Cache System

Concept:

Cache works because of principle of locality.

-spatial and temporal localities.

-processor spends 90% of time executing 10% of code

-use small fast memory to store accesses that processor needs the most using localities of references.

Memory Hierarchy
 Type size speed

1-registers 100s less than .3 ns

2-L1 Cache SRAM 32 KB 1 cycle = .3 ns

3-L2 Cache SRAM 1 MB 10 Cycles= 3 ns

4-Main Memory DRAM 1 GB 40 ns
5-Virtual memory HD 1000 GB ms

Types of Localities:

1-spatial locality: references that are close by in space (address) are more likely to be referenced. Array elements A[i], A[i+1] are close by in space.

2-Temporal locality: Items that are referenced now are more likely to be referenced again soon in time. Loops repeats.

Cache Terminology

1-Hit Rate: Percentage of references found in the cache

2-Miss Rate: Percentage of references not found in the cache=1-hit rate. Must get these references from lower level memory.

3-Hit Time: Access time to the cache + time to determine hit or miss

4-Miss penalty: Time needed to replace a block in cache from main memory + time to deliver reference to the cache

5-Block : unit of information to be transferred (present or not present) between two levels.

Example of cache parameters:

Size=32 KB, Block = 64 B, Hit rate=95%, miss rate=5%

Hit time= 1 ns, miss penalty = 60 ns

Direct Mapped Cache

· Mapping

· Organization

· Performance

Mapping

Each item in memory maps to one location in cache.

The cache location=memory location modulo cache number of blocks

How to find a block in cache?

Use a cache tag for each block and compare each processor access address portion with cache tag. If it is a match, then it is a cache hit.

Example:

Memory size=128, cache size=16, block size=1

Memory location 0, 16, 32 map to cache location 0

Tag of loc 0=0

Tag of loc 16=1

Tag of loc 32=2

16 modulo 16=0 , tag=1

Memory location 23 maps to 23 modulo 16= 7 , tag =1

Organization

Processor address: byte select, index to cache, tag

Cache: Data storage, Tag storage, comparator, multiplexer

Operation

If Tag[index]= Tag portion of processor Address,

 Cache hit = true=1, then

 Data to processor = Cache Data[index]

 Select byte by multiplexer

else

 hit=0, cache miss

Data to processor = Memory[address {tag| index| byte select)]

Also

 Update cache by Cache Data[index]= Data from memory

 And Tag [index]= processor address index

Example:

What is the cache organization for 1 KB direct mapped cache, block=32 byte. Then find total cache size, and tag, index for processor to access location 14020 H

Cache tag = 32 bit processor address – 5 bit byte select – 5 bit index (1 KB/32)= 22 bit

Total tag size = 32x22 bit, Total cache size = 1024 + 88 byte

Location 14020 Hex has byte sel=00000, index=00001, tag= 00—0001010000

Tag = 50 hex , index=1, byte =0

Cache Performance

Average memory access time=

Hit time + (1-hit rate)x miss penalty

Miss rate= 1-hit rate

Miss penalty = time to access main memory + time to transfer 1 block to cache

Block transfer time = block size / bus bandwidth

Bandwidth = bus size / bus cycle time

Example:

Find average access time for a cache system if hit rate= 95%,

Cache access time= 1 ns, DRAM access time= 50 ns,

Bus width = 4 B, Cache block=8 B, bus speed= 500 MHz
Average Time= hit time + miss ratex miss penalty

 = 1 + .05x(50 + (8/4)x 2)= 1 + 5x54/100=3.7 ns

If Instructions and Data have different miss rates:

Time= Hit time + Inst Miss x Inst memory penalty + Data Miss x Data Memory penalty

Effect of Block Size

-Larger block size improve hit rate because of special locality up to a point usually 256 B

-Larger block size increase transfer time

-Optimum block size some what between 0 to 256 B depend on application

Two Way Set Associative Cache

-Motivations

 -Organization

-Advantages and disadvantages

Motivations
reduce conflict misses (on direct mapped there is only one location that each address maps to)

Solution
Set Associative cache, each address can map to more than one cache location. If one location is taken, the address will

Nap to the second cache locations.

Example:

Assume a memory size=128 locations, cache size= 16.

Compare direct mapped to two way set associative cache for

Executing memory locations 7 then 23.

-Direct mapped:

 Location 7 maps to 7 modulo 16= 7 miss , location 7 is stored in cache location 7.

