduling using Hardware

Data Hazards

 gcc 23% compress 24%
 espresso 12% eqntott 41%

 average = 34%

assume that 50% of instructions are loads

CPI= 1 + .5*.34*1 = 1.17 cycle per instruction

 Could use scoarboard to detect dependency and allow out of order

 instruction execution to eliminate the stalls.

instructions to avoid stalls.

Performance of Pipeline with stalls

Solution: Pipeline Scheduling

N. Mekhiel

ALU−out

DMEM

Di

R1

Example:

Forwarding to DM for Store Instruction

ADD R1, R2, R3

SW 12 (R1), R4; RAW

LW R4, 0(R1) ; RAW

R4

1

Add R1, R2, R3

SW 12(R1), R4

LW R4, 0(R1)

7

F1 D1 EX1 M1

F2 EX2D2 WB2M2

WB1

F3 D3 EX3 M3 WB3

Instruction 2 3 4 5 6

1−ALUout is valid at end of cycle 3=R1,
 LW Instruction needs R1 at start ofcycle 4 (forward from ALUout)

2−Data from memory for LW is valid at end of cycle 5, SW needs it on cycle 6 (forward from DM)N. Mekhiel

Software Sheduling to Avoid Load DataHazardCompiler an shedule and rearrange ode to avoidload hazards.Compiler uses "pipeline sheduling" to avoid hav-ing the following instrution using dest of load.Example: C=A+B; D=E-F;LW R1, B ; R1=BLW R2, A ; R2=AADD R3, R1, R2 ; STALL FOR ONE CYCLEdue to load R2SW C, R3; C= A+BLW R4, E ;LW R5, FSUB R6, R4, R5 ; STALL ONE CYCLE due toload R5SW D, R6N. Mekhiel

Sheduling the CodeLW R1, B ; R1=BLW R2, A ; R2=ALW R4, EADD R3, R1, R2 ;LW R5, FSW C, R3SUB R6, R4, R5 ; STALL ONE CYCLE due toload R5SW D, R6Tradeo�s: Need to use di�erent register for E(More registers)Control for PipelineMust be able to forward data to di�erent unitsMust be able to stall if forwarding annot be usedDetails depend on Implementation.
N. Mekhiel

Control HazardsControl Hazards ost more performane loss thandata hazards.The problem is more omplex beause:-� branh target address unknpwn until Exeu-tion stage� CC result of zero detet unit to deide if branhis taken/not taken at Memory stage� Don't know that instrution is a branh untilID StageN. Mekhiel

Dealing with Control Hazards:Simple solution: Stall pipeline for 3 ylesAfter stall pipeline, must repeat IF stagePerformane ost due to ontrol stalls
40 beq R1, R3, 36

80 LW R4,100(R7)

52 ADD R14, R2, R2

48 OR R13, R6, R2

44 AND R12, R2, R5

1 3 4 5 7 8 92 6

F1 D1 EX1 M1 WB1

F2 stall stall

F5 D5 EX5 M5 WB5

CC

stall

Need to stall 3 cycles, CC results are detected in Mem stage

Do not know that instruction is a branch until ID stage

Simple solution: stall pipeline

N. Mekhiel

Assume 30% branh frequeny, ontrol stalls 3yles.Performane = 1+ :3� 3 = 1:9CPIThis is about 50% redution in performane (Toomuh)Methods For Reduing branh Penalty� Find result of ondition ode earlier� ompute the branh target earlier� an perform both in ID stage by ading extrairuits(adder, omparator)N. Mekhiel

Methods For Reduing branh Penalty

Mux
Mux

Mux

PC

Inst.
Memory

Address

rd

rs1

rs2 Register
File

Sign
Extend

16

Add

ALU
A

B

32

4

Address

Memory
Data

LMD

Din

EX MEM WB

IR

IF/ID

MEM/WBEX/MEMID/EX

Zero?

IDIF
Add

Branch Hazard reduced by moving Zero detect and branch target calculation to ID

DLX Pipeline Datapath

N. Mekhiel

Cost of redued branh penaltyCost of branh penalty is still 1 yle.Always stall until branh diretion is known inID stage, must feth instrution again if it is abranh.Performane with 1 stall and 30% frequeny ofbranh Performane = 1+ :3� 1 = 1:3, 30% lossin performane.Improving ost of ontrol hazard by predi-tion� Predit branh is not takenExeute suessor Instrutions in sequeneIf branh is taken, need to turn feth instru-tion to no op.If 47% of branhes are not taken, then it willsave 47% of branh ost.performaneost = 1+ :3�(1� :47)�1 = 1:15ost only 15% loss in performane.N. Mekhiel

Improving ost of ontrol hazard by predi-tion� Predit branh is taken53% of branhes are takenBut BTA is not known until ID stageAlways need 1 yle stallPerformane = 1+:3�1 = 1:3 ;No advantagein DLX� Delayed branhDe�ne branh to take plae after a followinginstrution. This instrution will be exeutedwhether the branh is taken or not.Example: 3 yles delayed branhbranh instrutionsequential instrution1sequential instrution2sequential instrution3branh target if taken1 delay slot for DLX allows proper deision tohide branh latenyThe important task is where to get instru-tions to �ll the delay slot:

1 3 4 5 7 8 92 6Instruction

i−untaken branch Fi Di EXi Mi WBi

i+1 Delay Slot

Di+1 Ei+1 Mi+1Fi+1 Wi+1

i+2 Instruction

i+3 Instruction

Branch Target Inst.

