Instruction Set Architecture
Introduction:

Instruction Set:

Interface between software and hardware
visible to programmer

Steps to design Instruction Set for advanced com-
puter:

e what is the available alternatives

e Need to asses each alternative

e Need quantative method

e how does the compiler affect ISA
Measurments for evaluating ISA alternatives:

e depend on program and compiler

e use benchmarks (SPECQC)

e Using dynamic measurments
number of times each events occurs

N. Mekhiel

Instruction Set Classification Classification based
on Internal storage of operands in CPU:

e Stack:
Operands accessed from the top of stack
O Address
Example: push A; Mem(SP)=A, SP+1

e Accumulator
One operand is implicitly the Accumulator
1 Address
Example: ADD B; A=Acc + Mem(B)

e Sset of Registers
Operands are in registers
2 Address
Example: ADD R1, R2 ; R1= R1 + R2
3 Address
ADD R1, R2, R3; R1= R2 4+ R3

N. Mekhiel

Example to Compare Different ISA
C=A+B;

e Stack
PUSH A;
PUSH B;
ADD
POP C
Disadvantages: Top of the stack is a bottle-
neck

e Accumulator
LDA A; Acc=A
ADD B ; Acc=A+B
STA C; C= A+B
Disadvantage: Memory traffic

e General Purpose Registers " GPR”
LW R1, A ; R1=A
LW R2, B ; R2=B
ADD R3, R1, R2 ; R3=A+B
SW C, R3; C=A+B
Disadvantage: cost of registers

N. Mekhiel

Advantages of Using GPR
e Registers are faster than memory

e Easier for Compiler to Use
Example: A.B - C.D - E.F Could be evaluated
in any order (reduce pipeline hazards) com-
pared to stack that must execute insyructions
in order

e Registers hold variables and reduce memory
traffic, reduce code density

Types of GPR Architectures:

e ALU operations with TWO OPERANDS
ADD R1, R2
ALU operations with THREE OPERANDS
ADD R1, R2, R3

N. Mekhiel

e Memory Addresses in ALU instructions:

— 0 memory operands (LOAD/STORE)
ADD R1, R2, R3
Advantages: Smple, fixed length instruc-
tions are faster to encode, simple code gen-
eration, instructions have same number of
clock cycles to execute
Disadvantages: Higher instruction count,
short instructions waste bit encoding

— Register-Memory (1 memory address, 2 reg-
ister operands)
ADD R1, B ; Rl = R14+ M(B)
Advantages: no need to load data first,
good code density, easy to encode instruc-
tions
Disadvantages: could destroy source operand,
long instructio encoding causes limited num-
ber of registers, variable number of clocks
to execute instruction (depends on operand
location)

N. Mekhiel

Memory Addressing

How memory addresses are interpreted:

means what objects are accessed (byte, half word,
word, double word)

Byte Ordering:

How do byte addresses map onto words?

can a word be placed on any byte boundary?

e Big Endian:
Words address —address of most significant
byte (MIPS, IBM, Motorola)

e Little Endian:
Words address —address of least significant

byte (Intel, DEC)

MSB LSB

Little Endian
3 210

Big Endian
O 1 2 3

N. Mekhiel

Object Alignment:

Objects larger than byte must be aligned.
Objects of size S bytes at byte address A is aligned
if:

A mod S =0

Example: Accessing a word (4 bytes) at address
13

13 mod 4 = 1 not aligned

Example 2: half word at address 12:

12 mod 2 = 0O is aligned

If memory access is not aligned, it will need 2 ref-
erences (slower).

