CS152 Computer Architecture and Engineering Lecture 16: Memory System

March 15, 1995

Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com)

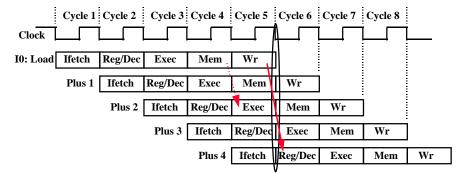
Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 memory.1

©DAP & SIK 1995

Recap: Solution to Branch Hazard

	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle 8	
Clk					┡──				<u> </u>
12: Beq (target i		Reg/Dec	Exec	Mem	Wr]			
. 0	6: R-type	Ifetch	Reg/Dec	Exec	Mem	Wr]		
	20): R-type	Ifetch	Reg/Dec	Exec	Mem	Wr]	
		24	l: R-type	Ifetch	Reg/Dec	Exec	Mem	Wr	J
		1	.000: Targ	get of Br	Ifetch	Reg/Dec	Exec	Mem	Wr
					V				


 $^\circ\,$ In the Simple Pipeline Processor if $\,$ a Beq is fetched during Cycle 1:

- Target address is NOT written into the PC until the end of Cycle 4
- Branch's target is NOT fetched until Cycle 5
- 3-instruction delay before the branch take effect

° This Branch Hazard can be reduced to 1 instruction if in Beq's Reg/Dec:

- Calculate the target address
- Compare the registers using some "quick compare" logic
 Compare 152 memory.2

Recap: Solution to Load Hazard

° In the Simple Pipeline Processor if a Load is fetched during Cycle 1:

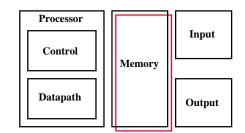
- The data is NOT written into the Reg File until the end of Cycle 5
- We cannot read this value from the Reg File until Cycle 6
- 3-instruction delay before the load take effect

° This Data Hazard can be reduced to 1 instruction if we:

• Forward the data from the pipeline register to the next instruction

cs 152 memory.3

©DAP & SIK 1995

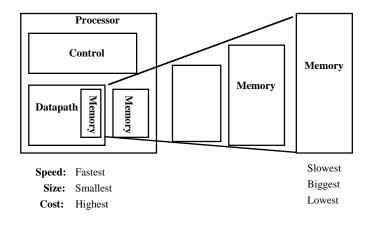

Outline of Today's Lecture

- ° Recap and Introduction (5 minutes)
- ^o Memory System: the BIG Picture? (15 minutes)
- ° Questions and Administrative Matters (5 minutes)
- ^o Memory Technology: SRAM and Register File (25 minutes)
- ° Break (5 minutes)
- ^o Memory Technology: DRAM (15 minutes)
- ^o A Real Life Example: SPARCstation 20's Memory System (5 minutes)
- ° Summary (5 minutes)

cs 152 memory.4

The Big Picture: Where are We Now?

 $^{\circ}\,$ The Five Classic Components of a Computer



° Today's Topic: Memory System

cs 152 memory.5

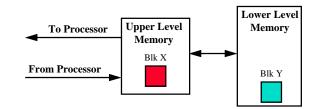
©DAP & SIK 1995

An Expanded View of the Memory System

cs 152 memory.6

The Principle of Locality

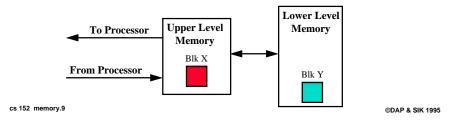
- ° The Principle of Locality:
 - Program access a relatively small portion of the address space at any instant of time.
- ° Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.


cs 152 memory.7

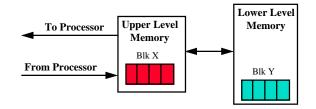
©DAP & SIK 1995

Memory Hierarchy: Principles of Operation

^o At any given time, data is copied between only 2 adjacent levels:

