
Instruction Level Parallelism and Its Dynamic

Exploitation

Instruction Level Parallelism achived from over-

lapping executions of multiple instructions.

Increasing amount of parallelism requires reduc-

ing the effect of hazards and using compilers.

Performance in pipeline CPI= Ideal CPI +

Structural hazards stalls + RAW salls + WAR

stalls + WAW stalls + Control stalls

Different techniques to reduce R.H.S:

• Control stalls by Loop unrolling and specula-

tion and dynamic branch prediction

• RAW stalls by dynamic scheduling with score-

boarding, basic pipeline scheduling, specula-

tion

N. Mekhiel

Different techniques to reduce R.H.S:

• Ideal CPI by issuing multiple instructions, com-

piler dependency analysis, software pipelining,

and trace scheduling

• WAR and WAW stalls by dynamic scheduling

and register renaming and speculation

Concept of ILP

Amount of parallelism in a straight line sequence

of code.

Limitations: with a branch frequency of 15%,

means on average there will be only 6-7 instruc-

tions between any pair of branches.

This means that maximum amount of overlap is

much less than 6.

We must find parallelism outside each basic block

(among blocks).

N. Mekhiel

Finding Parallelism Among Itterationso f a

Loop

Example:

for (i=1; i<=1000; i++)

X[i] = X[i] + Y[i];

There is a loop parallelism (1000) that we need

to convert it to ILP.

Method: Loop Unrolling using compiler or hard-

ware techniques.

Other Method: Use Vector Processing.

Tradeoffs: Increasing size of code and using more

registers.

Key to improvements,resolve dependency be-

tween instructions.

N. Mekhiel

Dependences

Two instructions that are independent are par-

allel and could be executed in parallel.

Types of Dependences:

1-Data Dependences

1- Instruction i produces results that is used by j

2-instruction j dependens on k and k depends on

i (indirect dependency)

Example:

1 Loop: LD F0, 0(R1) ; F0= element

2 ADDD F4, F0, F2 ; Add scalar to the element

3 SD 0(R1), F4 ; store new value to element

Data dependency between I1, I2 (F0)

and between I2,I3 (F4)

4 SUBI R1,R1, #8 ; Decrement pointer

5 BNE R1, R2, Loop ; branch if R1 != R2

Data dependency between 4, 5 (R1)

N. Mekhiel

The presence of dependences indicates a poten-

tial for a hazard, but actual hazard and length of

stall is a property of pipeline.

Example of Data dependence with dependent

chain:

1-Loop: LD F0, 0(R1)

2- ADDD F4, F0,F2

3- SD 0(R2), F4

4- SUBI R1, R1, #8

5- LD F6, 0(R1)

6- ADDD F8, F6, F2

7- SD 0(R1), F8

8- SUBI R1, R1, #8

Data dependency between Inst4, Inst5, Inst7,

Inst8 for R1

Compiler removes these dependences by com-

puting intermidiate values of R1 and adjusting the

offeset of LD, SD and decrementing R1 removing

SUBI. R1= R1 -8 (LD F6, -8(R1),..)

N. Mekhiel

Name Dependences

Two types:

1-WAR hazard (antidependence)

When instruction j writes to register or memory

before instruction i reads it

2-WAW hazard (output dependence)

When j writes to same register or memory before

i writes to it.

There is no data being transferred between in-

struction i, j. We can use register renaming to

resolve this.

It is difficult to detect same name for memory

access. For example 0(R2) and 20(R3) might

reference the same memory location.

N. Mekhiel

Example: With loop unrolling, no schedul-

ing, indicate both data and name dependences.

Show how renaming reduces name depen-

dences
1− LD F0, 0(R1)

2−ADDD F4, F0, F2

3−SD 0(R1), F4

4−LD F0, −8(R1)

5−ADDD F4, F0, F2

6−SD −8(R1), F4

RAW

RAW

WAW

WAW

RAW

RAWWAR

WAR

N. Mekhiel

WAW

RAW

WAR

1− Loop: LD F0, 0(R1)

2−ADDD F4, F0, F2

3−SD 0(R1), F4

4−LD F0, −8(R1)

5−ADDD F4, F0, F2

6−SD −8(R1), F4

7−LD F0, −16(R1)

8−ADDD F4, F0, F2

9−SD −16(R1), F4

10−LD F0, −24(R1)

11−ADDD F4, F0, F2

12−SD −24(R1), F4

13−SUBI R1, R1, #32

14− BNEZ R1, Loop

N. Mekhiel

RAW

1− Loop: LD F0, 0(R1)

