Ryerson University Department of Electrical and Computer Engineering COE 758 – Digital Systems

October 29, 2018

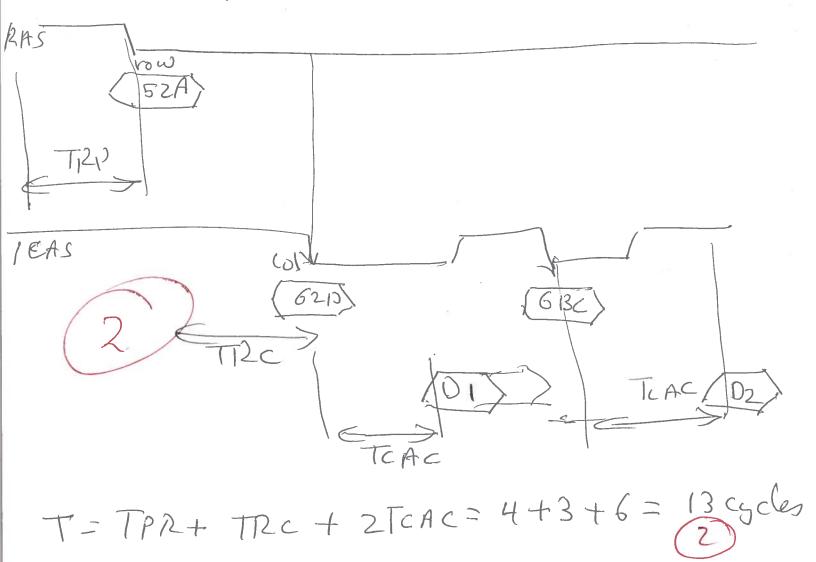
Midterm Test

Name:	Student Number:	Section:
Time limit: 1 hour 50 m	in	Examiners: N. Mekhiel
Notes: a) Closed book.b) No calculators.c) Answer all questions	s in the space provided.	
Marking: Each question=10		
Q1-Compare the advan	tages and disadvantages of each of the follo	owing choices:-
A-Using address line ORAM Acld lines chi and slow	es for DRAM versus address lines for SRAM New is Multiplelad plackaging small ev corpored to sham	les number of but needs Latches
	a	
B-Using precharge int Precharge buk men ad row lute	erleaving versus fast page mode for Multi-le No Cost good for level ug, Fast Page Ch ad good for high	Dank DRAM Low order multi- needs Compuna Tor Order montenung

E-Using pages versus segmentation for virtual memory

Name:

Section:_


trasme	n la 1100	וטטו	Valen	the gott of
O2- A memory system	uses 4MX8 DR 4M	Lwith 2 banks	manned around	low order address interleav-
ing and fast page mode.				e addresses are given in hex.
-52BC5A	You	l Hi	buk#	outcome
		52B	Ö	mis (
-52AC5A	-	52 A	0	muis (
		52B	1	run (2
-52BC3B	_	100		. 1
	_	52A	0	hut (2)
-52AD78				
		21		mt (2)
52BD5F		52B		
	ntret	2 - 1	10	
			00	

Name:	

Section:

Q3-A-Draw the timing of accessing the above memory system of 52AC5A followed by 52AD78 using fast page mode assuming precharge TRP=4 cycles, TRC=3 Cycles and TCAC= 3 Cycles. Calculate total time in cycles for the two accesses.

	- 5 —		
Name:	-	Section:	
6			

Q3-B-Explain the operation for each timing parameter in DRAM:-

Prechase capacitors in row to Full potential

2 unit for Row to be decoted nel activate row Capacitors

Wait to decode Column and activate Sense Amp To set Jula

	
Name:	Section:

C-Using larger cache block versus smaller cache block	(· C · C · C · C · C · C · C · C · C ·
2) C-Using larger cache block versus smaller cache block Langer block gives better httrate but	moreses
transfer time	

D-Using two way set associative cache versus direct mapped two way Set associative cache versus direct mapped better hit rate but needs more Corporators and Slower

Section:

Name:_

Q4-A- Calculate the hit rate for two way so words and it uses LRU policy for the follow	et associative cache of size=16 wing sequence of accesses:-	ords assuming block size = 2
15, 37, 14, 36, 78, 55, 79, 54	block block	cl
Azi-Tag	As [AzAII Ao]	
1) 15 + 2 = 7 mod 4 = 3 min 2) 37 - 2 = 18 mod 4 = 2 min 3) 14 but (4) 36 but	Set 1 2 36 37 3 14 55	Set 0 1 2 3 78 79
5) 78 + 2 = 39 mod 6) 55 - 2 = 27 mod 7) 79 hut 8) 54 hut		ewict Lru
ht vate = 4 =	50% (-1) enc	h mustuke

Name:	

0	
Section:	
occuon.	

Q4-B- Calculate average access time for two level cache system assuming number of memory requests =10,000 and 9200 were found in L1 cache, and 600 found in L2 if the following:-

L1 access time = 1 ns, L2 access time = 10 ns, and main memory access time = 100 ns.

Name: