CS152 Computer Architecture and Engineering Lecture 19: I/O Systems

April 5, 1995

Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

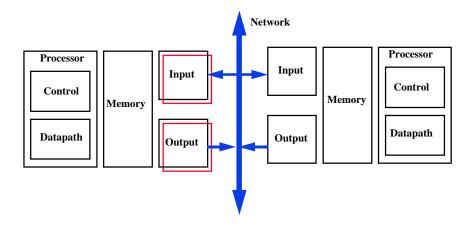
cs 152 io.1

©DAP & SIK 1995

Recap: Virtual Memory

- ° Virtual Memory invented as another level of the hierarchy
- ° Controversial at the time: can SW automatically manage 64KB across many programs?
- ^o DRAM growth removed the controversy
- Today VM allows many processes to share single memory without having to swap all processes to disk, protection more important
- ° (Multi-level) page tables to map virtual address to physical address
- ° TLBs are important for fast translation
- ° TLB misses are significant in performance

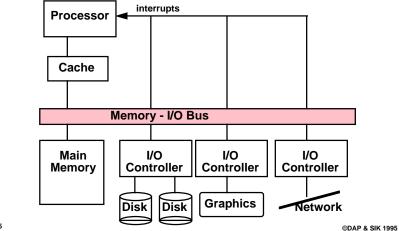
Outline of Today's Lecture


- ° Recap and Introduction (5 minutes)
- [°] I/O Performance Measures (15 minutes)
- ° Questions and Administrative Matters (5 minutes)
- ° Types and Characteristics of I/O Devices (10 minutes)
- ° Magnetic Disks (15 minutes)
- ° Break (5 minutes)
- ° Graphic Displays and Video RAM (20 minutes)
- ° Summary (5 minutes)

cs 152 io.3

©DAP & SIK 1995

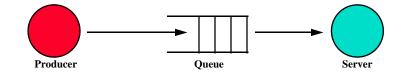
The Big Picture: Where are We Now?


° Today's Topic: I/O Systems

cs 152 io.4

I/O System Design Issues

- Performance
- Expandability
- Resilience in the face of failure


cs 152 io.5

I/O System Performance

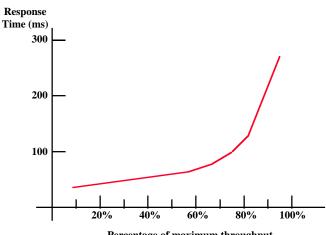
- ° I/O System performance depends on many aspects of the system:
 - The CPU
 - The memory system:
 - Internal and external caches
 - Main Memory
 - The underlying interconnection (buses)
 - The I/O controller
 - The I/O device
 - The speed of the I/O software
 - The efficiency of the software's use of the I/O devices
- ° Two common performance metrics:
 - Throughput: I/O bandwidth
 - Response time: Latency

cs 152 io.6

Producer-Server Model

° Throughput:

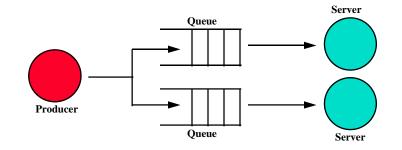
- The number of tasks completed by the server in unit time
- In order to get the highest possible throughput:
 - The server should never be idle -
 - The queue should never be empty -


° Response time:

- · Begins when a task is placed in the queue
- · Ends when it is completed by the server
- In order to minimize the response time:
 - The queue should be empty -
 - The server will be idle -

cs 152 io.7

©DAP & SIK 1995


Throughput versus Respond Time

Percentage of maximum throughput

cs 152 io.8

Throughput Enhancement

- ° In general throughput can be improved by:
 - Throwing more hardware at the problem
- ° Response time is much harder to reduce:
 - Ultimately it is limited by the speed of light
 - You cannot bribe God!

