
w
dfi:gl
'rg

676 Chapter 8 lnterfacing Processors and Peripherals

Gommunicatingt with the Processor
The process of periodicaily checking status bits to see if it is time for the ner:
I/O operation, as in the previous example, is called polling. Polling is the sir:'
plest way for an IIO device to communicate with the processor. The I 

'--

device simply puts the information in a Status register, and tl-re process:-
must come and get the information. The processor is totally in control ar:
does all the rvork.

The disadvantage of poiling is that it can waste a lot of processor time b-
cause processors are so much faster than I/O devices. The processor may re::
the Status register many times, only to find that the device has not yet cr.:-
pleted a comparatively slow I/O operation, or that the mouse has not bud:::
since the last time it was polled. When the device has completed an operat:;:.
we must still read the status to determine whether it was successful.

Polling can be used in several different ways, depending on the I/O dei-::.
and whether the I/O device can initiate I/O independently. For examp-.
mouse is an input-only device that initiates I/O independently, when a :-.':
moves the mouse or clicks a button. Because a mouse has a low I/O rate, ;: "

ing is often used to inferface fo a mouse. Many other I/O devices, suci" .:: .

floppy disk or a printer, initiaie I/O only under control of the operatin.{ -., -
tem. Thus we need only poll such devices when the OS knows that the d=:, ,:
is active. As we will see, this allows polling to be used even when the I/C ::-,
is somewhat higher.

Overhead of Pollin€ in an l/O System

Let's determine the irnpact of polling overhead for three different d-- -.-
Assume that the number of clock cycles for a polling operation-inc- - : - *

transferring to the polling routine, accessing the device, and restart::': '.
user program-is 400 and that the processor executes with a 5l' -' - 

"

clock.
Determine the fraction of CPU time consumed for the follon'ini : - -:*:

cases, assuming that you poll often enough so that no data is ever i..: . t,-

assuming that the devices are potentially always busy:

1. The mouse must be polled 30 times per second to ensure tha:- . :,:
not miss any movement made by the user.

2. The floppy disk transfers data to the processor in 16-bit ut::i ,.:1,

has a data rate of 50 KB/sec. No data transfer can be misse.-.

3. The hard disk transfers data in four-word chunks and can :::'* ?irf'

at 4MB / sec. Again, no transfer can be missed.



8.5 lntefacin€l yO Devices to the Memory, Processor, and Operating System 679

,.-
:::- - '

Li i--:

rl,l r'-.
eneli:-
es ih:.:
diffe:-

' of the
:s or an
)cessor.
: in the
ntity of
tire de-
roll the
IS.

interru pt
in which
and l/a

al excep-
sociated
5.6), the
upt. lf a

t for the

rc@
l

I
I

l
I
I
I

I

l

I
I

1W
i
I

Transferring the Data between a Device and Memory

We have seen two different methods that enable a device to communicate
with the processor. These two techniques, polling and I/O interrupts, form
the basis for two methods of implementing the transfer of data between the
I/O device and memory. Both these techniques work best with lower-
bandwidth devices, where we are more interested in reducing the cost of the
device controller and interface than in providing a high-bandwidth transfer.
Both polling and interrupt-driven transfers put the burden of moving data
and managing the transfer on the processor. After looking at these two
schemes, we will examine a scheme more suitable for higher-performance
devices or collections of devices.

We can use the processor to transfer data between a device and memory
based on polling. Consider our mouse example. The processor can periodically
read the mouse counter values and the position of the mouse buttons. If the po-
sition of the mouse or one of its buttons has changed, the operating system can
notify the program associated with interpreting the mouse changes.

An alternative mechanism is to make the transfer of data interrupt driven.
In this case, the OS would still transfer data in smail numbers of bytes from or
to the device. But because the I/O operation is interrupt driven, the OS simply
works on other tasks while data is being read from or written to the device.
When the OS recognizes an interupt from the device, it reads the status to
check for errors. If there are none, the OS can supply the next piece of data, for
example, by a sequence of memory-mapped writes. When the lasi byte of an
I/O request has been transmitted and the I/O operation is completed, the OS

can inform the program. The processor and OS do all the work in this process,
accessing the device and memory for each data item transferred. Let's see how
an interrupt-driven I/O interface might work for the floppy disk.

I

Overhead of lnterrupt-Driven l/O

Suppose we have the same hard disk and processor we used in the exam-
ple on page 676, but we use interrupt-driven I/O. The overhead for each

transfer, including the interrupt, is 500 clock cycles. Find the fraction of the
processor consumed if the hard disk is only transferring data 5% of the
time.

The interrupt rate when the disk is busy is the sarne as the polling rate.
Hence,

Cycles per second for disk - 250K x 500

= 725x106 cycles per second



8.5 lnterfacing /O Devices to the Memory, Procassor, and Operatlnll System 681

1x106

-= 

/^
)x106

ime,

<5Vo = 7.21

is not actua__
terface trers;.

,.ait for er-:r:;
r from or t. .
onsume l:
-idth der-i:..,
locks of i::.
ed a mec:--:-
rller iran::,.:
rcessor. fl-:.
echanis::, ,
nh'on cr:.

:rs claia i:
The D-t 1--

betrtee;: .;-

the de'.-t;=
that :s :: 

=

nur.bt: -:

3. Once the DMA transfer is compiete, the controller interrupts the proces-
sor, which can then determine by interrogating the DMA device or
examining memory whether the entire operation completed success-
fully.

There may be multiple DMA devices in a computer system. For example, in
a system with a single processor-memory bus and multiple I/O buses, each
I/O bus controller will often contain a DMA processor that handles any trans-
fers between a device on the I/O bus and the memory. Let's see how much of
the processor is consumed using DMA to handle our hard-disk example.

Overhead ot l/O Using DMA

Suppose we have the same processor and hard disk as our earlier example
on page 676. Assume that the initial setup of a DMA transfer takes 1000
clock cycles for the processor, and assume the handling of the ir,terrupt at
DMA cornpletion requires 500 clock cycles for the processor. The hard disk
has a transfer rate of 4 MB/sec and uses DMA. If the average transfer from
ihe disk is 8 KB, what fraction of the 500-MHz processor is consumed if the
disk is actively transferring 1007o of the time? Ignore any impact from bus
contention between the processor and DMA controller.

@ 
Each DMAtransfer takes

BKB
= 2x10-3seconds

So if the disk is constantly transferring, it requires

,MB*t"aa'tt'td

1000 * 500 cyclgs
transfer nt^ rn3

) - 1n-g seconds
transfer

Since the processor runs at 500 MHz,

Fraction of processor consumed = 35-101
500 x 106

clock cvcles
second

= 1.5 x 70-3 = 0.2%