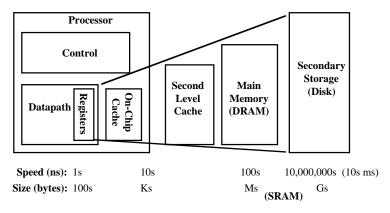

- Upper Level: the one closer to the processor
- Smaller, faster, and uses more expensive technology
- Lower Level: the one further away from the processor
 - Bigger, slower, and uses less expensive technology
- ° Block:
 - The minimum unit of information that can either be present or not present in the two level hierarchy

cs 152 memory.8


Memory Hierarchy: Terminology

- ° Hit: data appears in some block in the upper level (example: Block X)
 - Hit Rate: the fraction of memory access found in the upper level
 - Hit Time: Time to access the upper level which consists of RAM access time + Time to determine hit/miss
- $^\circ\,$ Miss: data needs to be retrieve from a block in the lower level (Block Y)
 - Miss Rate = 1 (Hit Rate)
 - Miss Penalty: Time to replace a block in the upper level + Time to deliver the block the processor
- [°] Hit Time << Miss Penalty

Memory Hierarchy: How Does it Work?


- Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - · Keep more recently accessed data items closer to the processor
- Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.
 - Move blocks consists of contiguous words to the upper levels

cs 152 memory.10

Memory Hierarchy of a Modern Computer System

- [°] By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - Provide access at the speed offered by the fastest technology.

cs 152 memory.11

©DAP & SIK 1995

Memory Hierarchy Technology

° Random Access:

- "Random" is good: access time is the same for all locations
- DRAM: Dynamic Random Access Memory
 - High density, low power, cheap, slow
 - Dynamic: need to be "refreshed" regularly
- SRAM: Static Random Access Memory
 - Low density, high power, expensive, fast
 - Static: content will last "forever"
- ° "Non-so-random" Access Technology:
 - · Access time varies from location to location and from time to time
 - Examples: Disk, tape drive, CDROM
- ° The next two lectures will concentrate on random access technology
 - The Main Memory: DRAMs
 - Caches: SRAMs

cs 152 memory.12

Questions and Administrative Matters (5 Minutes)

cs 152 memory.13

©DAP & SIK 1995

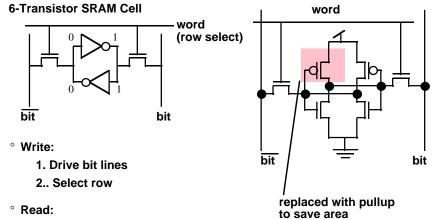
Random Access Memory (RAM) Technology

° Why do computer designers need to know about RAM technology?

- Processor performance is usually limited by memory bandwidth
- As IC densities increase, lots of memory will fit on processor chip
 - Tailor on-chip memory to specific needs
 - Instruction cache
 - Data cache
 - Write buffer
- [°] What makes RAM different from a bunch of flip-flops?
 - Density: RAM is much more denser

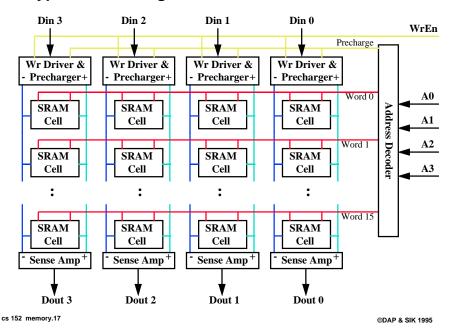
cs 152 memory.14

Technology Trends

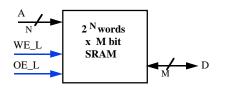

	Capacity	Speed
Logic:	2x in 3 years	2x in 3 years
DRAM:	4x in 3 years	1.4x in 10 years
Disk:	2x in 3 years	1.4x in 10 years

DRAM							
Year	Size	Cycle Time					
1980	64 Kb	250 ns					
1983	256 Kb	220 ns					
1986	1 Mb	190 ns					
1989	4 Mb	165 ns					
1992	16 Mb	145 ns					
1995	64 Mb	120 ns					

cs 152 memory.15

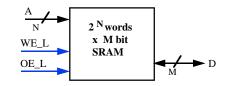

©DAP & SIK 1995

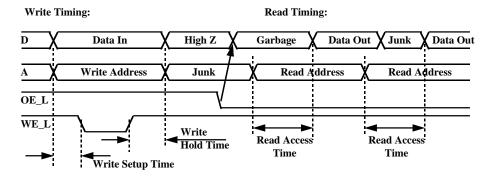
Static RAM Cell


- 1. Precharge bit and bit to Vdd
- 2.. Select row
- 3. Cell pulls one line low
- 4. Sense amp on column detects difference