cs 152 io.9

©DAP & SIK 1995

I/O Benchmarks for Magnetic Disks

- ° Supercomputer application:
 - Large-scale scientific problems
- ° Transaction processing:
 - Examples: Airline reservations systems and banks
- ° File system:
 - Example: UNIX file system

cs 152 io.10

Supercomputer I/O

- ° Supercomputer I/O is dominated by:
 - Access to large files on magnetic disks
- [°] Supercomputer I/O consists of one large read (read in the data)
 - · Many writes to snapshot the state of the computation
- ° Supercomputer I/O consists of more output than input
- [°] The overriding supercomputer I/O measures is data throughput:
 - · Bytes/second that can be transferred between disk and memory

cs 152 io.11

©DAP & SIK 1995

Transaction Processing I/O

- ° Transaction processing:
 - Examples: airline reservations systems, bank ATMs
 - · A lot of small changes to a large body of shared data
- ° Transaction processing requirements:
 - Throughput and response time are important
 - · Must be gracefully handling certain types of failure
- ° Transaction processing is chiefly concerned with I/O rate:
 - The number of disk accesses per second
- ° Each transaction in typical transaction processing system takes:
 - Between 2 and 10 disk I/Os
 - Between 5,000 and 20,000 CPU instructions per disk I/O

File System I/O

- [°] Measurements of UNIX file systems in an engineering environment:
 - 80% of accesses are to files less than 10 KB
 - 90% of all file accesses are to data with sequential addresses on the disk
 - 67% of the accesses are reads
 - 27% of the accesses are writes
 - 6% of the accesses are read-write accesses

cs 152 io.13

©DAP & SIK 1995

Questions and Administrative Matters (5 Minutes)

cs 152 io.14

Types and Characteristics of I/O Devices

- [°] Behavior: how does an I/O device behave?
 - · Input: read only
 - Output: write only, cannot read
 - Storage: can be reread and usually rewritten

° Partner:

- Either a human or a machine is at the other end of the I/O device
- Either feeding data on input or reading data on output

° Data rate:

- The peak rate at which data can be transferred:
 - Between the I/O device and the main memory
 - Or between the I/O device and the CPU

cs 152 io.15

©DAP & SIK 1995

I/O Device Examples

Device	Behavior	Partner	Data Rate (KB/sec)
Keyboard	Input	Human	0.01
Mouse	Input	Human	0.02
Line Printer	Output	Human	1.00
Laser Printer	Output	Human	100.00
Graphics Display	Output	Human	30,000.00
Network-LAN	Input or Output	Machine	200.00
Floppy disk	Storage	Machine	50.00
Optical Disk	Storage	Machine	500.00
Magnetic Disk	Storage	Machine	2,000.00

cs 152 io.16

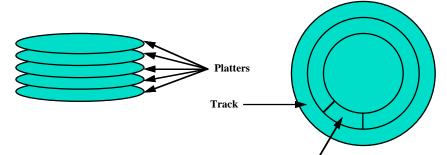
Magnetic Disk

- ° Purpose:
 - Long term, nonvolatile storage
 - Large, inexpensive, and slow
 - · Lowest level in the memory hierarchy
- ° Two major types:
 - Floppy disk
 - Hard disk
- ° Both types of disks:
 - · Rely on a rotating platter coated with a magnetic surface

Registers

Cache

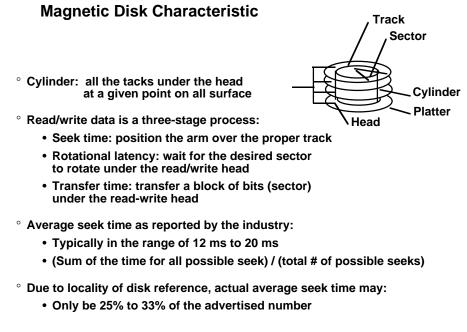
Memory


Disk

- Use a moveable read/write head to access the disk
- ° Advantages of hard disks over floppy disks:
 - Platters are more rigid (metal or glass) so they can be larger
 - Higher density because it can be controlled more precisely
 - Higher data rate because it spins faster
 - Can incorporate more than one platter

cs 152 io.17

©DAP & SIK 1995


Organization of a Hard Magnetic Disk

Sector

- ° Typical numbers (depending on the disk size):
 - 500 to 2,000 tracks per surface
 - 32 to 128 sectors per track
 - A sector is the smallest unit that can be read or written
- [°] Traditionally all tracks have the same number of sectors:
 - · Constant bit density: record more sectors on the outer tracks

