
cs 152 vm.1 ©DAP & SIK 1995

March 22, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 18: Virtual Memory

cs 152 vm.2 ©DAP & SIK 1995

Review: The Principle of Locality

° The Principle of Locality:

• Program access a relatively small portion of the address space at
any instant of time.

• Example: 90% of time in 10% of the code

° Two Different Types of Locality:

• Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon.

• Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

Address Space0 2

Probability
of reference

cs 152 vm.3 ©DAP & SIK 1995

Review: The Need to Make a Decision!

° Direct Mapped Cache:

• Each memory location can only mapped to 1 cache location

• No need to make any decision :-)

- Current item replaced the previous item in that cache location

° N-way Set Associative Cache:

• Each memory location have a choice of N cache locations

° Fully Associative Cache:

• Each memory location can be placed in ANY cache location

° Cache miss in a N-way Set Associative or Fully Associative Cache:

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• Damn! We need to make a decision which block to throw out!

cs 152 vm.4 ©DAP & SIK 1995

Review Summary:

° The Principle of Locality:

• Program access a relatively small portion of the address space at
any instant of time.

- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:

• Compulsory Misses: sad facts of life. Example: cold start misses.

• Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Capacity Misses: increase cache size

° Write Policy:

• Write Through: need a write buffer. Nightmare: WB saturation

• Write Back: control can be complex

cs 152 vm.5 ©DAP & SIK 1995

Review: Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10 - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

cs 152 vm.6 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Memory Hierarchy & Introduction to Cache (5 min)

° Virtual Memory

° Questions and Administrative Matters (3 min)

° Page Tables and TLB (25 min)

° Break (5 minutes)

° Protection (20 min)

° Summary (5 min)

cs 152 vm.7 ©DAP & SIK 1995

Virtual Memory

Provides illusion of very large memory
 – sum of the memory of many jobs greater than physical memory
 – address space of each job larger than physical memory

Allows available (fast and expensive) physical memory to be
 very well utilized

Simplifies memory management (main reason today)

Exploits memory hierarchy to keep average access time low.

Involves at least two storage levels: main and secondary

Virtual Address -- address used by the programmer

Virtual Address Space -- collection of such addresses

Memory Address -- address of word in physical memory
 also known as “physical address” or “real address”

cs 152 vm.8 ©DAP & SIK 1995

Basic Issues in VM System Design
size of information blocks that are transferred from
 secondary to main storage

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> fetch/load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

cs 152 vm.9 ©DAP & SIK 1995

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' and a' in M

 = 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

cs 152 vm.10 ©DAP & SIK 1995

Paging Organization

frame 0
1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

cs 152 vm.11 ©DAP & SIK 1995

Address Mapping Algorithm
If V = 1
 then page is in main memory at frame address stored in table
 else address located page in secondary memory

Access Rights
 R = Read-only, R/W = read/write, X = execute only

If kind of access not compatible with specified access rights,
 then protection_violation_fault

If valid bit not set then page fault

Protection Fault: access rights violation; causes trap to hardware,
 microcode, or software fault handler

Page Fault: page not resident in physical memory, also causes a trap;
 usually accompanied by a context switch: current process
 suspended while page is fetched from secondary storage

e.g., VAX 11/780
 each process sees a 4 gigabyte (2 bytes) virtual addr space
 1/2 for user regions, 1/2 for a system wide name space shared
 by all processes

 page size is 512 bytes

32

cs 152 vm.12 ©DAP & SIK 1995

Optimal Page Size
Choose page that minimizes fragmentation

large page size => internal fragmentation more severe
BUT increases the # of pages / name space => larger page tables

In general, the trend is towards larger page sizes because

Most machines at 4K byte pages today, with page sizes likely to
 increase

-- memories get larger as the price of RAM drops

-- the gap between processor speed and disk speed grow wider

-- programmers desire larger virtual address spaces

cs 152 vm.13 ©DAP & SIK 1995

Fragmentation & Relocation

Fragmentation is when areas of memory space become unavailable for
 some reason
Relocation: move program or data to a new region of the address
space (possibly fixing all the pointers)

Internal Fragmentation:
 program is not an integral # of pages, part of the last page frame is
 "wasted" (obviously less of an issue as physical memories get
 larger)

0 1 k-1. . .occupied

External Fragmentation: Space left between blocks.

cs 152 vm.14 ©DAP & SIK 1995

Fragmentation (cont.)
Table Fragmentation occurs when page tables become very large
 because of large virtual address spaces; direct mapped page
 tables could take up sizable chunk of memory

XX Page Number Disp
21 9

00 P0 region of user process
01 P1 region of user process
10 system name space

EX: VAX Architecture

NOTE: this implies that page table
could require up to 2 ^21 entries, each
on the order of 4 bytes long (8 M Bytes)

Alternatives:

(1) Hardware associative mapping:
 requires one entry per page frame (O(|M|)) rather than per page (O(|N|))

(2) "software" approach based on a hash table (inverted page table)

Present Access Page# Phy Addr

associative or hashed lookup
pn the page number field

page# disp

Page Table

cs 152 vm.15 ©DAP & SIK 1995

Questions and Administrative Matters (5 Minutes)

° No lecture next Friday March 24 (belated President’s Day)

° Exercises due by Friday vs. Tuesday

cs 152 vm.16 ©DAP & SIK 1995

Page Replacement Algorithms
Just like cache block replacement!

First-in/First-Out:
-- in response to page fault, replace the page that has been in memory
 for the longest period of time

-- does not make use of the principle of locality: an old but frequently
 referenced page could be replaced

-- easy to implement: maintain history thread thru page table entries,
 no need to track past reference history

-- usually exhibits the worst behavior!

Least Recently Used:
-- selects the least recently used page for replacement

-- requires knowledge about past references, more difficult to implement
 (thread thru page table entries from most recently referenced to least
 recently referenced; when a page is referenced it is placed at the head
 of the list; the end of the list is the page to replace)

-- good performance, recognizes principle of locality

cs 152 vm.17 ©DAP & SIK 1995

Page Replacement (Continued)
Not Recently Used:
Associated with each page is a reference flag such that
 ref flag = 1 if the page has been referenced in recent past
 = 0 otherwise

-- if replacement is necessary, choose any page frame such that its
 reference bit is 0. This is a page that has not been referenced in the
 recent past

-- clock implementation of NRU:

1 0
1 0
0
0

page table entry
page
table
entry

ref
bit

last replaced pointer (lrp)
if replacement is to take place,
advance lrp to next entry (mod
table size) until one with a 0 bit
is found; this is the target for
replacement; As a side effect,
all examined PTE's have their
reference bits set to zero.

1 0

An optimization is to search for the a page that is both
not recently referenced AND not dirty.

cs 152 vm.18 ©DAP & SIK 1995

Demand Paging and Prepaging
Fetch Policy
 when is the page brought into memory?
 if pages are loaded solely in response to page faults, then the
 policy is demand paging

An alternative is prepaging:
 anticipate future references and load such pages before their
 actual use

 + reduces page transfer overhead

 - removes pages already in page frames, which could adversely
 affect the page fault rate

 - predicting future references usually difficult

Most systems implement demand paging without prepaging

(One way to obtain effect of prepaging behavior is increasing the page size

cs 152 vm.19 ©DAP & SIK 1995

2-level page table

.

.

.

Seg 0

Seg 1

Seg
255

4 bytes

256 P0

P255

4 bytes

1 K

.

.

.

PA

PA

D0

D1023

PA

PA .
.
.

Root Page Tables
Data Pages

4 K

Second Level Page Table

2 2 2 28 8 10 12
2

38
x x x =

Allocated in
User Virtual

Space

1 Mbyte, but allocated
in system virtual addr

space
256K bytes in

physical memory

cs 152 vm.20 ©DAP & SIK 1995

Virtual Address and a Cache

CPU
Trans-
lation Cache Main

Memory

VA PA miss

hit
data

In Segment + Page approach OR 2-level page table approach, it
 takes two memory accesses to translate VA to PA

This makes cache access very expensive, and this is the "innermost
 loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
 synonym problem: two different virtual addresses map to same
 physical address => two different cache entries holding data for
 the same physical address!