cs 152 memory.16

Typical SRAM Organization: 16-word x 4-bit

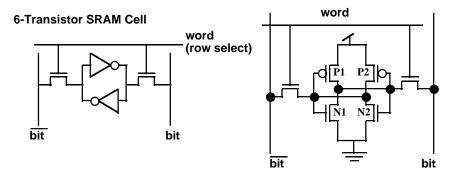

Logic Diagram of a Typical SRAM



- ° Write Enable is usually active low (WE_L)
- ° Din and Dout are combined:
 - A new control signal, output enable (OE_L) is needed
 - WE_L is asserted (Low), OE_L is disasserted (High)
 D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
 - Both WE_L and OE_L are asserted:
 - Result is unknown. Don't do that!!!

cs 152 memory.18

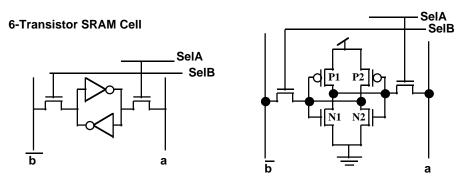
Typical SRAM Timing



cs 152 memory.19

©DAP & SIK 1995

A Closer Look at the SRAM Cell



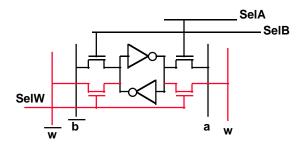
° Typical SRAM has a lot of words (rows)

- The bit lines are very long and have a lot of capacitance
- Transistors N1, N2, P1, and P2 must be very small
- ° Transistors N1 P1 not strong enough to drive "bit" quickly:
 - Need to build a sense amplifier to compare "bit" and "not bit"

cs 152 memory.20

Dual-ported (Read) SRAM Cell for Register File

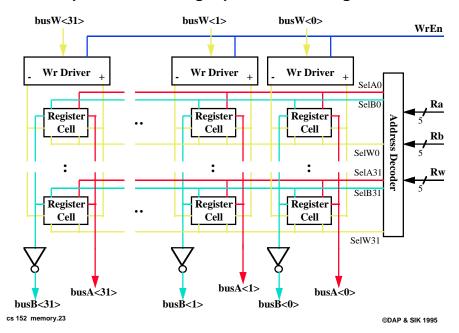
° With short bit lines and larger transistors:


- N1 and P1 can drive bit line "a" quickly
- N2 and P2 can drive bit line "not b" quickly

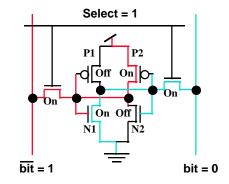
° We can read two words simultaneously

cs 152 memory.21

©DAP & SIK 1995


Single-ported (Write) SRAM Cell for Register File

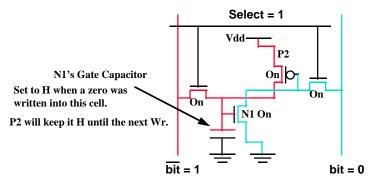
° In order to write a new value into the cell:


- · We need to drive both sides simultaneously
- We can only write one word at a time
- $^\circ\,$ Extra pair of bit lines ("w" and "not w")
 - Read and write can occur simultaneously

cs 152 memory.22

Dual-ported Read Single-ported Write Register File

Problems with SRAM

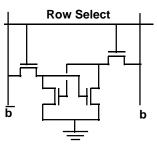

° Six transistors use up a lot of area

° Consider a "Zero" is stored in the cell:

- Transistor N1 will try to pull "bit" to 0
- Transistor P2 will try to pull "bit bar" to 1
- ° But bit lines are precharged to high: Are P1 and P2 necessary?

cs 152 memory.24

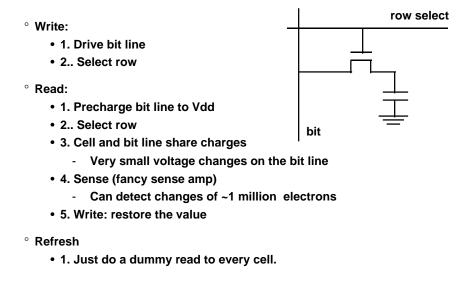
Problems with SRAM (Continue)