Need alignment network to support byte/half word
aCCess in registers

Example: loadH R1, 40(R3)

— Bit31....... BitO
R1= A—B—X—X ; X =no change

N. Mekhiel

Addessing Modes How instructions specify ad-
dress of object to access
Effective address: actual memory address used to
acess memory
Types of addressing Modes:

e Register
To access variables;
Example: ADD R4, R3 : R3= R4 +R3

e Immediate
To access Constants;
Example: ADD R4, #3 ;. R4 = R4 + 3

e Displacement
To access local variables;
Example: ADD R4, 200(R1) ; R4 = R4 +
M(2004+R1)

e Register Indirect
To implement pointers;
Example: ADD R4, (R1) ; R4 = R4 4+ M(R1)

N. Mekhiel

Addressing modes:

N.

Indexed

TO access arrays;

Example: ADD R4, (R14+R2) ; R4 = R4 +
M(R14+R2) R1 base, R2 index

Direct

To access static data;

Example: ADD R4, (1001) ; R4 = R4 +
M(1000)

Memory Indirect
To access p;
Example: ADD R4, (R3) ; R4 = R4 + M(M(R3))

Autoincrement

To step through arrays;

Example: ADD R4, (R1)4+ ; R4 = R4 +
M(R1) and R1=R1 4d (size of element)

Mekhiel

Addressing modes:

e Autodecrement
To implement stack;
Example: ADD R4, -(R1) ; R1=R1 - d; R4
= R4 + M(R1)

e Scaled
To index arrays;
Example: ADD R4, 100(R1)[R3] ; R4 = R4
+ M(100+4+R1+R3d)

Addressing modes significantly reduce Instruc-
tion counts, but may also increase CPI for ma-
chine that implement them.

N. Mekhiel

Need to make design decesion about what
addressing modes should ISA supports?
We should make our decesion based on Quanta-
tive measurements of % usage of each addressing
mode (use benchmarks).
Results of SPEC89 for VAX using tex, spice, gcc
applications are:-

e Displacement = 42% on average (from 32%
to 55%)

e Immediate = 33% on average (from 17% to
43%)

e Indirect = 13% on average (from 3% to 24%)
e Scaled = 7% on average (from 0% to 16%)

e Memory Indirect = 3% on average (from 1%
to 6%)

e Misc = 2% on average

We should support : Displacement, immediate
and Indirect which covers upto 99% of all ad-
dressing modes.

N. Mekhiel

Need to make design decesion about what
should be the size of displacement address
measurements of % displacement size (use bench-
marks).

Results of SPEC2000 for VAX using tex, spice,
gcc applications are:-

e Displacement size of 16 bits captures most of
used displacements (99%)

e Note: use comulative distrubtion for measur-
ing % usage:

Disp %use %Comulative

O 26 26
1 2 28
2 3 36

Design decision taken: use 16 bit displacement
N. Mekhiel

Need to make design decesion about what
should be the size of Immediate?
measurements of immediate size in arithmetic op-
erations (comparisons, moves to registers, ALU
Ops).

loads compare ALU op
10% 87% 70%
Design Decision: must support ALU OP, Com-

pare using immediate addressing mode.

What is the value of size of Immediate
from measurements of gcc, tex, spice are:-
50% to 60% fit within 8 bits

75% to 80% fit within 16 bits

Design Decision: Use 8 or 16 bits for size of Im-
mediate
N. Mekhiel

Operations in ISA
Typical operations: Data transfer, arithmetic&logic
operations, control flow
Simple instructions are the most used
Example: 80X86 Instructions

e Load = 20 %
conditional branch = 20 %
compare = 16 %
store = 12 %

add =8 %
sub = 5 %
move register to register = 4%
call = 1 %

return = 1 %

Design Decision: support simple instructions
to reduce CPI and complexity (RISC)
N. Mekhiel

What types of control flow should ISA supports?
Types and frequency of control flow using SPEC92:-

call&return = 13 % for INT, 11 % FP

JUMP = 6 % INT, 4

Cond branch = 81 % INT, 87 % FP

In jump or branch using PC relative to optimize
the number of bits needed for branch displace-
ment. Destination must be close to current in-
struction.

What should be the value of branch displace-
ment in bits?