 for update: must update all cache entries with same
 physical address or memory becomes inconsistent

 determining this requires significant hardware, essentially an
 associative lookup on the physical address tags to see if you
 have multiple hits

cs 152 vm.21 ©DAP & SIK 1995

TLBs
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

TLB access time comparable to, though shorter than, cache access time
 (still much less than main memory access time)

cs 152 vm.22 ©DAP & SIK 1995

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

cs 152 vm.23 ©DAP & SIK 1995

Reducing Translation Time

Machines with TLBs go one step further to reduce # cycles/cache access

They overlap the cache access with the TLB access

Works because high order bits of the VA are used to look in the TLB
 while low order bits are used as index into cache

DS3100: 32bit VA, 4KB page, 20bit V Page tag, 32Bit PA
 TLB fully associative, 64 entries, (tag, page, dirty, valid)
 Hardware support for table walk on TLB miss (rather than
 full hardware replacement)

cs 152 vm.24 ©DAP & SIK 1995

Overlapped Cache & TLB Access

TLB Cache

10 2

00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss VA Data Hit/

Miss

=

IF cache hit AND (cache tag = VA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = VA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

cs 152 vm.25 ©DAP & SIK 1995

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes
 go to 2 way set associative cache (would allow you to continue to
 use a 10 bit index)

1K

4 4
10

2 way set assoc cache

cs 152 vm.26 ©DAP & SIK 1995

SS-20 Review

° 4-way associative 16 KB Dcache = 4 * 1 page (4 KB)

° 5-way associative 20 KB Icache = 5 * 1 page (4 KB)

cs 152 vm.27 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 vm.28 ©DAP & SIK 1995

Virtual Memory

° Virtual address (2 32, 264) to Physical Address mapping (2 28)

° Virtual memory terms of cache terms:

• Cache block?

• Cache Miss?

° How is Virtual Memory different from caches?

• What Controls Replacement

• Size

• Lower level use

° 4Qs for VM?

• Q1: Where can a block be placed in the upper level?
Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
Cache was Tag/Block

• Q3: Which block should be replaced on a miss?
 Cache was Random, LRU

• Q4: What happens on a write?
Write Back or Write Through (with Write Buffer)

cs 152 vm.29 ©DAP & SIK 1995

More on Selecting a Page Size

° Reasons for larger page size

• Page table size is inversely proportional to the page size; therefore
memory saved .

• fast cache hit time easy when cache ≤ page size; bigger page
makes it feasible to have 1 page cache

• Transferring larger pages to or from secondary storage, possibly
over a network, is more efficient

• Number of TLB entries are restricted by clock cycle time, so a
larger page size maps more memory thereby reducing TLB misses.

° Reasons for a smaller page size

• don’t waste storage; data must be contiguous within page

• quicker process start for small processes?

° Hybrid solution: multiple page sizes
Alpha: 8KB, 64KB, 512 KB, 4 MB pages

cs 152 vm.30 ©DAP & SIK 1995

Segmentation (see x86)
Alternative to paging (often combined with paging)

Segments allocated for each program module; may be different sizes
 segment is unit of transfer between physical memory and disk

Present Access Length Phy Addr

seg # disp
Segment
Table

segment length
access rights
Addr=start addr of
 segment

+

physical addr
Presence Bit

BR

Faults:
 missing segment (Present = 0)
 overflow (Displacement exceeds segment length)
 protection violation (access incompatible with segment protection)

Segment-based addressing sometimes used to implement capabilities,
 i.e., hardware support for sophisticated protection mechanisms

cs 152 vm.31 ©DAP & SIK 1995

Segment Based Addressing
Two Serious Drawbacks:

(1) storage allocation with variable sized blocks
 (best fit vs. fit fit vs. buddy system)

(2) external fragmentation: physical memory allocated in such a
 fashion that all remaining pieces are too small to be allocated
 to any segment. Solved be expensive run-time memory compaction.