- [°] The P-type transistor (P2) has three functions:
 - Drive the "bit bar"line to HI during read (Select = 1)
 - · Keep N1's gate at HI until the next write
 - Prevent N1's gate capacitor from "leaking" all its charges to "bit bar" during read

cs 152 memory.25

©DAP & SIK 1995

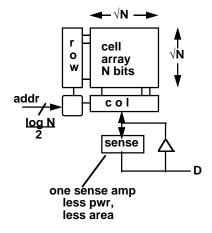
4-Transistor RAM cell


- ° Read:
 - 1. Precharge b and b to Vdd
 - 2.. Select row
 - 3. Sense
 - Voltages on the gates • 4. Amplify data
 - converge during read and must be restored. • 5. Write
- ° Refresh:
 - · Dummy read cycle
- ° Write:
 - 1. Drive bit lines
 - · 2. Select row

- Advantage: Smaller: Eliminates 2 load devices and 1 power rail
- **Disadvantages:** Additional refresh cycle Lower noise margin

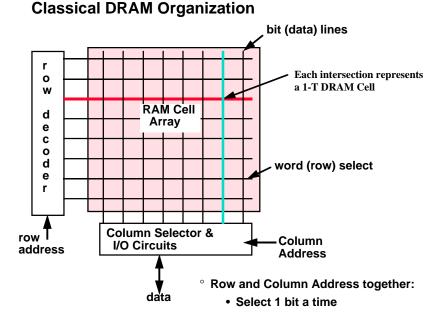
cs 152 memory.26

1-Transistor Cell


cs 152 memory.27

©DAP & SIK 1995

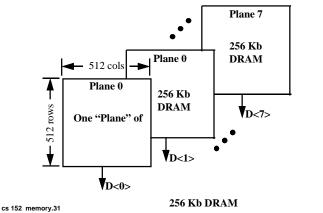
Break (5 Minutes)


Introduction to DRAM

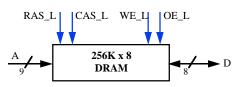
- [°] Dynamic RAM (DRAM):
 - Refresh required
 - Very high density
 - Low power (.1 .5 W active, .25 - 10 mW standby)
 - Low cost per bit
 - Pin sensitive:
 - Output Enable (OE_L)
 - Write Enable (WE_L)
 - Row address strobe (ras)
 - Col address strobe (cas)
 - Page mode operation

cs 152 memory.29

©DAP & SIK 1995



cs 152 memory.30

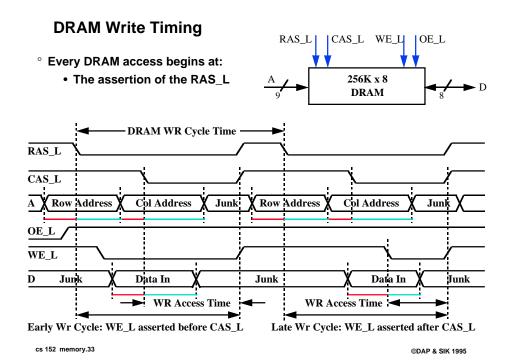

Typical DRAM Organization

° Typical DRAMs: access multiple bits in parallel

- Example: 2 Mb DRAM = 256K x 8 = 512 rows x 512 cols x 8 bits
- · Row and column addresses are applied to all 8 planes in parallel

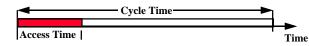
Logic Diagram of a Typical DRAM

° Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low


- ° Din and Dout are combined (D):
 - WE_L is asserted (Low), OE_L is disasserted (High) - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin

^o Row and column addresses share the same pins (A)

- RAS_L goes low: Pins A are latched in as row address
- CAS_L goes low: Pins A are latched in as column address