2−ADDD F4, F0, F2

3−SD 0(R1), F4

4−LD F6, −8(R1) ; rename F0 −−−> F6

5−ADDD F8, F6, F2 ; rename F4 −−> F8

6−SD −8(R1), F8 ;

7−LD F10, −16(R1) rename F0 −−>F10

8−ADDD F12, F10, F2; rename F4 −−−>F12

9−SD −16(R1), F12

10−LD F14, −24(R1); rename F0−−−> F14

11−ADDD F16, F14, F2; rename F4 −−−> F16

12−SD −24(R1), F16

13−SUBI R1, R1, #32

14− BNEZ R1, Loop

With Register Renaming

N. Mekhiel

Control Dependences
Control dependences: It determines if a set of in-
structions should be executed or not.
Control dependences must be preserved.

Example:

1- if P1 {Si}

;

Instructions on Si should only be executed if P1 is

We cannot move an instruction that is control dependent

branch to before branch (cannot move instructions

before if).

2- X;

if P2 {S2;}

Instruction that is not control dependent cannot be

after branch.

Cannot move statement before (X;) if to into then

N. Mekhiel

Control Dependency on BEQZ

 SUBI R1, R1, #8

 LD F6, 0(R1)

 ADDD F8, F6, F2

 SD 0(R1), F8

 SUBI R1, R1, #8

 BEQZ R1, EXIT

 LD F10, 0(R1)

 ADDD F12, F10, F2

 SD 0(R1), F12

 SUBI R1, R1, #8

 BEQZ R1, EXIT

 LD F14, 0(R1)

 SD 0(R1), F4

 BEQZ R1, EXIT

Loop: LD F0, 0(R1)

ADDD F16, F14, F2

SD 0(R1), F16

SUBI R1, R1, #8

BNEZ R1, Loop

 ADDD F4, F0, F2

Example: Indicate control dependences for loop unrolling with overhead
 SUBI, BEQZ

If R1 =4*8, We can remove 3 intermediate SUBI, BNEZ, and remove Control dependences.

N. Mekhiel

Preserving Control Dependency By:

1-In order instruction execution

2- Detection of Control hazards and stall

Preserving control dependences assures pro-

gram correctness in two ways:

1-Preserve exception behavior

Example:

BEQZ R2, L1

LW R1, 0(R2)

Assume that control dependence is not preserved,

and we move LW before branch.

LW may cause an exception (memory violation),

if branch is taken, the above exception will

never occur.

N. Mekhiel

2-Preserve data flow:

branches make data flow dynamic,

hard to predict in static code and

cannot be gauranteed with data dependency.

Example:

ADD R1, R2, R3

BEQZ R4, L

SUB R1, R5, R6

L: OR R7, R1, R8

If branch is taken R1=R2+R3,

IF not R1=R5-R6

N. Mekhiel

Dynamic Scheduling To Deal with Data Haz-

ards

Without dynamic scheduling, we used compiler to

minimize hazards using static scheduling.

dynamic scheduling uses Hardware to rearrange

instructions to reduce stalls.

Advantages of Dynamic Scheduling:

• Deals with dependences which are only known

at run time.

• Simplifies Compiler

• Allows code compiled for one pipeline to run

on a different pipeline.

Dynamic Scheduling allows out of order Instruc-

tion Completion making Precise Exceptions diffi-

cult.

N. Mekhiel

Example:

DIVD F0, F2, F4

ADDD F10, F0, F8 ;RAW dependency on F0

SUBD F12, F8, F14

Normal pipeline will stall pipeline waiting for DIVD

to complete.

SUBD is not data dependent on anything.

With dynamic scheduling SUBD can complete early out

of order.

N. Mekhiel

Concept of Dynamic Scheduling Using Score-

boarding

IF

queue

issue Read

ID

WBEX1 EX2 EXn

Scoreboard

Pipeline with Scoreboarding

Pipeline: IF; Queue, Decode(Issue, Read Operand);

Execute; Write Back

N. Mekhiel

Dynamic Scheduling:

• Instruction queue allows multiple instructions

to be available for issuing (if one instruction

stall, others are available).

• Decode stage is split in two stages:-

– 1-Issue: Decode instruction and check for

structural hazards

– 2-Read operand: Wait until no data haz-

ards (RAW)

• Execute stage might take multiple clock cy-

cles

• Write Back to write results

• Scoreboard: monitors hazards, dependency,

available FUs, operands, and change pipeine

to execute instructions as early as possible.