Most branch displacement Less Than 10 bits (4-8
bits)

N. Mekhiel

How to specify branch condition?

e Condition code:
ALU operations set bits of condition code
Advantages: CC sets for free
Disadvantages: -Instructions could set CC hap-
hazardly.
-uses an extra state.
Example:

ADD R1, R2, R3
bz label

e Condition register:
Test arbitrary register for result of a compar-
ison
Advantages: simple, predictable
Disadvantages: uses extra register
Example:

slt R1, R2, R3
beqg R1, label

N. Mekhiel

How to specify branch condition?

e Compare and branch:
Compare is part of branch.
Advantages: one instruction
Disadvantages: too much for Inst (affect CPI)
Example: bgt R1, R2, label

Types of Compares to be supported:

Less than/greater than (7% INT, 40% FP)
Greater than/less than or equal (7 % INT, 23 %
FP)

Equal/not equal (INT 86 %, 37% FP)

Most important and used type of compare is equal/not
equal (compare with 0)

N. Mekhiel

Handling branch destination in call/return
Cannot use PC relative because destination ad-
dress is not known at run time.

Use a register that has target address, and use
register indirect jumps:
jump (R2)

Methods of saving registers in procedure calls
and returns

e caller saving:
more conservative. P1 uses X and calls P2,
then P2 calls P3 that uses X.
Value of X is saved for P1 (if callee saving P2
does not save X).

e Callee save:
more optimal for some applications.

N. Mekhiel

Review

e Use GPR with load/store

e Support the following addressing modes:
Displacement with address offset size=16 bits;
Immediate with size 8 to 16 bits; Register in-
direct.

e Support simple instructions because they dom-
inate the number of executed instructions as:
load; store; add,; subtract; and,; shift; com-
pare equal; compare not equal; branch with
PC relative of size 8 bits; jump; call nd re-
turn.

e Use condition register for testing conditions

e make instruction lenght fixed (faster decod-
ing)

N. Mekhiel

Types and size of Operands
Types and sizes are:

N.

Integer:

8 bits = byte

16 bits =half word
32 bits = word

single precision floating point:
32 bits

double precision floating point:
64 bits using IEEE 754 Standard

character:
ASCII = 7 bits

decimal:
packed decimal or BCD = 4 bits

Mekhiel

Design Decision: what types of data should
be supported by ISA?
We have the following results from benchmarks:
Double word: INT =0 %, FP = 69 %
Word: INT = 74 %, FP =31 %
Halfword: INT =19 %, FP= 0 %
Byte: INT =7 %, FP =0 %
Design Decision: For INT Support 8 bit, 16
bit, 32 bit operands
For FP Support 32 bit, 64 bit operands.

bf Instruction Format Affect Size of Program and
Processor Implementation

Question: How to encode the addressing modes
with operations?

Need the following:

e aS Many registers and addressing modes as
possible

e small instruction size
e instruction size must be fixed (multiple bytes)

N. Mekhiel

Instruction Formats;

e Variable:
best for supporting many addressing modes
Example: in VAX ADD R3, 737(R2), (R1)

o Fixed:
Opcode has operation and addressing mode.
Easy to decode (faster) but size of Instruction
IS not optimum. Suitable for RISC
Example: MIPS, SPARC, PowerPC: ADD R1,
R2, R3

e Hybrid:
Provide multiple fixed size Instructions.
Example: Intel 8086

N. Mekhiel

The Role of Compilers
Comipler translates HLL to Assembly 9Uses ISA
Available).
Per formance(ExecutionTime) = NumberofInstruction
numbero fclockcyclesperInstruction
Compiler selects types of Instructions, number of
Instructions for each task.
Optimization Methods

e Use Registers
If two instances of expression compute same
value, use a register to evaluate the value once
(eliminate second computation).

e Register Allocation:
Use algorithm to find best set of registers to
allocate to variables (graph coloring).
graph coloring needs at least 16 registers.

e Code Sequence:
Use code sequence to reduce pipeline hazards
(Out of Order execution).