Branch Target Inst+1

1 3 4 5 7 8 92 6Instruction

i−taken branch Fi Di EXi Mi WBi

i+1 Delay Slot

Di+1 Ei+1 Mi+1Fi+1 Wi+1

i+2 Instruction

i+3 Instruction

Branch Target Inst.

Branch Target Inst+1N. Mekhiel

Where to get Instrutions to �ll Branh De-lay Slot� From before branh. It is always okay� From Target: Valuable only when branh istaken, and must be okay to exeute if branhnot taken� From Fall Through: Valuable only when branhis not taken. Must be okay to exeute ifbranh is taken
ADD R1, R2, R3

if R2=0 then

delay slot

delay slot
if R2=0 then

ADD R1, R2, R3

SUB R4, R5, R6

Becomes

if R2=0 then

ADD R1, R2, R3

From before From Target

Becomes

if R2=0 then

ADD R1, R2, R3

SUB R4, R5, R6

Becomes

From fall through

delay slot

ADD R1, R2, R3

if R2=0 then

SUB R4, R5, R6

ADD R1, R2, R3

SUB R4, R5, R6

if R2=0 then

N. Mekhiel

Improving ost of ontrol hazard by predi-tion� Canelling Branhes:Need predition for diretion of branhIf branhes behaves as predited, then branhdelay slot instrution is exeuted as aboveIf predition is wrong, the instrution in delayslot is turned to NOOP.Advantages: More freedom for ompiler to�nd instrutions to �ll slot.Compiler E�etivness in Filling Delay SlotFills about 60% of branh delay slots80% of instrutions on delay slot do useful workPerformaneimprovements = :8� :6 = :48 or 48%of slots are eliminatedMethods of Stati Preditions:-1-From behavior of programs of most appliations(bakward branhes are most likely taken)2-Use pro�le information olleted from earlierruns.N. Mekhiel

Evaluating the Performane of the 4 Shemesof branh handlingPipelinespeedup = pipelinedepth(Ideal)�(1+branh�frequeny � branh� penalty)Example: Assume branh frequeny = 16%, takenbranh = 67%, delay slot ould �ll only 70% andonly 65% are useful instrutions.1-Always stall performane = 1+:16�1 = 1:16CPI2-Predit branh not taken performane = 1 +:16� (:67) = 1:11CPI3-Predit branh taken in DLX performane =1+ :16� 1 = 1:16CPI4-Delayed branh performane = 1 + :16 � (:3 +:7� :35) = 1:08CPIN. Mekhiel

Dealing with ExeptionsHarder to handle in a pipeline arhitetureInstrutions are exeuted in steps, and we do notknow if the instrution should hange the state ofthe CPU sfely so it an restart from same ondi-tion if an exeption ours.Types of Exeptions:-� 1-I/O devie request� 2-OS servie all� 3-Arithmeti errors� 4-Page Fault� 5-Memory protetion violation� 7-Hardware malfuntion

Types of Exeption based on their behavior� 1-Synhronous versus Asynhronous:Synhronous ours at the same plae in pro-gram exeution.Asynhronous ours at any plae and mostlikely from external events.� 2-User requested versus oered (oered ausedby hardware that is not under user ontrol).� 3-User maskable versus nonmaskable (disabledor not)� 4- Within versus between instrutions: in themiddle of instrution exeution (harder), VSbetween instrutions� 5-Resume versus terminate: If program stopsafter the interrupt, it terminate.If program ontinues exeution it resumes.Terminte is easier to implement.It is harder to implement interrupts that requireto resume if they are within instrution.N. Mekhiel

Handling Interrupts� Collet State� Corret ause of interrupt� Restore state� Try instrution in progressHandling Interrupts in Pipeline It is diÆultto handle interrupts in pipeline arhiteture be-ause:1-They might oure within instrution (EX orMEM stages)2-They must be restartable . For example if vir-tual memory page fault result from data feth(MEM stage), By the time it is seen, severalother instrutions will be exeuted. The pagefault must be restartable.N. Mekhiel