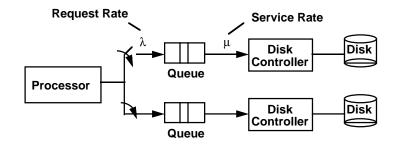
cs 152 io.18

cs 152 io.19

©DAP & SIK 1995

Cylinder

Platter


Track , Sector

Typical Numbers of a Magnetic Disk

- [°] Rotational Latency:
 - Most disks rotate at 3,600 RPM
 - Approximately 16 ms per revolution
 - An average latency to the desired information is halfway around the disk: 8 ms Head
- ° Transfer Time is a function of :
 - Transfer size (usually a sector): 1 KB / sector
 - · Rotation speed: 3600 RPM to 5400 RPM
 - Recording density: typical diameter ranges from 2 to 14 in
 - Typical values: 2 to 4 MB per second

cs 152 io.20

Disk I/O Performance

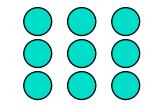
- Disk Access Time = Seek time + Rotational Latency + Transfer time
 + Controller Time + Queueing Delay
- ° Estimating Queue Length:
 - Utilization = U = Request Rate / Service Rate
 - Mean Queue Length = U / (1 U)
 - As Request Rate -> Service Rate
 - Mean Queue Length -> Infinity

cs 152 io.21

©DAP & SIK 1995

Characteristics	IBM 3090	IBM0663	Integral 1820
Disk diameter (inches)	10.88	3.50	1.80
Formatted data capacity (MB)	22,700	1,000	21
MTTF (hours)	50,000	400,000	100,000
Number of arms/box	12	1	1
Rotation speed (RPM)	3,600	4,318	3,800
Transfer rate (MB/sec)	4.2	4	1.9
Power/box (watts)	2,900	12	2
MB/watt	8	102	10.5
Volume (cubic feet)	97	0.13	0.02
MB/cubic feet	234	7692	1050
cs 152 io.23 ©DAP & SII			

Magnetic Disk Examples


Reliability and Availability

- ° Two terms that are often confused:
 - Reliability: Is anything broken?
 - Availability: Is the system still available to the user?
- [°] Availability can be improved by adding hardware:
 - Example: adding ECC on memory
- ° Reliability can only be improved by:
 - · Bettering environmental conditions
 - · Building more reliable components
 - · Building with fewer components
 - Improve availability may come at the cost of lower reliability

cs 152 io.24

©DAP & SIK 1995

Disk Arrays

° A new organization of disk storage:

- · Arrays of small and inexpensive disks
- Increase potential throughput by having many disk drives:
 - Data is spread over multiple disk
 - Multiple accesses are made to several disks
- ° Reliability is lower than a single disk:
 - But availability can be improved by adding redundant disks: Lost information can be reconstructed from redundant information
 - MTTR: mean time to repair is in the order of hours
 - MTTF: mean time to failure of disks is three to five years

cs 152 io.25

Secondary Storage using DRAMs

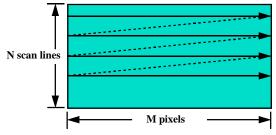
- $^\circ\,$ There are two ways DRAMs can be used for secondary storage:
 - · Sold state disk
 - Expanded storage
- ° Solid state disks:
 - Function just like magnetic disk but:
 - Much faster
 - Much more expensive
 - · Battery is used to make the system nonvolatile
- ° Expanded storage:
 - A large memory that allows only block transfers to or from main memory

cs 152 io.26

©DAP & SIK 1995

Optical Compact Disks

- ° Disadvantage:
 - It is a read-only media
- [°] Advantages of Optical Compact Disk:
 - It is removable
 - · It is inexpensive to manufacture
 - Have the potential to compete with new tape technologies for archival storage