N. Mekhiel

Scoreboarding creats a new hazard:

It could creat a WAR hazard that did not exist

in simple DLX pipeline.

Example:

DIVID F0, F2, F4

ADDD F10, F0, F8; RAW for F0

SUBD F8, F8, F14; WAR for F8

If we let SUBD completes early before ADDD,

we have WAR hazard.

Scoreboard must detect this hazard.

If destination register for SUBD =F10, we have WAW,

Scoreboard must also check for WAW hazards.

N. Mekhiel

Multiple Function Units to allow execution of

multiple instructions.

Registers

FP Mult#1

FP Mult#2

FP Div

FP Add

Int

Scoreboard

I

unit1

unit2

unit3

unit4

unit5

Scoreboarding with Multiple Function Units

Latency of MULT= 10 cycles; DIV = 40 cycles;

ADDD= 2 cycles, Int=0 cycle.

Four Stages of Scoreboard Control:

• 1-ISSUE: Decode instruction and check for

structural hazards

– a-Functional Unit is free

– No active instruction has the same desti-

nation (WAW). If not, stall issuing any in-

struction (in order issuing), wait until a,b

are okay.

• 2- Read Operands:

Wait until no data hazards, then read operands

(RAW)

– a-no active instruction is going to wite to

operand.

– no function unit is currently writing to this

operand

If a,b okay instruction may be sent to execute

OUT OF ORDER.

N. Mekhiel

Stages of Scoreboard

• 3-Execution: Operate on operands and might

take multiple cycles. When result is ready, it

notify scoreboard for completion.

• 4- Write results:

– a-Scoreboard check for WAR (DEST is not

used as source for other pending instruc-

tions)

Example:

DIVD F0, F2, F4;

ADDD F10, F0, F8;

SUBD F8, F8, F14;

Instruction SUBD will not write to F8 until

ADDD reads F8.

– b-Stall until all pending instructions read

their sources.

N. Mekhiel

Parts of Scoreboard

Write resultIssue

1−Instruction Status in Pipeline

Read Operands Execute Complete

Three Parts of Scoreboard

2−Function Units Status

RkRjQkQjFkFjFiOPBusy

FU
is busy
or not

in FU
operation source

Reg2

FU that
produces

Flag if
Fk ready

dest.
Reg

source
Reg1 produces

FU that

Fj Fk
Fj ready

Flag if

Issue if (FU, Fi) ready Read if (Rj, Rk) not used by any FU (Qj, Qk)

Execute Write result if (Fj, Fk) not used by any FU (Qj, Qk)

3−Register result status

Reg

FU

F0

DIV

F8

ADD

N. Mekhiel

Multd F0, F2, F4

Addd F6, F8, F2

Divd F10, F0, F6

Subd F8, F6, F2

LD F2, 45(R3)

LD F6, 34(R2)

Write resultCompleteReadIssue

CYCLE 5

1 2 3 4

5

Add Latency = 2 cycles

Mult Latency = 10 cycles

Div Latency = 40 cycles

Int Latency = 0 cycles

6 7 8

6 F2
9 19 20

7 9
F2 11 12

8 F0
21 61 62

13 14 15
F6
22

N. Mekhiel

Multd F0, F2, F4

Addd F6, F8, F2

Divd F10, F0, F6

Subd F8, F6, F2

LD F2, 45(R3)

LD F6, 34(R2)

Write resultCompleteReadIssue

CYCLE 5

1 2 3 4

5

Name
busy op Fi Qj Qk Rj RkFj Fk

Int LD F2 R3 Yes

Mult1

Mult2

Add
Div

Reg

Fu

F0 F2 F4 F6 F30

Int

(N. Mekhiel)

Multd F0, F2, F4

Addd F6, F8, F2

Divd F10, F0, F6

Subd F8, F6, F2

LD F2, 45(R3)

LD F6, 34(R2)

Write resultCompleteReadIssue

CYCLE 8

1 2 3 4

5

Name
busy op Fi Qj Qk Rj RkFj Fk

Int

Mult1

Mult2

Add
Div

Reg

Fu

F0 F2 F4 F6 F30

6 7 8

7

8

LD F2 R3 Yes

Mult F0 F2 F4 Y
N

(F2)Int
(F2)

Sub F8 F6 F2 Y NInt
(F2) (F2)

Div F10 F0 F6 Mult YN(F0)

Mult

F8 F10

Add DivIn
t

(N. Mekhiel)

Reducing Branch Penalties with Dynamic Hard-

ware Prediction

Motivations :-

• Reduce control dependences and extract more

ILP.

• Reduce effect of branches in multiple issuing

(branch comes n times faster).

• Branch penalty has very dramatic effect in

fast machines (Amdahl’s law).

Background:

Static prediction schemes used to deal with branches

(taken/not taken) does not depend on dynamic

behavior of branch.

Delayed branch scheme uses compiler to schedule

useful instruction (static).

We need more accurate branch prediction and has

to follow dynamically the branch bhavior.

Concept: Use hardware to dynamically predict

branch oucome, early.

N. Mekhiel

Branch Prediction Buffer

Uses buffer (memory) to store recent branch be-

havior (1 bit/2 bit) for prediction.

The buffer is indexed by the lower portion of

branch instruction address.

It uses Multiplexer to select BTA or PC depend-

ing on (value of 1 bit/2 bit) prediction attached

to each branch address.

xx

PC

BTA
Next PC

MUX

Prediction

Buffer

Branch Address

4 bits

loc15

loc0

taken taken

not
taken

not
taken

taken

taken

takennot not
takentaken

taken

takennot
not taken

2 Bit Predictor

Branch Predictor

N. Mekhiel

One bit prediction scheme has performance short-

coming as it is likely to predict incorrectly twice

rather than once.

Example:

L1: -----

L2: ----

br L2

br L1

assume a loop and branch always taken, then

when not taken, we predict wrong (1 time),

and buffer is updated with 1 bit=not taken.

Next time, we enter the loop, the branch

should be taken but we predict not

taken, wrong again for the 2nd time.

N. Mekhiel

2 Bit Prediction Scheme

Prediction must miss twice before it changes the

prediction.

xx

PC

BTA
Next PC

MUX

Prediction

Buffer

Branch Address

4 bits

loc15

loc0

taken taken

not
taken

not
taken

taken

taken

takennot not
takentaken

taken

takennot
not taken

2 Bit Predictor

Branch Predictor

Accuracy of branch prediction scheme

Using SPEC89, with prediction buffer of 4096 (12

bits idex), accuracy= 99% to 82%.

Performance depends on:- branch frequency, pre-

diction accuracy and misprediction penalties (cy-

cles).

N. Mekhiel

Improving Branch Prediction with Two Level

Predictors

It uses extra 2 bits for global history to choose

among 4 predictors.

PC

BTA
Next PC

MUX

Prediction

xxxx xx xx

Branch Address

4 bits

Buffer

2 bit

Global branch address

Branch Predictor with Global History

Example: If branch prediction buffer has 8 Kbits,

using (2,2), find number of branch enteries.

Number of enteries = 8K ÷ (4 × 2bits) = 1 K.

N. Mekhiel

Reducing Branch Penalty Using Branch Tar-

get Buffers ”BTB”

Motivations: even with very good prediction, if

misprediction penalty is high, the performance of

branches will be low.

Concept: reduce branch penalty by predicting

address of next instruction after a branch. This

reduce branch penalty to zero.

It uses a branch target buffer to store PC of in-

struction to fetch.

IF1 ID1 EX1; Branch instruction

and BTB gives address

IF2 ID2 EX2 ; IF2 in time

PC of Instruction to Fetch

Comp

Next PC

MUX

Match

predicted PC

current PC predicted PC

Branch Target Buffer

N
enteries

If PC =Match , then PC=predicted PC from

branch target buffer. If PC =No match , then

instruction is not predicted to be a branch and

use PC.

Improving Performance of BTB

Storing Target Instruction instead of target ad-

dress, when BTB hit, get instructions from BTB

not cache (can use larger buffer for multiple in-

struction storage), It allows branch folding to ob-

tain zero cycle branches)

N. Mekhiel

Techniques to Detect Loop Level Parallelism

Must analyze source code for data dependences

in the Loop or accross the itterations of Loop.

Data dependency detected if operand is writ-

ten at some point and read at later point

Examples of data dependences:

Example1: Find if there is dependences in loop

body and between different itterations of:

for(i=1; i<=1000; i++)

X[i]=X[i] +5;

There is dependency within the loop X[i], X[i]

There is no dependency between itterations

Example2: find dependences in the following:

for(i=1; i<=1000; i=i+1){

A[i+1] = A[i] + C[i]; S1

B[i+1] = B[i] + A[i+1]; S2

-There is dependency within Loop between S1,S2

using A[i+1]

-there is dependence between itteration i and i+1

S1 writes to A[i+1] and read at next itteration in

S1 as A[i]

-the same in S2 for B[i+1]

Example3: Find dependences in the following:

for(i=1; i<=100; i=i+1){

A[i] = A[i] + B[i]; S1

B[i+1] = C[i] + D[i]; S2

Itteration i:

A[i] = A[i] + B[i]; S1

B[i+1] = C[i] + D[i]; S2

Itteration i+1

A[i+1] = A[i+1] + B[i+1]; S1

B[i+2] = C[i+1] + D[i+1]; S2

B[i] makes S1 dependens on S2, but

S2 does not depend on S1, there is no cyclic

dependency and loops could be made parallel

using LOOP TRANSFORMATION AS:

A[1] = A[1] + B[1];

for(i=1; i<=99; i=i+1){

B[i+1] = C[i] + D[i]; S2

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] = D[100];

ILP with Loop Unrolling

For ILP to work, we must find sequence of unre-

lated instructions, avoid pipeline stalls, separate

dependent instruction from source by a distance

equal to pipeline latency

FP Pipeline Latency

Inst. Producing result Inst. Using it latency

FP ALU OP ALU OP 3
FP ALU OP store double 2
load double FP ALU OP 1
load double store double 0

Examples of Loop Unrolling

for(i=1; i<=1000; i++)

x[i] = x[i] + s;

assume M[R1]=x[1000], F2=s

Loop: LD F0, 0{R1) ; F1= x[i]

ADDD F4, F0, F2 ; F4= x[i] + s

SD 0(R1), F4 ; x[i]=F4

subi R1, R1, #8 ; i-1

BNEZ R1, Loop

Performance without unrolling loop:

for(i=1; i<=1000; i++)

x[i] = x[i] + s;

Instruction latency

Loop: LD F0, 0{R1) ; 1

STALL 1 CYCLE

ADDD F4, F0, F2 ; 3

STALL 2 CYCLES

SD 0(R1), F4; 6

SUBI R1, R1, #8 ; 7

STALL 1 CCLE 8

BNEZ R1, Loop ; 9

STALL 1 CYCLE 10

NUMBER OF CLOCKS= 10 CYCLES

Using Scheduling:

Loop: LD F0, 0(R1) 1

SUBI R1, R1, #8 2

ADDD F4, F0, F2 3

BNEZ R1, Loop 4

STALL 1 CYCLE 5

SD =8(R0), F4 6

Number of Cycles = 6 (more than 50% gain)

Loop Unrolling 4 times

Instruction latency

Loop: LD F0, 0{R1) ; 1

STALL 1 CYCLE

ADDD F4, F0, F2 ; 3

STALL 2 CYCLES

SD 0(R1), F4; 6

------------------------------- 1st

LD F6 -8(R1)

ADDD F8, F6, F2

Stall 2 cycles

SD -8(R1), F8

---------------------------12 2nd

LD F10 -16(R1)

ADDD F12, F10, F2

Stall 2 cycles

SD -16(R1), F12

---------------------------18 3rd

Unrolling the Loop for 4th tie

LD F14 -24(R1)

ADDD F16, F14, F2

Stall 2 cycles

SD -24(R1), F16

SUBI R1, R1, #32

STALL 1 CYCLE

BNEZ R1, Loop ;

STALL 1 CYCLE

Total= 27 for 4 loops (6.75 per

Loop Unrolling + Scheduling

Loop: LD F0, 0(R1) ; F0= x[1000-4i]

LD F6, -8(R0)

LD F10, -16(R1)

LD F14, -24(R1)

ADDD F4, F0, F2 ; F4= x[1000-4i] + S

ADDD F8, F6, F2

ADDD F12, F10, F2

ADDD F16, F14, F2

SD 0(R1), F4; x[1000-4i]=F4

SD -8(R1), F8

SUBI R1, R1, #32

SD -16(R1), F12

BNEZ R1, Loop

SD +8(R1), F16; x[1000-4i-3]=F16

Total #cycles=4x3+2=14, or 14/4=3.5 cycles

9/3.5 almost 300% gain in performance

Multiple Issue

To improve ideal CPI, make it less than 1 (IPC

instructions per clock cycle).

Two types:-

• Superscalar

• VLIW (very long instruction word)

1-Superscalar

• Issue variable number of instructions per clock.

• Instructions must be independent, no more

than one memory reference per clock

• Variable instruction issuing, and dynamic is-

suing

Simple DLX version: Integer and FP Opera-

tions could be issued simultaneously.

