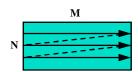
CS152 Computer Architecture and Engineering Lecture 20: Busses and OS's Responsibilities

April 7, 1995

Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 buses.1


©DAP & SIK 1995

Recap: IO Benchmarks and I/O Devices

[°] Disk I/O Benchmarks:

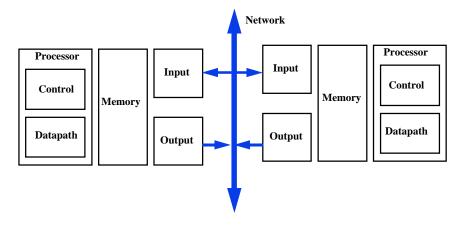
- Supercomputer Application: main concern is data rate
- Transaction Processing: main concern is I/O rate
- File System: main concern is file access
- ° Three Components of Disk Access Time:
 - Seek Time: advertised to be 12 to 20ms. May be lower in real life.
 - Rotational Latency: 5.6 ms at 5400 RPM and 8.3 ms at 3600 RPM
 - Transfer Time: 2 to 4 MB per second

° Graphic Display:

- Resolution: (M pixels) x (N scan lines)
- Frame Buffer size and bandwidth requirement can be reduced by placing a Color Map between the Frame Buffer and CRT display
- VRAM: a DRAM core with a high speed shift register

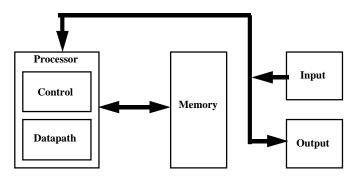
cs 152 buses.2

Outline of Today's Lecture


- ° Recap and Introduction (5 minutes)
- ° Introduction to Buses (15 minutes)
- ° Questions and Administrative Matters (5 minutes)
- ° Bus Types and Bus Operation (10 minutes)
- [°] Bus Arbitration and How to Design a Bus Arbiter (15 minutes)
- ° Break (5 minutes)
- ° Operating System's Role (15 minutes)
- [°] Delegating I/O Responsibility from the CPU (5 minutes)
- ° Summary (5 minutes)

cs 152 buses.3

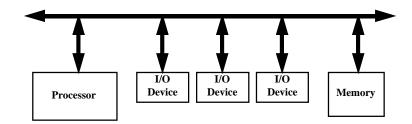
©DAP & SIK 1995


The Big Picture: Where are We Now?

- ° Today's Topic: How to connect I/O to the rest of the computer?
- ° Next Wednesday Topic: Network

cs 152 buses.4

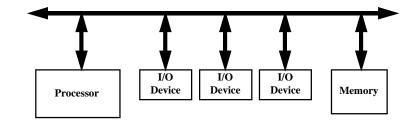
Buses: Connecting I/O to Processor and Memory



- ° A bus is a shared communication link
- ° It uses one set of wires to connect multiple subsystems

cs 152 buses.5

©DAP & SIK 1995


Advantages of Buses

- ° Versatility:
 - New devices can be added easily
 - Peripherals can be moved between computer systems that use the same bus standard
- ° Low Cost:
 - A single set of wires is shared in multiple ways

cs 152 buses.6

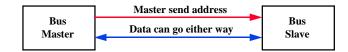
Disadvantages of Buses

- [°] It creates a communication bottleneck
 - The bandwidth of that bus can limit the maximum I/O throughput
- ° The maximum bus speed is largely limited by:
 - The length of the bus
 - The number of devices on the bus
 - The need to support a range of devices with:
 - Widely varying latencies
 - Widely varying data transfer rates

cs 152 buses.7

©DAP & SIK 1995

The General Organization of a Bus


- ° Control lines:
 - · Signal requests and acknowledgments
 - · Indicate what type of information is on the data lines
- [°] Data lines carry information between the source and the destination:
 - Data and Addresses
 - Complex commands

° A bus transaction includes two parts:

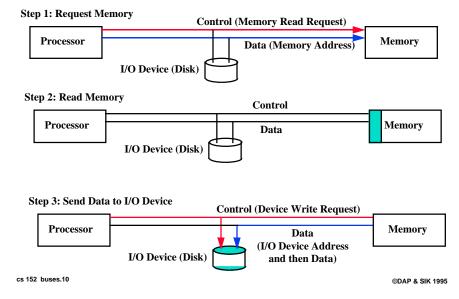
- · Sending the address
- · Receiving or sending the data

cs 152 buses.8

Master versus Slave

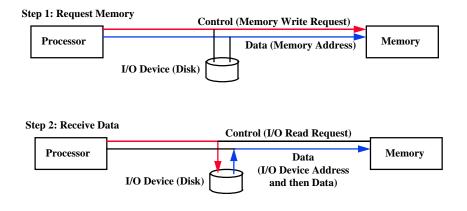
- ° A bus transaction includes two parts:
 - · Sending the address
 - · Receiving or sending the data
- $^{\circ}\,$ Master is the one who starts the bus transaction by:
 - · Sending the address

° Salve is the one who responds to the address by:


- · Sending data to the master if the master ask for data
- · Receiving data from the master if the master wants to send data

cs 152 buses.9

©DAP & SIK 1995

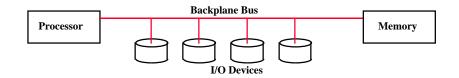

Output Operation

° Output is defined as the Processor sending data to the I/O device:

Input Operation

° Input is defined as the Processor receiving data from the I/O device:

cs 152 buses.11


©DAP & SIK 1995

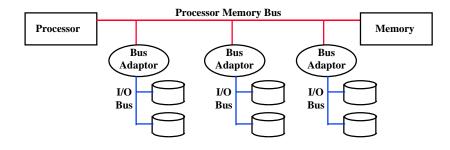
Types of Buses

- ^o Processor-Memory Bus (design specific)
 - Short and high speed
 - · Only need to match the memory system
 - Maximize memory-to-processor bandwidth
 - · Connects directly to the processor
- ° I/O Bus (industry standard)
 - Usually is lengthy and slower
 - Need to match a wide range of I/O devices
 - · Connects to the processor-memory bus or backplane bus
- ^o Backplane Bus (industry standard)
 - · Backplane: an interconnection structure within the chassis
 - Allow processors, memory, and I/O devices to coexist
 - · Cost advantage: one single bus for all components

cs 152 buses.12

A Computer System with One Bus: Backplane Bus

° A single bus (the backplane bus) is used for:

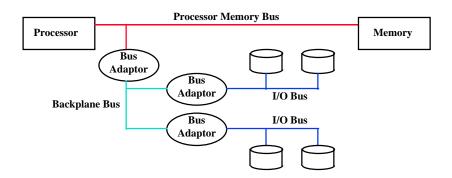

- · Processor to memory communication
- Communication between I/O devices and memory
- ° Advantages: Simple and low cost
- $^\circ\,$ Disadvantages: slow and the bus can become a major bottleneck
- ° Example: IBM PC

cs 152 buses.13

©DAP & SIK 1995

Questions and Administrative Matters (5 Minutes)

A Two-Bus System


 $^\circ\,$ I/O buses tap into the processor-memory bus via bus adaptors:

- · Processor-memory bus: mainly for processor-memory traffic
- I/O buses: provide expansion slots for I/O devices
- ° Apple Macintosh-II
 - NuBus: Processor, memory, and a few selected I/O devices
 - SCCI Bus: the rest of the I/O devices

cs 152 buses.15

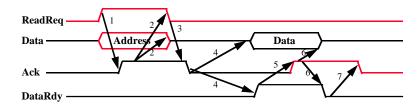
©DAP & SIK 1995

A Three-Bus System

- ° A small number of backplane buses tap into the processor-memory bus
 - Processor-memory bus is used for processor memory traffic
 - I/O buses are connected to the backplane bus

° Advantage: loading on the processor bus is greatly reduced

cs 152 buses.16


Synchronous and Asynchronous Bus

- ° Synchronous Bus:
 - · Includes a clock in the control lines
 - A fixed protocol for communication that is relative to the clock
 - · Advantage: involves very little logic and can run very fast
 - Disadvantages:
 - Every device on the bus must run at the same clock rate
 - To avoid clock skew, they cannot be long if they are fast
- ° Asynchronous Bus:
 - · It is not clocked
 - It can accommodate a wide range of devices
 - · It can be lengthened without worrying about clock skew
 - It requires a handshaking protocol

cs 152 buses.17

©DAP & SIK 1995

A Handshaking Protocol

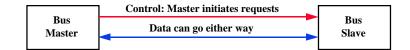
° Three control lines

- ReadReq: indicate a read request for memory Address is put on the data lines at the same line
- DataRdy: indicate the data word is now ready on the data lines Data is put on the data lines at the same time
- Ack: acknowledge the ReadReq or the DataRdy of the other party

cs 152 buses.18

Increasing the Bus Bandwidth

- ° Separate versus multiplexed address and data lines:
 - Address and data can be transmitted in one bus cycle if separate address and data lines are available
 - · Cost: (a) more bus lines, (b) increased complexity
- ° Data bus width:
 - By increasing the width of the data bus, transfers of multiple words require fewer bus cycles
 - Example: SPARCstation 20's memory bus is 128 bit wide
 - · Cost: more bus lines


[°] Block transfers:

- · Allow the bus to transfer multiple words in back-to-back bus cycles
- · Only one address needs to be sent at the beginning
- The bus is not released until the last word is transferred
- Cost: (a) increased complexity
 - (b) decreased response time for request

cs 152 buses.19

©DAP & SIK 1995

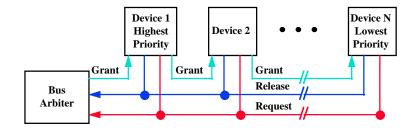
Obtaining Access to the Bus

- ° One of the most important issues in bus design:
 - · How is the bus reserved by a devices that wishes to use it?
- ^o Chaos is avoided by a master-slave arrangement:
 - Only the bus master can control access to the bus: It initiates and controls all bus requests
 - A slave responds to read and write requests

° The simplest system:

- · Processor is the only bus master
- · All bus requests must be controlled by the processor
- Major drawback: the processor is involved in every transaction

cs 152 buses.20


Multiple Potential Bus Masters: the Need for Arbitration

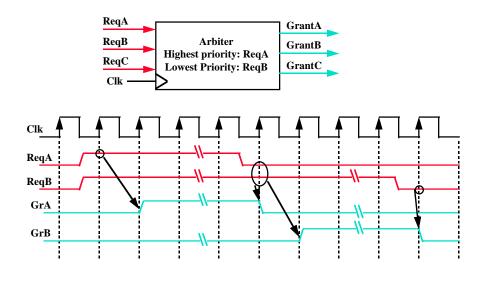
- ° Bus arbitration scheme:
 - A bus master wanting to use the bus asserts the bus request
 - · A bus master cannot use the bus until its request is granted
 - A bus master must signal to the arbiter after finish using the bus
- ° Bus arbitration schemes usually try to balance two factors:
 - Bus priority: the highest priority device should be serviced first
 - Fairness: Even the lowest priority device should never be completely locked out from the bus
- ° Bus arbitration schemes can be divided into four broad classes:
 - Distributed arbitration by self-selection: each device wanting the bus places a code indicating its identity on the bus.
 - Distributed arbitration by collision detection: Ethernet uses this.
 - · Daisy chain arbitration: see next slide.
 - · Centralized, parallel arbitration: see next-next slide

cs 152 buses.21

©DAP & SIK 1995

The Daisy Chain Bus Arbitrations Scheme

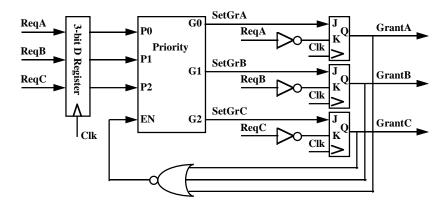
^o Advantage: simple


- ° Disadvantages:
 - Cannot assure fairness:

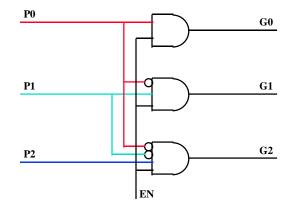
A low-priority device may be locked out indefinitely