Handling interrupts in pipeline requires thefollowing:-� Fore a trap into pipeline on next IF� Until trap is taken, turn o� all writes for fault-ing instrution and all that follow� After OS reeives ontrol, it saves PC of fault-ing instrution (return from exeption)When using delayed branh, then we need tosave more than one PC value (taken and nottaken).Preise Interrupts:If we an stop pipeline so that the instrution justbefore interrupt ausing instrution ompletes andthose after it an restart from srath.Some mahines does not support preise inter-rupts.
N. Mekhiel

Types of Exeptions on MIPS:
pipeline stage ExeptionIF Page fault on feth;memory protetionID Illegal OP CodeEX Arithmeti faultMEM Data feth page fault;memory protetionWB NoneHandling Exeptions in MIPS:Multiple exeptions might our in same lok y-le from pipeline stages (MEM and EX) or theymight our out of order. Exeptions must behandled as in nonpipelined datapath (in order).Hardware posts eah interrupt in a status vetorassoiated wuth eah instrution as it goes downthe pipeline. If the status vetor indiates an ex-eption, any ontrol signal that may ause datato be written must be turned o� (REG, MEM).When instrution enters WB , status vetor isheked and any exeption if set are handled asif they would our in a nonpipelined mahine.N. Mekhiel

Extending MIPS Pipeline to Handle Multi-yle OperationsFP operations take longer to perform, need toallow pipeline to handle longer operations by re-peating EX yle.Can use multiple oating point funtion units toallow overlapping of operations.Modi�ed MIPS PipelineFuntion units allow pipeline operations and mul-tiple operationsEah funtion unit has di�erent lateny and through-put (pipelined/non pipelined) as:-� ALU INT unit has 1 yle EX, lateny=0� FP Multiply has 7 yles EX, lateny= 6� FP Add has 4 yles EX, lateny =3� FP Divide has 25 yles EX, lateny=24 (non-pipelined)N. Mekhiel

MultiCyle Pipeline

IF ID

INT
EX

FP/INT
MULT

FP
ADD

FP
DIV

MEM WB

N. Mekhiel

IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

Int
EX

A1 A2 A3 A4

 DVIVDE
FP

25 Cycles

Pipeline with Multiple Cycle Function UnitsN. Mekhiel

The Problems with variable length Pipelineto support Multiyle:� Strutural hazards for using nonpipelined Di-vide funtion unit. Any other Divide instru-tion must wait until the �rst Divide instrutionompletes� Inrease the frequeny of RAW hazards be-ause the WB is delayed.� Strutural hazard due to having two writes atthe same yle. FP Register �le has one writeport.� WAW hazards are possible� Instrutions an omplete out of order a�et-ing exeptionsN. Mekhiel

Example of Multi-Cyle Pipeline
Instruction 1 3 4 6 8 11 12 13 162 5 7 9 10 1514

LD F4, 0(R2)

Multd F0, F4, F6

ADDD F2, F0, F8

SD F2, 0(R2)

RAW

RAW

RAW

F1 D1 EX1 ME1 WB1

F2 D2

F3 STL STL STL STL

STL STL STL STL STL

structure hazard

17

WB2ME2M7M6M5M4M3M2M1STL

WB3ME3A4A3A2A1STLSTLSTL D3

STL STL D4F4 STLSTLSTLEX4 ME4 WB4

18

N. Mekhiel

Problems with Multiyle Pipeline:Strutural Hazard (one write port in FP RF)
Instruction 1 3 4 6 8 11 12 13 162 5 7 9 10 1514

F1 D1

F2 D2

F3 D3

17

Multd F0, F4, F6 M1 M3 M4 M5 M6 M7 ME1 WB1M2

Instruction2 ME2 WB2EX2

EX3 ME3 WB3

ADDD F2, F0, F8

Instruction3

F4 D4 A1 A2 A3 A4 ME4 WB4

A1 A2 A3 A4 ME4 WB4

Structural Hazard (one write port)

STL

N. Mekhiel

Dealing with strutural hazard: two writesat same time� 1-Use shift register that indiates when an in-strution that has been isuued an use theRF.If an instrution is in ID needs to use RF thesame time as the isseued instrution, the in-strution inID is stalled for one yle.Shift one bit the register and repeat the above� 2- Seond sheme is to Stall a oniting in-strution at MEM stage.Simpler but not optimal as it might allow stallsto our from more than one plae ompliat-ing ontrol.N. Mekhiel

WAW Hazard in Multiyle PipelineExample of WAW Hazard
Instruction 1 3 4 6 82 5 7

F1 D1

F2 D2

F3

ADDD F2, F0, F8

Instruction2

A1 A2 A3 A4 ME1 WB1

EX2 ME2 WB2

LD F2, 0(R2) ME3 WB3D3 EX3

WAW HazardDealing With WAW Hazard� Delay Issuing LD instrution until ADD is inMEM stage� STAMP out ADD results, so it does not writeand let LD issue right awayDetetion of WAWIf an instrution in ID wants to write to sameregister as an instrution already issued.N. Mekhiel