N. Mekhiel

e Dealing with variables referenced by Point-
ers
Compiler should not assign variable to regis-
ter if a pointer refer to it.
Aliasing problem: If A=5 and if we use a reg-
ister for a , R1=A=5 while a pointer is used
to reference A, then
P=7 will cause A to have different value.(Heap
allocated objects cannot use registers).

N. Mekhiel

The ISA and Ease of Compilers
ISA should make compilers easier using the fol-
lowing Rules:-

e Regularity:
Orthogonal: make three aspects of ISA or-
thogonal (Independent).
for each operation, all addressing modes could
be used on all types of operands.
It makes code generation easier, no special
registers, few special cases.

e No Special Features:
No special features to match a language (works
only for few cases one language).

e Predictable cost:
Using registers versus memory, cache and pipelin-
ing makes it very difficult for compiler to de-
cide what sequence to use.

e Dealing with Constants
Quantities known at comiple time should be
treated as constsnts (no change).

N. Mekhiel

MIPS Architecture

N.

Use GPR with load-store

Support these addressing modes: displace-
ment(with address offset=12-16 bits); imme-
diate (size 8-16 bits); and register indirect
lw R1, 30(R2); R1 = M(R2+430)

iIf R2=RO0, we have absolute addressing mode.
If 30 is replaced by O, we have register def-
fered

support the folowing data sizes: 8 bits, 16
bits, 32 bits, and 64 bits for double precision
using IEEE 754 FP.

support the following instructions: load, store,
add, subtract, move register and shift

uses compare equal, compare not equl , com-
pare less with PC relative (8 bits long), call
and return

use fixed instruction lengthfor faster decoding
use at least 16 registers and orthogonal ISA.

Mekhiel

MIPS Instructions
Instruction Format

o I type
Example: LD R1, 30(R2); R1 =R1 +M(R2+430)
Format: Opcode=6 bits;, rs= 5 bits; rt =
5bits; immediate= 16 bits
opcode=LD ; rs=R2; RT =R1, immediate=
30

e Register type
Format: opcode=6 bits; rs1=5bits; rt=5 bits;rd=
bits; operation type=11 bits
Example: ADD R1, R2, R3 ; R1= R2 + RS3
opcode = ADD; rs = R2; rt= R3; rd=R1

o J Type
Example: JR R3; PC =(R3)
Format: opcode=6 bits; Offset added to PC
= 26 bits
opcode JR ;

N. Mekhiel

Effectivness of MIPS ISA
Instruction set frequency for SPEC 92 is:
load=26%, store=9%, add=14%, compare=13%,
load imm=3%, cond branc= 16%, uncond branch
call return jump= 3%, shift =4%, and = 3%,
or=5%, xor=1%.
Per formance = Instructioncount x CPI xclockcycletime
compare VAX performance to MIPS for SPEC
VAX has smaller instruction count , but MIPS has
faster CPI

e For example running spice:
No — of — Instructions — MIPS =~ No — of —
Instruction — VAX = 1.8

CPI - MIPS +~CPI —-VAX = .25
Performance of MIPS is 2.5 times of VAX

e Example for FP:
No — of — Instructions — MIPS - No — of —
Instruction — VAX = 2.7

CPI —MIPS~CPI —-VAX = .1.
Performance of MIPS is 4 times of VAX

N. Mekhiel

Problems

2-4 Find the required memory bandwidth (code
+ data) for the following architectures:-

-Accumulator (all operations between Acc, Mem)
-Memory-Memory (all operands are in memory)
-Stack only push and pop access memory.

-Load/store (all operationsoccur in registers).
Assume 16 registers (4 bits to address a regis-
ter)

Assume the following:-

-Opcode = 1 byte

-memory address = 2 bytes

-operands = 4 bytes

-instructions are multiple number of bytes.
Use the following application in C:-

A= B+ C,

All variables are intially in memory.