• The use of the daisy chain grant signal also limits the bus speed

cs 152 buses.22


Centralized Arbitration with a Bus Arbiter

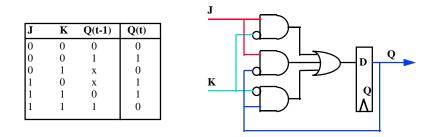
cs 152 buses.23


©DAP & SIK 1995

Simple Implementation of a Bus Arbiter

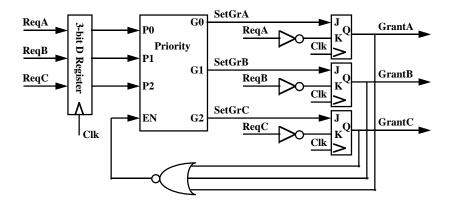
cs 152 buses.24

Priority Logic



cs 152 buses.25

©DAP & SIK 1995


JK Flip Flop

 $^\circ\,$ JK Flip Flop can be implemented with a D-Flip Flop

cs 152 buses.26

Simple Implementation of a Bus Arbiter

cs 152 buses.27

©DAP & SIK 1995

Break (5 Minutes)

cs 152 buses.28

Responsibilities of the Operating System

- ° The operating system acts as the interface between:
 - The I/O hardware and the program that requests I/O
- ° Three characteristics of the I/O systems:
 - The I/O system is shared by multiple program using the processor
 - I/O systems often use interrupts (external generated exceptions) to communicate information about I/O operations.
 - Interrupts must be handled by the OS because they cause a transfer to supervisor mode
 - The low-level control of an I/O device is complex:
 - Managing a set of concurrent events
 - The requirements for correct device control are very detailed

cs 152 buses.29

©DAP & SIK 1995

Operating System Requirements

- ° Provide protection to shared I/O resources
 - Guarantees that a user's program can only access the portions of an I/O device to which the user has rights
- ^o Provides abstraction for accessing devices:
 - · Supply routines that handle low-level device operation
- ° Handles the interrupts generated by I/O devices
- ^o Provide equitable access to the shared I/O resources
 - · All user programs must have equal access to the I/O resources
- ° Schedule accesses in order to enhance system throughput

cs 152 buses.30

OS and I/O Systems Communication Requirements

- [°] The Operating System must be able to prevent:
 - The user program from communicating with the I/O device directly
- ° If user programs could perform I/O directly:
 - · Protection to the shared I/O resources could not be provided
- ° Three types of communication are required:
 - The OS must be able to give commands to the I/O devices
 - The I/O device must be able to notify the OS when the I/O device has completed an operation or has encountered an error
 - Data must be transferred between memory and an I/O device

cs 152 buses.31

©DAP & SIK 1995

Giving Commands to I/O Devices

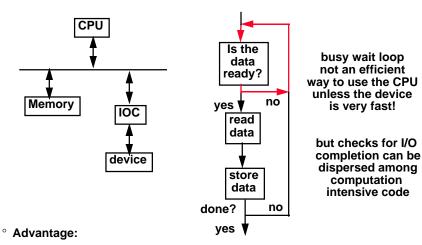
- ° Two methods are used to address the device:
 - Special I/O instructions
 - Memory-mapped I/O
- ^o Special I/O instructions specify:
 - · Both the device number and the command word
 - Device number: the processor communicates this via a set of wires normally included as part of the I/O bus
 - Command word: this is usually send on the bus's data lines

[°] Memory-mapped I/O:

- Portions of the address space are assigned to I/O device
- Read and writes to those addresses are interpreted as commands to the I/O devices
- User programs are prevented from issuing I/O operations directly:
 - The I/O address space is protected by the address translation

cs 152 buses.32

I/O Device Notifying the OS

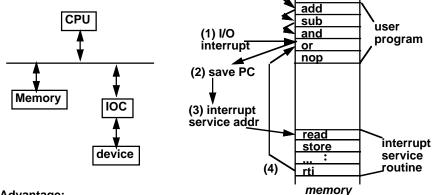

- $^{\circ}\,$ The OS needs to know when:
 - The I/O device has completed an operation
 - The I/O operation has encountered an error
- ° This can be accomplished in two different ways:
 - Polling:
 - The I/O device put information in a status register
 - The OS periodically check the status register
 - I/O Interrupt:

Polling: Programmed I/O

 Whenever an I/O device needs attention from the processor, it interrupts the processor from what it is currently doing.

cs 152 buses.33

©DAP & SIK 1995



• Simple: the processor is totally in control and does all the work

- ° Disadvantage:
 - Polling overhead can consume a lot of CPU time

cs 152 buses.34

Interrupt Driven Data Transfer

° Advantage:

· User program progress is only halted during actual transfer

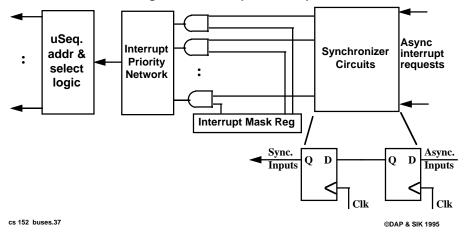
^o Disadvantage, special hardware is needed to:

- Cause an interrupt (I/O device)
- Detect an interrupt (processor)
- Save the proper states to resume after the interrupt (processor)

cs 152 buses.35

©DAP & SIK 1995

I/O Interrupt

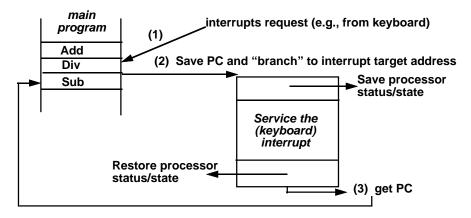

- [°] An I/O interrupt is just like the exceptions except:
 - An I/O interrupt is asynchronous
 - · Further information needs to be conveyed
- ° An I/O interrupt is asynchronous with respect to instruction execution:
 - · I/O interrupt is not associated with any instruction
 - I/O interrupt does not prevent any instruction from completion
 - You can pick your own convenient point to take an interrupt
- ° I/O interrupt is more complicated than exception:
 - Needs to convey the identity of the device generating the interrupt
 - Interrupt requests can have different urgencies:
 - Interrupt request needs to be prioritized

cs 152 buses.36

Interrupt Logic

° Detect and synchronize interrupt requests

- · Ignore interrupts that are disabled (masked off)
- · Rank the pending interrupt requests
- Create interrupt microsequence address
- Provide select signals for interrupt microsequence


Program Interrupt/Exception Hardware

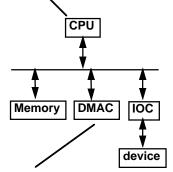
° Hardware interrupt services:

- Save the PC (or PCs in a pipelined machine)
- · Inhibit the interrupt that is being handled
- Branch to interrupt service routine
- Options:
 - Save status, save registers, save interrupt information
 - Change status, change operating modes, get interrupt info.
- ° A "good thing" about interrupt:
 - Asynchronous: not associated with a particular instruction
 - Pick the most convenient place in the pipeline to handle it

cs 152 buses.38

Programmer's View

- ° Interrupt target address options:
 - General: Branch to a common address for all interrupts
 Software then decode the cause and figure out what to do
 - Specific: Automatically branch to different addresses based on interrupt type and/or level--vectored interrupt

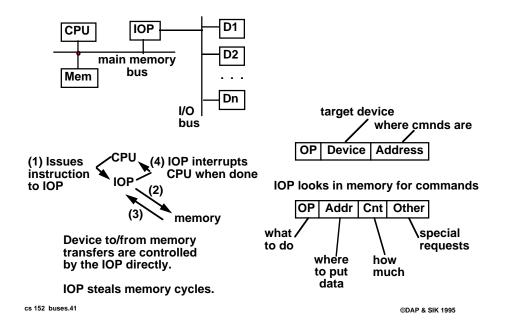

cs 152 buses.39

©DAP & SIK 1995

Delegating I/O Responsibility from the CPU: DMA

Direct Memory Access (DMA):

- External to the CPU
- Act as a maser on the bus
- Transfer blocks of data to or from memory without CPU intervention


CPU sends a starting address, direction, and length count to DMAC. Then issues "start".

DMAC provides handshake signals for Peripheral Controller, and Memory Addresses and handshake signals for Memory.

©DAP & SIK 1995

cs 152 buses.40

Delegating I/O Responsibility from the CPU: IOP

Summary:

- ° Three types of buses:
 - Processor-memory buses
 - I/O buses
 - · Backplane buses

° Bus arbitration schemes:

- · Daisy chain arbitration: it cannot assure fairness
- · Centralized parallel arbitration: requires a central arbiter
- ° I/O device notifying the operating system:
 - Polling: it can waste a lot of processor time
 - I/O interrupt: similar to exception except it is asynchronous
- ° Delegating I/O responsibility from the CPU
 - Direct memory access (DMA)
 - I/O processor (IOP)

cs 152 buses.42

Where to get more information?

° Happy trail ...

 Shing Kong (Kong)
 shing.kong@eng.sun.com

 1047 Noel Dr., Apt. #4
 Menlo Park, CA 94025

 415-321-2270
 415-786-6377 (w)

° Until we meet again :-)

cs 152 buses.43