Before Issuing FP Instrution, Control Chekthe following:� Chek for strutural hazards.Wait until required funtion unit is not busy(Divide, one write port).� Chek for RAW hazards.Wait until soure registers are not listed asdestination by any Exe unit� Chek WAW hazards.If any instrution in pipeline has same desti-nation as this instrution, stall issue in ID.� Chek forwardingIf destination register in MEM/WB or EX/MEMor A4/MEM , M7/MEM D/MEM is soureregister of FP instrution, ativate MUX toforward it.N. Mekhiel

Maintaining Preise Exeptions with MIPSMultiple Cyle Exeution UnitsExample:DIVF F0, F2, F4 ; �nishes at C28ADDF F10, F10, F8 ; �nishes at C9SUBF F12, F12, F14 ; �nishes at C14
Example:

DIVF F0, F2, F4

ADDF F10, F10, F8

SUBF F12, F12, F14

Cycle28

Cycle9

Cycle14

Complication for precise exception due to out of order completionInstrutions ADDF, SUBF omplete before DIVFOUT OF ORDER.No problem beause there is no data dependeny,but will result in impreise exeption.N. Mekhiel

ExampleIf SUBF auses FP Exeption, when ADDF om-pleted and has overwritten its soure F10 beforeDIVF omplete, it is very diÆult to restore thestate to what it was before.Dealing with Exeption1-Ignore the problem and settle for impreise ex-eption2-Bu�er results until all operations that were is-sued earlier are omplete.3-Allow exeptions to beome some what impre-ise, but keep enough information for trap handlerto reate preise exeption (software)4-Hybrid sheme that allows instrutions to issueif all previous instrutions are gauranteed to om-plete without ausing exeptionPerformane of FP Pipeline: FP SPEC benh-marks, total number of stalls/ FP instrution rangesfrom .65 to 1.21 yles.N. Mekhiel

A.1.aAssume R3=R2+396Find timing without forwarding and flush branh.L: LW R1, 0(R2) F1D1E1M1W1ADDI R1, R1, #1 F2D2S-D2E2M2W2SW R1, 0(R2) F3D3S-D3E3M3W3ADDI R2, R2, #4 F4D4E4M4W4SUB R4, R3, R2 F5D5S-D5E5M5W5BNZ R4, Loop F6D6S-D6E6M6W6FN1 2 3 4 5 6 7 8 9 1011121314151617Time=18+ 17x98

A.1.bwith forwardingLoop: LW R1, 0(R2) F1D1E1M1W1ADDI R1, R1, #1 F2D2S-E2M2W2SW R1, 0(R2) F3S-D3E3M3W3ADDI R2, R2, #4 F4D4E4M4W4SUB R4, R3, R2 F5D5E5M5W5BNZ R4, Loop F6D6E6M6W6FN1 2 3 4 5 6 7 8 9 10Time= 11 + 10x98{\bf A.1.}Use forwarding + ShedulingLoop: LW R1, 0(R2)ADDI R2, R2, #4ADDI R1, R1, #1SUB R4, R3, R2BNZ R4, LoopSW R1, -4(R2)time=10 + 6x98N. Mekhiel

A.2Show the timing of FP Pipeline with no forwardingBranh after DLD F0, 0(R2) FDEMWLD F4, 0(R3) FDEMWMUL F0,F0,F4 FDSDEEEEEEEMWADD F2,F0,F2 FSSSSSSSSDEEEEMWADD R2,R2,#8 FDEMWADD R3,R3,#8 FDEMWSUB R5,R4,R2 FSDEMWBNZ R5, Loop FSSDEMWF1234567891234567891234Time=9+9+5=22

A.2Show the timing of FP Pipeline with forwardingBranh after DLD F0, 0(R2) FDEMWLD F4, 0(R3) FDEMWMUL F0,F0,F4 FDSEEEEEEEMWADD F2,F0,F2 FSDSSSSSSEEEEMWADD R2,R2,#8 FSSSSSSDEMWADD R3,R3,#8 FDEMWSUB R5,R4,R2 FDSEMWBNZ R5, Loop FSDEMWF123456789123456789Time=9+9=18

A.3 Forwarding and sheduling and delayed branhLD F0, 0(R2) FDEMWLD F4, 0(R3) FDEMWADD R2,R2,#8 FDEMWMUL F0,F0,F4 FDEEEEEEEMWSUB R5,R4,R2 FDEMWADD F2,F0,F2 FDSSSSSEEEEMWBNZ R5, Loop FSSSSSDEMWADD R3,R3,#8 FDEMWFSDEMW12345678912345Time=9+5= 14