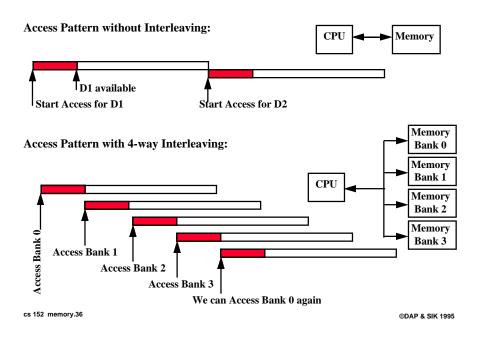

cs 152 memory.32

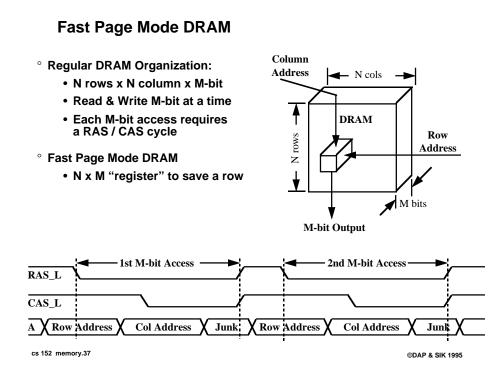
©DAP & SIK 1995

DRAM Read Timing RAS_L CAS_L WE_L OE_L ° Every DRAM access begins at: • The assertion of the RAS_L 256K x 8 DRAM DRAM Read Cycle Time RAS_L CAS_L **Row Address Col Address Row Address Col Address** А Junk Junk WE_L OE_L D High Z Junk Data Out High Z Junk Read Access **Output Enable** Time Delay Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L cs 152 memory.34 ©DAP & SIK 1995

Cycle Time versus Access Time

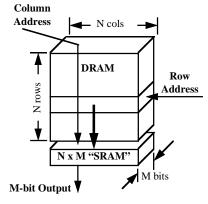
- ° DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time
- ° DRAM (Read/Write) Cycle Time :
 - · How frequent can you initiate an access?
 - Analogy: A little kid can only ask his father for money on Saturday

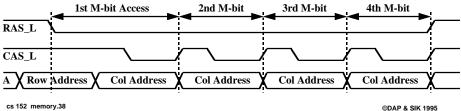

^o DRAM (Read/Write) Access Time:

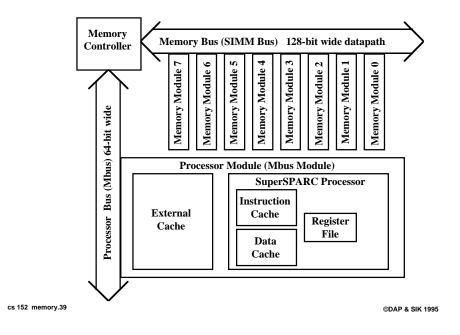

- · How quickly will you get what you want once you initiate an access?
- · Analogy: As soon as he asks, his father will give him the money
- ° DRAM Bandwidth Limitation analogy:
 - What happens if he runs out of money on Wednesday?

cs 152 memory.35

©DAP & SIK 1995

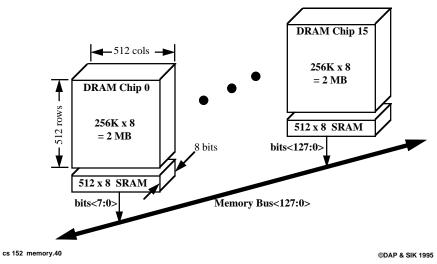

Increasing Bandwidth - Interleaving





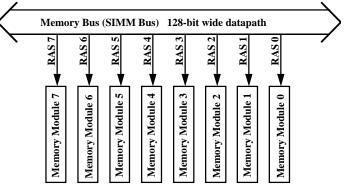
Fast Page Mode Operation

- ° Fast Page Mode DRAM
 - N x M "SRAM" to save a row
- ° After a row is read into the register
 - Only CAS is needed to access other M-bit blocks on that row
 - RAS_L remains asserted while CAS_L is toggled



SPARCstation 20's Memory System Overview

SPARCstation 20's Memory Module


° Supports a wide range of sizes:

- Smallest 4 MB: 16 2Mb DRAM chips, 8 KB of Page Mode SRAM
- Biggest: 64 MB: 32 16Mb chips, 16 KB of Page Mode SRAM

SPARCstation 20's Main Memory

- ° Biggest Possible Main Memory :
 - 8 64MB Modules: 8 x 64 MB DRAM 8 x 16 KB of Page Mode SRAM
- How do we select 1 out of the 8 memory modules?
 Remember: every DRAM operation start with the assertion of RAS
 - SS20's Memory Bus has 8 separate RAS lines

cs 152 memory.41

©DAP & SIK 1995

Summary:

- ° Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.
- ^o By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - Provide access at the speed offered by the fastest technology.
- ° DRAM is slow but cheap and dense:
 - Good choice for presenting the user with a BIG memory system
- ° SRAM is fast but expensive and not very dense:
 - Good choice for providing the user FAST access time.

cs 152 memory.42

Where to get more information?

 $^\circ\,$ To be continued ...

cs 152 memory.43