 Location 23 maps to 23 modulo 16 = 7 miss , it evicts location 7 from cache and is stored in its place, so if loc 7, 23

Are used again it will be 100% miss.

-Two way set associative:

 Number of sets = 16/2= 8

Considered as two parallel direct mapped caches each has 8 loc

Location 7 maps to 7 mod 8 = 7 miss and is stored in first 1st set second set. If 7 and 23 are used again they will be found in

Cache.

Two Way Set Associative Organization

-two direct mapped cache in parallel

-data size = size of cache/2

-tag size = number of sets x tag length

 Tag length = address – index, index is 1 bit smaller so

 Cost of tag is larger for two way set associative

Previous example: loc 7 has index =7, tag =0000

 Loc 23 has index=7 , tag = 0010

Disadvantages of two way set associative

1- larger tag size

2-using two comparators

3-delay of search of both comparators

4-using multiplexer to pass data from one of set cache

5-must wait for hit/miss before get data (direct mapped could

Have hit/miss search in parallel with data access

Example:
Find miss rate of the following sequence: 0,8,0,6,8 for

A cache size=4 locations, if it is a direct mapped, or two way set associative.

1-direct mapped:

 Access 0 maps to 0 modulo 4 = 0 miss has 0

 8 to 8 modulo 4=0 miss stores 8 evict 0

 0 0 modulo 4=0 miss evicts 8 store 0

 6 6 modulo 4=2 miss stores 6

 8 8 modulo 4= 0 miss evict 0 stores 8

100% miss rate

 Access 0 maps to 0 modulo 2 = 0 miss store 0 in set#1

 8 to 8 modulo 2=0 miss stores 8 in set#2

 0 0 modulo 2=0 hit in set#1

 6 6 modulo 2=0 miss stores 6 in set #2 evict 8 because LRU

 8 8 modulo 2= 0 miss evict LRU 0 stores 8

80% miss rate

Replacement Policy in associative cache

-No replacement for direct mapped. Only one location that

 Maps to (no choice)

-need replacement policy for associative cache, number of choices= associativity

Question: Which block to throw out for the new coming location?

Must have a policy:

1-Random replacement: replace cache block in random, simple to implement but might not give best hit rate

2-Least recently used: replace block that was least recently used. Good temporal locality, improve hit rate, but need hardware to keep track of each access history.

Use e a pointer that points to the LRU in a set.

Two way set associative has two blocks in a set, so 1 bit will Be used.
Fully Associative Cache

Concept: any memory locations can map to any cache location. Conflict miss is reduced to zero

Index field = 0

Tag=full length of memory address

Organization

-Data cache same size

-tag portion= number of cache locations x full address length

-needs parallel search of N comparators

-N comparators one per each cache location

Example: design a 1 KB fully associative with block= 32 bytes.

Number of cache blocks= 1KB/32B= 32

32 Comparators

tag size = 32x (32-5) bits

Example: assume a program access 0,8,0,6,8 for a cache size= 4 fully associative cache, find miss rate.

Access loc 0 maps to any loc assume 0, miss

Access 8 maps to any loc assume 1, miss

Access 0 is a hit

Access 6 is a miss maps to loc 2

Access 8 is a hit

Miss rate = 60% best of all caches.

Cache Write Policy

1-Cache Read: If hit: read data from cache make block most recently used.

 If miss: get block from lower memory and update

Cache block replaced block must be written back if dirty.

2-Write: Two methods: A-Write through

 B-Write Back

A-Write Through: Write to cache and memory

 Advantages: Content is coherent with memory and simpler to implement

B-Write back: write to cache on cache hit, mark block dirty. It cost extra bit in the tag.

Example: Assume cache size of 16 locations, direct mapped, block= 1 word. Memory location 23 has 45, memory location 7

Has 53. Find the contents of cache and memory loc 23, 7 if

processor reads location 23, then it writes 10 to memory loc 23,

then it reads location 7 if cache is write through, and if it is write back.

-write through: -read 23, cache miss maps to cache loc 7 has 45

 -Write 10 to 23, cache hit loc 7=10 and also memory location 23 has 10

 -read location 7, cache miss , cache loc 7 has 53

-write back: -read 23, cache miss maps to cache loc 7 has 45

 -Write 10 to 23, cache hit loc 7=10 mark it dirty

 -read location 7, cache miss , cache loc 7 has 53

 Write back location 23 to memory because it is dirty.

Write Miss

-NWA: No Write Allocate

 Write only to main memory

-WA : Write Allocate

 Read memory block, and write to memory, improves miss rate

Example: Write 10 to location byte 13, if block 4 byte.

