
cs 152 cache.1 ©DAP & SIK 1995

March 17, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 17: Cache System

cs 152 cache.2 ©DAP & SIK 1995

Recap: SRAM Timing

Write Timing:

D

Read Timing:

WE_L

A

Write
Hold Time

Write Setup Time

A

DOE_L

2 Nwords
x M bit
SRAM

N

M

WE_L

Data In

Write Address

OE_L

High Z

Junk Read Address

Garbage

Read Access
Time

Data Out

Read Access
Time

Data OutJunk

Read Address

cs 152 cache.3 ©DAP & SIK 1995

Recap: DRAM Fast Page Mode Operation

° Fast Page Mode DRAM

• N x M “SRAM” to save a row

° After a row is read into the register

• Only CAS is needed to access
other M-bit blocks on that row

• RAS_L remains asserted while
CAS_L is toggled

A Row Address

CAS_L

RAS_L

Col Address Col Address

1st M-bit Access

N
 r

ow
s

N cols

DRAM

Column
Address

M-bit Output
M bits

N x M “SRAM”

Row
Address

Col Address Col Address

2nd M-bit 3rd M-bit 4th M-bit

cs 152 cache.4 ©DAP & SIK 1995

The Motivation for Caches

° Motivation:

• Large memories (DRAM) are slow

• Small memories (SRAM) are fast

° Make the average access time small by:

• Servicing most accesses from a small, fast memory.

° Reduce the bandwidth required of the large memory

Processor

Memory System

Cache DRAM

cs 152 cache.5 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Memory Hierarchy & Introduction to Cache (20 min)

° Questions and Administrative Matters (5 min)

° A In-depth Look at the Operation of Cache (25 min)

° Break (5 minutes)

° Cache Write and Replacement Policy (10 min)

° The Memory System of the SPARCstation 20 (10 min)

° Summary (5 min)

cs 152 cache.6 ©DAP & SIK 1995

An Expanded View of the Memory System

Control

Datapath

Memory

Processor

M
em

ory

Memory

M
em

ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:

Size:

Cost:

cs 152 cache.7 ©DAP & SIK 1995

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10 - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

cs 152 cache.8 ©DAP & SIK 1995

The Principle of Locality

° The Principle of Locality:

• Program access a relatively small portion of the address space at
any instant of time.

• Example: 90% of time in 10% of the code

° Two Different Types of Locality:

• Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon.

• Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

Address Space0 2

Probability
of reference

cs 152 cache.9 ©DAP & SIK 1995

Memory Hierarchy: Principles of Operation

° At any given time, data is copied between only 2 adjacent levels:

• Upper Level (Cache) : the one closer to the processor

- Smaller, faster, and uses more expensive technology

• Lower Level (Memory): the one further away from the processor

- Bigger, slower, and uses less expensive technology

° Block:

• The minimum unit of information that can either be present or not
present in the two level hierarchy

Lower Level
(Memory)Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

cs 152 cache.10 ©DAP & SIK 1995

Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level (example: Block X)

• Hit Rate: the fraction of memory access found in the upper level

• Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

° Miss: data needs to be retrieve from a block in the lower level (Block Y)

• Miss Rate = 1 - (Hit Rate)

• Miss Penalty = Time to replace a block in the upper level +

Time to deliver the block the processor

° Hit Time << Miss Penalty

Lower Level
(Memory)Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

cs 152 cache.11 ©DAP & SIK 1995

Basic Terminology: Typical Values

Typical Values

Block (line) size 4 - 128 bytes

Hit time 1 - 4 cycles

Miss penalty 8 - 32 cycles (and increasing)

(access time) (6-10 cycles)

(transfer time) (2 - 22 cycles)

Miss rate 1% - 20%

Cache Size 1 KB - 256 KB

cs 152 cache.12 ©DAP & SIK 1995

How Does Cache Work?

° Temporal Locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon.

• Keep more recently accessed data items closer to the processor

° Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

• Move blocks consists of contiguous words to the cache

Lower Level
MemoryUpper Level

Cache
To Processor

From Processor
Blk X

Blk Y

cs 152 cache.13 ©DAP & SIK 1995

Questions and Administrative Matters (5 Minutes)

cs 152 cache.14 ©DAP & SIK 1995

The Simplest Cache: Direct Mapped Cache

Memory

4 Byte Direct Mapped Cache

Memory Address

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Cache Index

0

1

2

3

° Location 0 can be occupied by data from:

• Memory location 0, 4, 8, ... etc.

