COE758: DIGITAL SYSTEMS ENGINEERING Fall 2018

1 Objectives

COE 758: This course covers the basics of advanced computing systems. The emphasis is in understanding the system architecture around the processor and the different components of modern digital systems.

The course covers Memory hierarchy including Main memory, Cache , Virtual memory and disk technology. It covers the Interfacing of processors and peripherals including Input / Output devices as Video-Output Subsystem. The course gives classification of Buses, bus organization and protocols. The course gives an introduction to systems interconnect and NoC.

The laboratory projects include design of On-Chip Memory controller and Video-signal generator for VGA-monitor.

2 Course Outline

WEEK	LECTURE	LABORATORY
1	Memory Hierarchy	Lab1: Introduction to
	- Introduction	recent FPGA/CPLD
	Main Memory: Static RAM	technology
2	Memory Hierarchy	Lab2: Introduction to
	Main Memory: Dynamic RAM (SDRAM,	FPGA-based development
	DDR RAM , RDRAM)	Environment
3	Memory Hierarchy	Lab3: Project 1 (Memory
	Cache memory: Concept and principles of	controller) description and
	organization	device specification
4	Memory Hierarchy	Lab4: Memory Controller;
	Cache memory; Cache Controller's	Design entry (VHDL code)
	architecture. Multi-level Cache.	
5	Memory hierarchy	Lab5: Memory controller:
	Virtual memory: Concept and principles of	Simulation and verification
	organization	
6	Memory hierarchy	Lab6: Memory controller:
	Virtual memory: Interaction between Cache	Hardware implementation
	Main memory and Disk in Virtual memory.	& real performance analysis.
	Disk technology and RAID	
7	Interfacing Processor and Peripherals	Lab7: Demonstration of
	- IO Devices	Memory controller
	- Interfacing IO Devices	

WEEK	LECTURE	LABORATORY
8	Interfacing Processor and Peripherals	Lab8: Project2: Video-
	- Buses: Concepts and Principles	signal generator: Device
	- Midterm Test	specification
9	Interfacing Processor and Peripherals	Lab9: Video-signal
	-Bus arbitration	generator: Design entry
	-Direct Memory Access (DMA)	(VHDL code)
10	Multiprocessor System Interconnect	Lab10: Video-signal
	-Introduction	generator: Simulation and
	-Bus design for single level snooping cache	verification
11	Multiprocessor System Interconnect	Lab11: Video-signal
	-Split-transaction Bus Design	generator:
		Hardware implementation
		& real performance analysis
12	Multiprocessor System Interconnect	Lab12: Integration of
	-CASE Study: SGI Bus System Design	Video-signal generator with
		SVGA-monitor
13	Review	Lab13: Demonstration of
		complete project and final
		report

3 Course Texts

David Patterson and John Hennessy "Computer Organization & Design The Hardware Software Interface" Morgan Kaufmann Publishers, San Francisco, CA 94104, ISBN 1-55860-428-6

4 Marking Scheme

 $\begin{aligned} & \text{Total Lab Work} = 30\% \\ & \text{Midterm} = 25\% \\ & \text{Final Exam} = 45\% \end{aligned}$

All of the required course specific written reports will be assigned not only on their technical or academic merit, but also on the communication skills of the author as exhibited through these reports.

Instructor Name: Dr. Nagi Mekhiel

Office: ENG 446

Telephone: (416) 979-5000 ext 7251 E-mail: nmekhiel@ee.ryerson.ca