2-4

1- Stack

INSTRUCTION DATA
PUSH B = (1+2) B, 4 B
PUSH C = (1+2) B, 4 B
ADD = 1 B, 0)
POP A = (1+2) B, 4 B

Total= 10 B + 12 B = 22 B BW = 22B/4 = 5.5B/CYCL

2- ACC

INSTRUCTION DATA
LDA B = (1+2) B, 4 B
ADDA C = (1+2) B, 4 B
STA A = (1+2) B, 4 B

Total= 9 B + 12 B =21 B BW = 21B/3 = 7B/CYCLE

2-4
3-Load/store

INSTRUCTION DATA
LW R1, B = (1+.5+2) B, 4 B
LW R2, C = (1+.5+2) B, 4 B
ADD R3,R1,R2 = (1 +3X.5)B, 0
SW A, R3 = (1+.5+2) B, 4 B

Total= 13 B + 12 B = 26 B BW = 25B/4 = 6.25B/CYC.

4-Memory
INSTRUCTION DATA
ADD A,B,C B = (1+2 +2+2) B, 3X 4 B

Total= 7B + 12 B =19 B BW = 19B/1 = 19B/CYCLE

2-5 If offset length for branches and memory
references are: 0, 8, 16 bits. Instruction length=
16 bits + length of offset.
Using the data of frequency of data references
and branches versus offset in number of bits, and
instruction frequencies of benchmarks, find the
average instruction length of following:-

a-If permitted offsets are 0, 8, 16 including the
sign bit.

b-If using fixed instruction length of 24 bits. If
an offset is longer than 8 bits, another instruction
IS required.

results of benchmarks (SPEC89, SPEC20000 are:

offset bits data references branches
0 17% (30.77 SPEC2000) 0%
4 57% (60.9% SPEC2000) 93% (85
15 100% 100%
Instruction usage
load 26%
store 9% (10% spec2000)
cond branch 167% (127 spec2000)
uncond branch 1%
others 100-35-17=48J,

Instruction length= 16 bits + offset

a- 48%x(16+0) + 35%x[(17%x(16+0)
+40%x(16+8) + 43%x(16+16)]
+17%x[(93%x(16+8) +7%x(16+16) 1=21 bits

b- 48%x24 +35%x[17%x24+ 40%x24 +43%x48]
+ 17%x[93%x24 + 7Y%x48]= 27 bits

2-11 Find the effective CPI for MIPS using fre-
quencies of benchmarks for gcc and espresso assuming

-cost of ALU operations = 1cycle

-cost of load/store = 1.4 cycles

-cost of cond. branch (taken)=2.0 cycles
-cost of cond branch (not taken) = 1.5 cycles
-cost of uncond branch = 1.2 cycles

Assume that 60% of cond branches are taken

from benchmarks:

load = 26%, store=9Y

cond branch=16%, uncond branch=1Y
others = 100% -52%=48Y%

CPI= 48%X1 + 35%X1.4
+16%X(60%X2 + 40%X1.5)
+1%X1.2=

2-12-b Consider adding a new addressing mode
to MIPS. Compiler will replace the following :

ADD R1, R1, R2
LW R4 , 0(R1) or SW—

with one load/store instruction with new ad-
dressing mode.

Use the instruction frequencies of benchmarks,
find performance effect of new mode if it length-
ens the clock cycle by 5% and it could be used in
10% of load/store.

2-12-b- load/store frequency from benchmarks=35

(may change with applicationms).

Time of executing N instructions on
original machine = NXCPIXClock Cycle Time
Machine using new addressing mode will
eliminate 10% of 357 instructions.
Time={N-.35X.1XN]XCPIX1.05 Clock Cycle Time
=1.013 NXCPIXClock Cycle Time (slower)