The best of both worlds: paged segmentation schemes

seg # page # displacementvirtual address

used by IBM: 4K byte pages, 16 x 1 Mbyte or 64 x 64 Kbyte segments

cs 152 vm.32 ©DAP & SIK 1995

Example of Fast translation: Translation Buffer

° Cache of translated addresses

° Alpha 21064 TLB: 32 entry fully associative

Page-frame
 address

Page
offset

<30>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

<9>
34-bit
physical
address

……

…

43

21

<13>

(low-order 13 bits
 of address)

(high-order 21 bits
 of address)

32:1 MUX

cs 152 vm.33 ©DAP & SIK 1995

Alpha VM Mapping

° “64-bit” address divided into 3
segments

• seg0 (bit 63=0) user code/heap

• seg1 (bit 63 = 1, 62 = 1) user stack

• kseg (bit 63 = 1, 62 = 0)
kernel segment for OS

° 3 level page table, each one page

• Alpha only 43 unique bits of VA

• (future min page size up to 64KB =
> 55 bits of VA)

° PTE bits; valid, kernel & user read &
write enable (No reference, use, or
dirty bit)

• What do you do?

page offset

Virtual address

Page Table
Base Register

+

seg0/seg1
selector

page offsetphysical page-frame number

Physical address

Main memory

L1 page table

Page table entry

...

...

L2 page table

Page table entry

...

...

+ L3 page table

Page table entry

...

...

+

level1 level2 level3
000 … 0 or
111 … 1

cs 152 vm.34 ©DAP & SIK 1995

Alpha 21064

° Separate Instr & Data
TLB & Caches

° TLBs fully
associative

° Caches 8KB direct
mapped

° Critical 8 bytes first

° 2 MB L2 cache, direct
mapped

° 256 bit path to main
memory, 4 64-bit
modules

V Data
<1>

D
<1> <10> <256>

=?

(65,536
blocks)

<10>

 Tag Index

<19>

Main
Memory

Tag

Victim Buffer

Write Buffer

Block
offset

Index

<8> <5>

1

1

2

2

3

5

5

6

7

8
9

10

11 12

12

12

13

14

15

16

17

17

18

18

19

19

19

20

21

22

23

23

23

24

25

26

27

28

28

4:1 MUX

Page-frame
 address <30>

Instruction <64> Data In <64>Data Out <64>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

<64>

<64>

<29>
<29>

<64>

……

…

(high-order 21 bits of
 physical address)

12:1 MUX

Page
offset<13>

Block
offset

Index

<8> <5>

Data Page-frame
 address <30>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

……

…

(high-order 21 bits of
 physical address)

32:1 MUX

Page
offset<13>

I
T
L
B

I
C
A
C
H
E

L2
C
A
C
H
E

D
C
A
C
H
E

D
T
L
B

PC

CPU

Alpha AXP 21064

=?

Instruction Prefetch Stream Buffer

Tag <29> Data <256>
=?

Tag <29> Data <256>

Magnetic
Disk

Valid Data
<1> <21> <64>

=?

2

4

5

9
12

(256
blocks)

Tag Valid Data
<1> <21> <64>

=?

(256
blocks)

Tag

Delayed Write Buffer

cs 152 vm.35 ©DAP & SIK 1995

Virtual Memory in Historical Perspective

° Since VM invented, DRAMs now 64,000 times larger

° Today systems rarely have many page faults

° Should we drop VM then?

cs 152 vm.36 ©DAP & SIK 1995

Conclusion #1

° Virtual Memory invented as another level of the hierarchy

° Controversial at the time: can SW automatically manage 64KB across
many programs?

° DRAM growth removed the controversy

° Today VM allows many processes to share single memory without
having to swap all processes to disk, protection more important

° (Multi-level) page tables to map virtual address to physical address

° TLBs are important for fast translation

° TLB misses are significant in performance

cs 152 vm.37 ©DAP & SIK 1995

Conclusion #2

° Theory of Algorithms & Compilers based on number of operations

° Compiler remove operations and “simplify” ops:
 Integer adds << Integer multiplies << FP adds << FP multiplies

• Advanced pipelines => these operations take similar time

° As Clock rates get higher and pipelines are longer, instructions take
less time but DRAMs only slightly faster (although much larger)

° Today time is a function of (ops, cache misses)

° Given importance of caches, what does this mean to:

• Compilers?

• Data structures?

• Algorithms?