• 1-Fetch and Decode 2 instructions 64 bits per

cycle

• 2-Hardware will issue 2nd instruction (FP) if

ist instruction can issue (dynamically).

DLX Superscalar

• 3-Need to pipelined FP Units or use multiple

FP Function Units (Issuing of FP Inst 1/cy-

cle).

• 4-Using different Register Sets for Integer and

FP.

• 5-Hazards must be detected if having Int In-

struction is a FP load, FP Inst. has depen-

dency on load Inst (RAW).

• 6-Problem with DLX Load latency of one clock

cycle= cost 3 instructions (1+2) and branch

delay latency of 1 cycle = 3 instructions.

Find Performance of DLX Superscalar for the following:-

Loop: LD F0 0(R1)

ADDD F4, F0, F2

SD 0(R1), F4

SUBI R1, R1, #8

BNEZ R1, Loop

Assume Loop unrolled 5 times.

Clock

LD F6, −8(R1)

LD F10, −16(R1)

LD F14, −24(R1)

LD F18, −32(R1)

ADD F4, F0, F2

SD −16(R1), F12

SD −8(R1), F8

SD(0(R1), F4

ADD F12, F10, F2

ADD F8, F6, F2

ADD F16, F18, F2

ADD F20, F18, F2

LD F6, −8(R1)
LD F10, −16(R1)

LD F14, −24(R1)

ADD F4, F0, F2

ADD F8, F6, F2

ADD F12, F10, F2
ADD F16, F18, F2

ADD F20, F18, F2

LD F18, −32(R1)

SD −8(R1), F8

SD −16(R1), F12

SD −24(R1), F16
SUBI R1, R1, # 40

BNZ R1, loop

SD 8(R1), F20

SD(0(R1), F4

3

5

6

14

17

loop: LD F0, 0(R1) loop: LD F0, 0(R1) 1

2

4

7
8

9

10

11

12

13

15

16

Int Inst. SUPERSCALAR FP Inst.Instruction DLX

SD −24(R1), F16

SUBI R1, R1, # 40

BNZ R1, loop
SD 8(R1), F20

Superscalar gain= 17/12=1.41

Performanc of superscalar = 12÷5 = 2.4 cycles

per loop.

Performance gain = 17 ÷ 12 = 1.41

Superscalar could use dynamically scheduled in-

structions with scoreboarding (Tomasulo’s algo-

rithm) to improve ILP.

VLIW Approach

• Reduces hardware needed for multiple issue

superscalar

Superscalar hardware is needed to examine

opcode of multile instructios, and registes to

determine if it can issue them.

• VLIW use multiple independent functional Units

and one long instruction with the help of com-

piler to form it (static scheduling).

• VLIW instruction might have 2 Int operations

+ 2 FP operations + 2 memory operations

and a branch. Instruction length could be 112

or 168 bits.

Example

Assume 2 mem operations, 2 FP , 1 Int 1 branch

in VLIW cycle. Using loop unrolling for 7 times,

find the performance improvement for VLIW

LD F6, −8(R1)loop LD F0, 0(R1)

LD F10, −16(R1) LD F14, −24(R1)

LD F18, −32(R1) ADD F8, F6, F2

ADD F16, F18, F2ADD F12, F10, F2

ADD F20, F18, F2 ADD F24, F22, F2
LD F26, −48(R1)

SUBI R1, R1, # 56

BNZ R1, loopSD 8(R1), F28

1

2

3
4

5

6

7
8

9

Performance gain=17/9=2

VLIW
Int Inst.Int Inst. FP Inst. FP Inst. ClockInt Inst.

ADD F28, F26, F2

ADD F4, F0, F2LD F22, −40(R1)

SD −8(R1), F8

SD −24(R1), F16

SD −40(R1), F24

SD(0(R1), F4

SD −16(R1), F12

SD −32(R1), F20

Perfomance of VLIW= 9 Cycles for 7 loop it-

erations=1.28 cycles/loop compared to 2.4 for

superscalar or 3.5 with scheduling and loop un-

rolling.

Limitations of Multiple Issue Processors

• Inherent limitations of ILP in progrms (very

serious limitation). Not enough parallel oper-

ations.

• Complexity of hardware implementations, large

increase in memory bandwidth, register band-

width (multiple ports).

• Superscalar with dynamic scheduling compli-

cates design

• VLIW increases code size, if instructions are

not full (not enough ILP) causes a waste in

instruction encoding. Ccahe miss in VLIW

causes all function units to stall (all instruc-

tions in VLIW are synchronized).