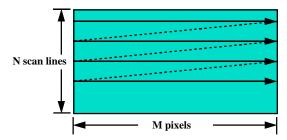

cs 152 io.27

Break (5 Minutes)

cs 152 io.28

©DAP & SIK 1995

Graphics Displays

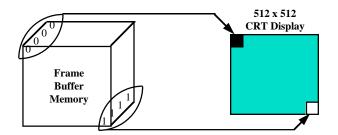

- ° Raster Cathode Ray Tube (CRT) Displays:
 - Resolution: (M pixels) x (N horizontal scan lines)

° Typical Sizes:

- Studio Quality: 720 x 480
- High Resolution Workstation Monitor: 1280 x 1024
- High Definition TV (proposed standards):
 - U.S.A.: 1440 x 960
 - Others: 1920 x 1080

cs 152 io.29

Graphics Displays and Bit Map


[°] The M x N image is represented by a bit map in memory:

- Black & White: 1bit per pixel
 - The pixel is either ON or OFF. No longer widely used.
- Gray scale: 8 bits per pixel
 - Each pixel can have 256 shades of black white
- Color: 24 bits per pixel
 - 8 bits for each of the primary color: Red Green Blue

cs 152 io.30

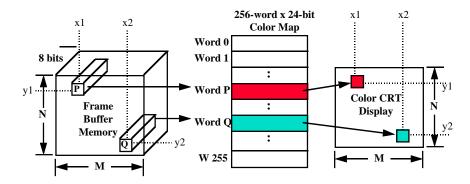
©DAP & SIK 1995

Frame Buffer for a 512 x 512 4-bit Gray-Scale Display

[°] Examples:

- Bit map value for location (0, 0) = 0000 => Location (0, 0) is black
- Bit map value for location (511, 511) is 1111 => L(511, 511) is white

° Total Number of Bits: 512 x 512 x 4 = 2**20 = 1 Mb = 128 KB

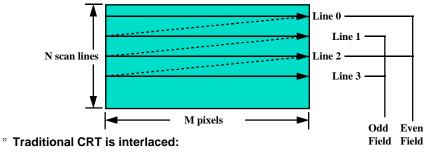

cs 152 io.31

Cost of Computer Graphics

- ° Size of Frame Buffer = M x N x P
 - M: Number of pixels per scan line
 - N: Number of horizontal scan lines
 - P: Number of bits per pixel
- [°] Color Frame Buffer for High Resolution Workstation:
 - 1280 x 1024 x 24-bit = 3840 KB ~= 4 MB
- ° The size of the color frame buffer can be reduced:
 - Most pictures do not need the full palette (2**24) of possible colors
 - Use a two-level representation

cs 152 io.32

©DAP & SIK 1995



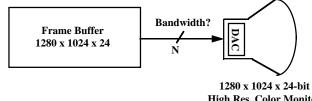
Color Map: Reduce the Cost of Color Frame Buffer

- ° Color Map Size is 256-word x 24-bit:
 - Only 256 different colors can appear on the screen at a time
- ° The color map is loaded by the application program:
 - · Each picture can have its own palette of color to chose from

cs 152 io.33

Dynamic Feature: Frames and Fields

- Each Frame consist of 2 Fields:
 - Even Field: Lines 0, 2, 4, ... etc. Odd Field: Lines 1, 3, 5, ... etc.
- The screen is updated 30 times per second:
 - 30 Frames per second 60 Fields per second

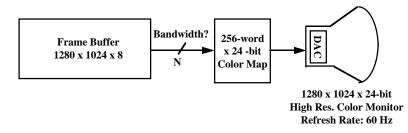

° High resolution (1280 x 1024) workstation monitor:

• The entire screen is refreshed at 60 to 72 times per second

cs 152 io.34

©DAP & SIK 1995

Bandwidth Requirement for the Frame Buffer



High Res. Color Monitor Refresh Rate: 60 Hz

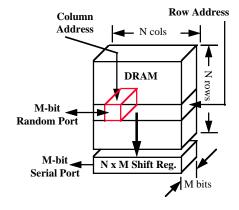
- ° Assume no color map:
 - Frame Buffer Size: 1280 x 1024 x 24 = 3840 KB ~= 4 MB
 - Bandwidth Requirement: 4 MB x 60 Hz = 240 MB / sec
- ° Assume N = 32-bit = 4-byte:
 - The frame buffer needs to response at: 240/4 = 60 MHz => 16.6 ns
 - · This is faster than most of the low cost SRAM
 - Another reason to use a color map!