Byte 13 is in block 13/4=3 byte#1

Blk0 B3-B0

Blk1 B7-B4

BLK2 B11-B8

BLK3 B15-B12,

 NWA if read next loc14 it will be a miss

but WA it will be a hit

Improving Cache Performance

Average time=hit time + miss rate x miss penalty

1-Split Cache improves hit time (Harvard arch for Data, Inst in pipeline)
But Unified cache gives better miss rate, so first level cache is split, but level 2 could be unified.

Example: compare performance of split I, D cache to unified if:

-using 16 KB I cache gives .64% miss, 16 KB Data gives 6.47% miss with each hit time = 1 cycle and miss penalty = 50 cycle

-using unified 32 KB, miss rate = 1.99% for both I, D and cache hit time = 2 cycle, miss penalty = 50 cycle

Assume 75% instructions, 25% data .

1-split cache time= .75x(1 + .0064x50) +.25x(1+.0647x50)=.99+1.05= 2.04 cycles

2-unified time= .75x(1+.0199x50) + .25x(2+.0199x50)=2.24 cycles only when access data pipeline adds 1 cycle

2-Reducing cache miss rate:

 Type of cache misses:

 1-compulsory: cold start for first time accesses (could use larger block)
2-Capacity: cache cannot contain all blocks (could increase size)

3-Conflict: blocks map to same cache location (use associative cache)
Larger block size
Trade-off in using larger blocks

Larger block improves miss rate but increase transfer time.

Example: assume 1 KB cache with following miss rates:

16 B block gives 15.05% miss rate, 32 B gives 13.34%, 64 B gives 13.76%, 128 B gives 16.64%. memory time=40 cycles, transfer time 8 B for 1 cycle. Compare performance.

-for 16 B, Time= 1+ .1505x(40+16/8)=7.32 cycles

-for 32 B, Time= 1+ .1334x(40+32/8)=6.86 cycles
-for 64 B, Time= 1+ .1376x(40+64/8)=7.60 cycles

 -for 128 B, Time= 1+ .1664x(40+128/8)=10.38 cycles

Higher Associativity

Trade off: associativity improves miss rate, but might be slower than direct mapped

compare performance of the following:

-direct mapped with miss rate=.02, hit time=1 cycle

-two way miss rate=.014, hit time= 1.1

-4-way assoc miss rate=.013, hit time=1.12

-8-way miss rate=.013, hit time= 1.14

Miss penalty=50 cycle

Time for 1-way= 1 + .02x50= 2 cycles

Time for 2-way= 1.1 + .014x50= 1.8 cycles

Time for 4-way= 1.12 + .013x50= 1.77 cycles

Time for 8-way= 1.14 + .013x50= 1.879cycles

Other Methods to improve miss rate

1-Using Victim Cache

It reduces miss rate without affecting cycle time, by using extra small associative cache to store replaced cache blocks. When cache miss, search victim cache rather than going to lower memory level. If hit swap cache block with victim cache block. Also replaced cache blocks on a miss goes to victim cache. Trade-off using extra cache.

2-Prefetching (hardware and software)

-hardware

-use a predictor based on history of accesses , then store data or instructions ahead of time in cache or buffer.

Must use extra hardware for prediction, could add extra time for miss prediction, might not be far enough ahead in time to be useful.

-Software

Use compiler to predict and insert instructions to force prefetching of data or instructions.

Not accurate at static time, cost extra code.

3-Reducing Cache Miss Penalty

Most effective method because the increase gap between processor speed and main memory.
Using second level cache
First level cache miss could use a faster second level cache to reduce the penalty.

Average memory access time= hit time for L1 + M1.(hit time of L2 + M2.Memory access time)

M1.M2 is called global miss rate

Average memory access time= TL1 + M1 (TL2 + M2.TM)

Example: assume 1000 memory references , has 40 misses in L1, 20 misses in L2. Find M1, M2

M1=40/1000= 4%

M2= 20/40= 50%

GM= 2%, better than 4% for single level.

Characteristics of second level cache:
-larger than L1

-Slower

-uses inclusion of L1 for coherency in MP

Reducing hit time
1-simple small level 1, Direct mapped

2-using virtual address to access cache

 -fast and no translation to physical address

 -must flush cache in process switch, two different

 Processes might share same physical address, ends with two

 Copies of same data, cpu could change one and data becomes stall.

PAGE
15