• Binary code compatability is a major problem

for VLIW (comes from using different number

of function Units, or instructions).

Pentium 4 Processor Microarchitecture

• 90 nm Process technology

• Execution trace cache

• 2X frequency execution core

• Hyper-Threading (SMT)

• New SSE3 Instructions (streaming SIMD Ex-

tension)

• Higher frequency with extended pipeline (3.4

GHz)

Overview of NETBURST (P4) microarchi-

tecture

Execution trace cache

Out-of-order core

Rapid Execution

Store to load forwarding

Trace Cache:

• Instruction cache called execution trace cache

• Stores decoded instructions in form of uops

• UOPS could be accessed repeatedly like cache

• No Decoding , trace cache takes decoded uops

from decoder

• trace is assembled from multiple UOPS (up

to 6) which are sequentially predicted from

path of program including target of branches.

In instruction cache, only branch instruction

is delivered with delay but not from taeget.

• 3 UOPS per cycles

• When trace cache miss, fetch and decode from

L2 cache

• Trace cache holds up to 12 K UOPS

Instructions that cannot be encoded in trace

cache, use indirect CALLS and sequence them

from Microcode ROM as indirect CALLS, and

software prefetch.

Out of Order Core:

• Extract parallelism from code stream (UOPS)

• Schedule as many UOPS as possble for exe-

cution per each clock cycle

• Scheduler tracks input register operands when

ready to execute and exeution resources avail-

able

• Can dispatch 6 UOPS

• ALU can schedule on each 1/2 cycles

• Uses two dispatch ports for load and store

Execution Engine:

• Executes up to 6 UOPS per cycle:

– 2 Int ALU

– 1 Complex Int unit

– load and store address generation units (AGU)

– complex FP/media unit

– FPmedia move unit

• INT ALU executes at double clock speed

• Execute 1 load and 1 store every clock from

L1 (16 KB, 8 way, 64 B) Data cache

• Parallel DTLB and L1 to provide low latency

from L1

Store to Load Forwarding:

• Could forward data to be stored to L1 directly

to load using a store forwarding buffer (SFB)

• This is important because store is done at a

later stage in a deep pipeline

• It uses feedback, MUX , SFB and control logic

similar to data forwarding

Branch Prediction:

• Uses Static branch prediction (simple)

• prediction at decode time (early)

• If branch is backwards, predict it taken and if

forward predict it not taken

• modify prediction for loop ending branch (with

branch distance is less than a threshold)

• must flush pipeline if branch miss predicted

Memory System:

• Unified (I and D) L2 cache system size= 1

MB, 8 way, 128 B

• Use prefetch instructions for data to L2 and

page table entries to DTLB

• Hardware prefetching by a predictor for stream

of data

Hyper-Threading:

• Allows one physical processor to appear as two

logical processors

• Two software threads can execute simultane-

ously eliminating contex switching overhead

penalty

• Changes in microarchitecture to support

Hyper Threading:

– Increase number of outstanding L1 load

misses from 4 to 8

– Increase queue size between front end and

alloation/rename logic

– Page table walk can occur at same time as

memory access

– Page table walk that misses all caches and

go to DRAM does not block other page

table walk from being intiated

– Trace cache respond faster to stalling events

and dedicate all its resources to the thread

that is not stalled

– Uses extra bit in virtual tag for each log-

ical processor to prevent conflicts in L1

cache when the two logical processors has

a matched virtual tag (encourage true shar-

ing but disallow false sharing).

SSE 3 Instructions:

• For Integer conversion

• Complex arithmetic

• Video encoding

• Graphics

• Thread synchronization

Pentium 4 Performance

Improvements due to speed and Hyper Threading

of about 20% (limted why?).

EXAMPLES:

A-13 Scoreboard stage other than execute takes 1 cycle,

MUL takes 3 cycles, ADD, SUB each take 1 cycle. Assume

function units and two multiply function units. Find

processor pipeline stages in executing:

Issue Read Execute WB

MUL F0, F6, F4 1 2 2+3=5 6

SUB F8, F0, F2 2 7(MUL F0) 8 9

ADD F2, F10, F2 3 4 5 8(SUB

CH4-5

List all dependency(true=RAW), (ou=WAW) and (anti=WAR)

in the following:

for(i=2; i<100; i=i+1)