cs 152 io.35

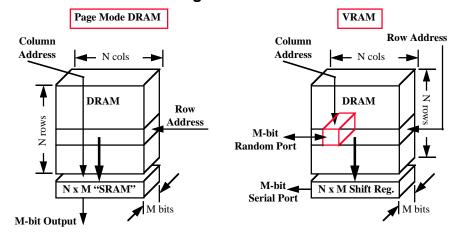
Bandwidth Requirement for the Frame Buffer (Cont.)

- ° With a 256-word by 24-bit color map:
 - Frame Buffer Size: 1280 x 1024 x 8 = 1280 KB
 - Bandwidth Requirement: 1280 KB x 60 Hz = 75 MB / sec
- ° Assume N = 32-bit = 4-byte:
 - The frame buffer needs to response at: 75/4 =18.75 MHz => 53.3 ns
 - DRAM is still too slow and SRAM is too expensive.
 - Solution: Video RAM (VRAM)

cs 152 io.36

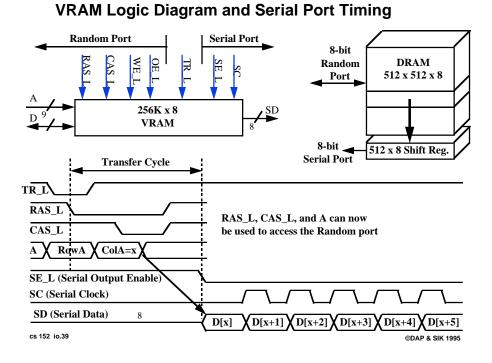

©DAP & SIK 1995

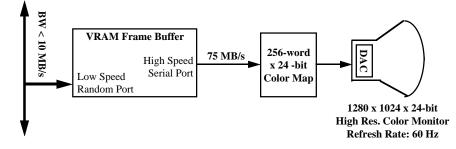
Video Random Access Memory (VRAM)


- ° A high-speed shift register
 - Hold one row of DRAM
- ° Random Port:
 - Access the DRAM array
 - Works like regular DRAM (and just as slow)
- ° Serial Port:

cs 152 io.37

· Access the shift register


VRAM versus Fast Page Mode DRAM

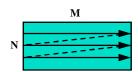

° Serial Port access is similar to Fast Page Mode operation except:

- N x M shift register is much faster than the N x M SRAM
- Fast Page Mode can access any location within the SRAM

Serial port operation only allow sequential access (shift out)
 Cs 152 io.38
 CDAP & SIK 1995

Dual Port Frame Buffer using VRAM

- [°] High Speed Serial Port
 - · Connects to the graphic display
 - · Supply data to refresh the image on the screen
- ° Low Speed Random Port
 - Connects to the I/O Bus
 - · CPU writes to the Frame Buffer to change the image


cs 152 io.40

©DAP & SIK 1995

Summary:

- ° Disk I/O Benchmarks:
 - Supercomputer Application: main concern is data rate
 - Transaction Processing: main concern is I/O rate
 - · File System: main concern is file access
- ° Three Components of Disk Access Time:
 - Seek Time: advertised to be 12 to 20ms. May be lower in real life.
 - Rotational Latency: 5.6 ms at 5400 RPM and 8.3 ms at 3600 RPM
 - Transfer Time: 2 to 4 MB per second

° Graphic Display:

- Resolution: (M pixels) x (N scan lines)
- Frame Buffer size and bandwidth requirement can be reduced by placing a Color Map between the Frame Buffer and CRT display
- VRAM: a DRAM core with a high speed shift register

cs 152 io.41

Where to get more information?

 $^\circ\,$ To be continued ...

cs 152 io.42