• In general: any memory location
whose 2 LSBs of the address are 0s

• Address<1:0> => cache index

° Which one should we place in the cache?

° How can we tell which one is in the cache?

cs 152 cache.15 ©DAP & SIK 1995

Cache Tag and Cache Index

° Assume a 32-bit memory (byte) address:

• A 2**N bytes direct mapped cache:

- Cache Index: The lower N bits of the memory address

- Cache Tag: The upper (32 - N) bits of the memory address

Cache Index

0

1

2

3

2 - 1N

:

2 N Bytes
Direct Mapped Cache

Byte 0

Byte 1

Byte 2

Byte 3

Byte 2**N -1

0N31

:

Cache Tag Example: 0x50 Ex: 0x03

0x50

Stored as part
of the cache “state”Valid Bit

:

cs 152 cache.16 ©DAP & SIK 1995

Cache Access Example

Access 000 01

Start Up

000 M [00001]

Access 010 10

(miss)

(miss)

000 M [00001]

010 M [00010]

Tag DataV

000 M [00001]

010 M [00010]

Miss Handling:
Load DataWrite Tag & Set V

Load Data

Write Tag & Set V

Access 000 01
(HIT)

000 M [00001]

010 M [00010]Access 010 10
(HIT)

° Sad Fact of Life:

• A lot of misses at start up:

Compulsory Misses

- (Cold start misses)

cs 152 cache.17 ©DAP & SIK 1995

Definition of a Cache Block

° Cache Block: the cache data that has in its own cache tag

° Our previous “extreme” example:

• 4-byte Direct Mapped cache: Block Size = 1 Byte

• Take advantage of Temporal Locality: If a byte is referenced,
it will tend to be referenced soon.

• Did not take advantage of Spatial Locality: If a byte is referenced,
its adjacent bytes will be referenced soon.

° In order to take advantage of Spatial Locality: increase the block size

Direct Mapped Cache Data

Byte 0

Byte 1

Byte 2

Byte 3

Cache TagValid

cs 152 cache.18 ©DAP & SIK 1995

Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a 2 ** N byte cache:

• The uppermost (32 - N) bits are always the Cache Tag

• The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992:

 Cache Tag

Byte Select

Ex: 0x00

9

cs 152 cache.19 ©DAP & SIK 1995

Block Size Tradeoff

° In general, larger block size take advantage of spatial locality BUT:

• Larger block size means larger miss penalty:

- Takes longer time to fill up the block

• If block size is too big relative to cache size, miss rate will go up

° Average Access Time:

• = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

cs 152 cache.20 ©DAP & SIK 1995

Another Extreme Example

° Cache Size = 4 bytes Block Size = 4 bytes

• Only ONE entry in the cache

° True: If an item is accessed, likely that it will be accessed again soon

• But it is unlikely that it will be accessed again immediately!!!

• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:

• Different memory locations mapped to the same cache index

- Solution 1: make the cache size bigger

- Solution 2: Multiple entries for the same Cache Index

0

 Cache DataValid Bit

Byte 0Byte 1Byte 3

 Cache Tag

Byte 2

cs 152 cache.21 ©DAP & SIK 1995

A Two-way Set Associative Cache

° N-way set associative: N entries for each Cache Index

• N direct mapped caches operates in parallel

° Example: Two-way set associative cache

• Cache Index selects a “set” from the cache

• The two tags in the set are compared in parallel

• Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cs 152 cache.22 ©DAP & SIK 1995

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped Cache:

• N comparators vs. 1

• Extra MUX delay for the data

• Data comes AFTER Hit/Miss

° In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:

• Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cs 152 cache.23 ©DAP & SIK 1995

And yet Another Extreme Example: Fully Associative

° Fully Associative Cache -- push the set associative idea to its limit!

• Forget about the Cache Index

• Compare the Cache Tags of all cache entries in parallel

• Example: Block Size = 2 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

cs 152 cache.24 ©DAP & SIK 1995

A Summary on Sources of Cache Misses

° Compulsory (cold start, first reference): first access to a block

• “Cold” fact of life: not a whole lot you can do about it

° Conflict (collision):

• Multiple memory locations mapped
to the same cache location

• Solution 1: increase cache size

• Solution 2: increase associativity

° Capacity:

• Cache cannot contain all blocks access by the program

• Solution: increase cache size

° Invalidation: other process (e.g., I/O) updates memory

cs 152 cache.25 ©DAP & SIK 1995

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Invalidation Miss

Conflict Miss

Source of Cache Misses Quiz

cs 152 cache.27 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 cache.28 ©DAP & SIK 1995

The Need to Make a Decision!