{

a[i] = b[i] + a[i} ; S1

c[i-1] = a[i] + d[i} ; S2

a[i-1] = 2*b[i] ; S3

b[i+1] = 2*b[i]; S4

}

Next loop

a[i+1] = b[i+1] + a[i+1} ; S1

c[i] = a[i+1] + d[i+1} ; S2

a[i] = 2*b[i+1] ; S3

b[i+2] = 2*b[i+1]; S4

within loop RAW S1, S2

out of loop RAW S4, S1 and S4, S3

out of loop WAW S1,S3

out of loop WAR S3 2ND LOOP, S1,S2 FIRST LOOP

Example 4-8

The following loop Y[i]=axX[i] + Y[i]

loop LD F0, 0(R1); F0=X[i]

MUL F0,F0,F2; F0=a*X[i]

LD F4, 0(R2); F4=Y[i]

ADD F0,F0,F4; F0=a*X[i]+Y[i]

SD 0(R2), F0; Y[i]=a*X[i]+Y[i]

SUBI R1,R1,#8 ; i+1 for X[]

SUBI R2,R2,#8 ;

BNZ R1, loop

a-single-issue , unroll loop, and schedule it

Assume ALU-ALU=3, ALU -SD=2, LD ALU=1

loop LD F0, 0(R1)

LD F6, -8(R1)

LD F12, -16(R1)

LD F18, -24(R1)

MUL F0, F0, F2

MUL F6,F6,F2

MUL F12,F12,F2

MUL F18,F18,F2

LD F4, 0(R2)

LD F8, -8(R2)

LD F10, -16(R2)

LD F14, -24(R2)

ADD F0,F0,F4

ADD F6,F6,F8

ADD F12,F12,F10

ADD F18,F18,F14

SUBI R1,R1,#32

SUBI R2,R2,#32

SD 32(R2), F0

SD 24(R2), F6

SD 16(R2), F12

BNZ R1, loop

SD 8(R2)

TIME/LOOP =23/4=5.75 CYCLES

assume dual-issue processor

loop LD F0, 0(R1)

LD F6, -8(R1)

LD F12, -16(R1) MUL F0, F0, F2

LD F18, -24(R1) MUL F6,F6,F2

LD F4, 0(R2) MUL F12,F12,F2

LD F8, -8(R2) MUL F18,F18,F2

LD F10, -16(R2) ADD F0,F0,F4

LD F14, -24(R2) ADD F6,F6,F8

SUBI R1,R1,#32 ADD F12,F12,F10

SUBI R2,R2,#32 ADD F18,F18,F14

SD 32(R2), F0

SD 24(R2), F6

SD 16(R2), F12

BNZ R1, loop

SD 8(R2), F18

total cycles=15/4=3.75

Example 4-9

a)find number of cycles

bar: LD F2,0(R1) 1

stall

MUL F4,F2,F0 3

LD F6,0(R2) 4

stall 2 cycles MUL to ADD=3

ADD F6,F4,F6 7

STALL 2 CYCLES ALU-STORE

SD 0(R2),F6 10

ADDI R1,R1,#8 11

ADDI R2,R2,#8 12

SGTI R3,R1,#800 13

STALL 1 CYCLE R3

BEQZ R3, bar 15

STALL FOR BRANCH 1 CYCLE

TOTAL=16 CYCLES PER LOOP

b) single issue with loop unrolling 4 times + scheduling

bar LD F2,0(R1)

LD F4,8(R1)

LD F6,16(R1)

LD F8,24(R1)

MUL F2,F2,F0

MUL F4,F4,F0

MUL F6,F6,F0

MUL F8,F8,F0

LD F10,0(R2)

LD F12,8(R2)

LD F14,16(R2)

LD F16,24(R2)

ADD F2,F2,F10

ADD F4,F4,F12

ADD F6,F6,F14

ADD F8,F8,F16

SD 0(R2),F2

SD 8(R2),F4

ADDI R1,R1,#32

ADDI R2,R2,#32

SGTI R3,R1,#800

SD -16(R2),F6

BEQZ R3, bar

SD -8(R2), F8

CYCLES=24/4=6 Cycles

c-using VLIW, unroll loop 4 times

mem mem FP FP INT

LD F2 LD F4

LD F6 LD F8

LD F10 LD F12 MLT F2 MLT F4

LD F14 LD F16 MLT F6 MLT F8

ADI R1,32

ADI R2,32

ADD F2 ADD F4

ADD F6 ADD F8

SGT R3

SD F2 SD F4 BEQZ

SD F6 SD F8

Total cycles=11/4=2.75 cycles