° Direct Mapped Cache:

• Each memory location can only mapped to 1 cache location

• No need to make any decision :-)

- Current item replaced the previous item in that cache location

° N-way Set Associative Cache:

• Each memory location have a choice of N cache locations

° Fully Associative Cache:

• Each memory location can be placed in ANY cache location

° Cache miss in a N-way Set Associative or Fully Associative Cache:

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• Damn! We need to make a decision on which block to throw out!

cs 152 cache.29 ©DAP & SIK 1995

Cache Block Replacement Policy

° Random Replacement:

• Hardware randomly selects a cache item and throw it out

° Least Recently Used:

• Hardware keeps track of the access history

• Replace the entry that has not been used for the longest time

° Example of a Simple “Pseudo” Least Recently Used Implementation:

• Assume 64 Fully Associative Entries

• Hardware replacement pointer points to one cache entry

• Whenever an access is made to the entry the pointer points to:

- Move the pointer to the next entry

• Otherwise: do not move the pointer

:

Entry 0

Entry 1

Entry 63

Replacement

Pointer

cs 152 cache.30 ©DAP & SIK 1995

Cache Write Policy: Write Through versus Write Back

° Cache read is much easier to handle than cache write:

• Instruction cache is much easier to design than data cache

° Cache write:

• How do we keep data in the cache and memory consistent?

° Two options (decision time again :-)

• Write Back: write to cache only. Write the cache block to memory
 when that cache block is being replaced on a cache miss.

- Need a “dirty” bit for each cache block

- Greatly reduce the memory bandwidth requirement

- Control can be complex

• Write Through: write to cache and memory at the same time.

- What!!! How can this be? Isn’t memory too slow for this?

cs 152 cache.31 ©DAP & SIK 1995

Write Buffer for Write Through

° A Write Buffer is needed between the Cache and Memory

• Processor: writes data into the cache and the write buffer

• Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:

• Typical number of entries: 4

• Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

° Memory system designer’s nightmare:

• Store frequency (w.r.t. time) -> 1 / DRAM write cycle

• Write buffer saturation

Processor
Cache

Write Buffer

DRAM

cs 152 cache.32 ©DAP & SIK 1995

Write Buffer Saturation

° Store frequency (w.r.t. time) -> 1 / DRAM write cycle

• If this condition exist for a long period of time (CPU cycle time too
quick and/or too many store instructions in a row):

- Store buffer will overflow no matter how big you make it

- The CPU Cycle Time <= DRAM Write Cycle Time

° Solution for write buffer saturation:

• Use a write back cache

• Install a second level (L2) cache:

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAML2
Cache

cs 152 cache.33 ©DAP & SIK 1995

Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and causes a miss

• Do we read in the rest of the block (Byte 2, 3, ... 31)?

Yes: Write Allocate

No: Write Not Allocate

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x00

Ex: 0x00

0x00

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992:

 Cache Tag

Byte Select

Ex: 0x00

9

cs 152 cache.34 ©DAP & SIK 1995

What is a Sub-block?

° Sub-block:

• A unit within a block that has its own valid bit

• Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block

- Each cache entry will have: 32/8 = 4 valid bits

° Write miss: only the bytes in that sub-block is brought in.

0

1

2

3

:

 Cache Data

:

S
B

0’
s

V
 B

it

:

31

 Cache Tag S
B

1’
s

V
 B

it

:

S
B

2’
s

V
 B

it

:

S
B

3’
s

V
 B

it

:

Sub-block0Sub-block1Sub-block2

Sub-block3

: B0: B24B31

Byte 992Byte 1023

cs 152 cache.35 ©DAP & SIK 1995

Reducing Memory Transfer Time

CPU

$

M

bus

mux

CPU

$

M

bus

M M M

CPU

$

M

bus

Solution 1
High BW DRAM

Solution 2
Wide Path Between Memory & Cache

Solution 3
Memory Interleaving

Examples:
 Page Mode DRAM
 SDRAM
 CDRAM
 RAMbus

Cost

cs 152 cache.36 ©DAP & SIK 1995

Memory Bus (SIMM Bus) 128-bit wide datapath

SPARCstation 20’s Memory System

Memory
Controller

M
em

or
y

M
od

ul
e

0

P
ro

ce
ss

or
 B

us
 (

M
bu

s)
 6

4-
bi

t w
id

e

M
em

or
y

M
od

ul
e

1

M
em

or
y

M
od

ul
e

2

M
em

or
y

M
od

ul
e

3

M
em

or
y

M
od

ul
e

4

M
em

or
y

M
od

ul
e

5

M
em

or
y

M
od

ul
e

6

M
em

or
y

M
od

ul
e

7
Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

Instruction
Cache

Data
Cache

Register
File

cs 152 cache.37 ©DAP & SIK 1995

SPARCstation 20’s External Cache

° SPARCstation 20’s External Cache:

• Size and organization: 1 MB, direct mapped

• Block size: 128 B

• Sub-block size: 32 B

• Write Policy: Write back, write allocate

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

Instruction
Cache

Data
Cache

Register
File

1 MB
Direct Mapped

Write Back
Write Allocate

cs 152 cache.38 ©DAP & SIK 1995

SPARCstation 20’s Internal Instruction Cache

° SPARCstation 20’s Internal Instruction Cache:

• Size and organization: 20 KB, 5-way Set Associative

• Block size: 64 B

• Sub-block size: 32 B

• Write Policy: Does not apply

° Note: Sub-block size the same as the External (L2) Cache

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

I-Cache

Data
Cache

Register
File

1 MB
Direct Mapped

Write Back
Write Allocate

20 KB 5-way

cs 152 cache.39 ©DAP & SIK 1995

SPARCstation 20’s Internal Data Cache

° SPARCstation 20’s Internal Data Cache:

• Size and organization: 16 KB, 4-way Set Associative

• Block size: 64 B

• Sub-block size: 32 B

• Write Policy: Write through, write not allocate

° Sub-block size the same as the External (L2) Cache

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

I-Cache

D-Cache

Register
File

1 MB
Direct Mapped

Write Back
Write Allocate

20 KB 5-way

16 KB 4-way
WT, WNA

cs 152 cache.40 ©DAP & SIK 1995

Two Interesting Questions?

° Why did they use N-way set associative cache internally?

• Answer: A N-way set associative cache is like having N direct
mapped caches in parallel. They want each of those N direct
mapped cache to be 4 KB. Same as the “virtual page size.”

• Virtual Page Size: cover in next week’s virtual memory lecture

° How many levels of cache does SPARCstation 20 has?

• Answer: Three levels.
(1) Internal I & D caches, (2) External cache and (3) ...

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

I-Cache

D-Cache

Register
File

1 MB
Direct Mapped

Write Back
Write Allocate

20 KB 5-way

16 KB 4-way
WT, WNA

cs 152 cache.41 ©DAP & SIK 1995

SPARCstation 20’s Memory Module

° Supports a wide range of sizes:

• Smallest 4 MB: 16 2Mb DRAM chips, 8 KB of Page Mode SRAM

• Biggest: 64 MB: 32 16Mb chips, 16 KB of Page Mode SRAM

51
2

ro
w

s

512 cols

DRAM Chip 0

bits<7:0>

8 bits

512 x 8 SRAM

256K x 8
= 2 MB

DRAM Chip 15

bits<127:0>

512 x 8 SRAM

256K x 8
= 2 MB

Memory Bus<127:0>

cs 152 cache.42 ©DAP & SIK 1995

Summary:

° The Principle of Locality:

• Program access a relatively small portion of the address space at
any instant of time.

- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:

• Compulsory Misses: sad facts of life. Example: cold start misses.

• Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Capacity Misses: increase cache size

° Write Policy:

• Write Through: need a write buffer. Nightmare: WB saturation

• Write Back: control can be complex

cs 152 cache.43 ©DAP & SIK 1995

Where to get more information?

° General reference, Chapter 8 of:

• John Hennessy & David Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers Inc., 1990

° A landmark paper on caches:

• Alan Smith, Cache Memories, Computing Surveys, September 1982

° A book on everything you need to know about caches:

• Steve Przybylski, Cache and Memory Hierarchy Design: A
Performance-Directed Approach, Morgan Kaufmann Publishers
Inc., 1990.

