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1. ASSIGNMENT 1

1.1 Assignment 1 Problems

1. Lathi, 6.1-1
Following figure shows Fourier spectra of signals g;(f) and go(t). Determine the Nyquist
interval and the sampling rate for signals g1 (t), g2(t), g3(t), g5(t), and g;(t)ga(t).

2. Lathi, 6.1-2
Determine the Nyquist sampling rate and the Nyquist sampling interval for the signals:
(a) sinc(1007t);
(b) sinc?(1007t);
(c) sinc(100mt) + sinc(507t);
(d) sinc(100mt) + 3sinc?(607t);
)

(e) sinc(507t) sinc(1007t).

3. Lathi, 6.1-4
A signal g(t) = sinc?(5rt) is sampled (using uniformly spaced impulses) at a rate of: (i)
5 Hz; (ii) 10 Hz; (iii) 20 Hz. For each of the three case:
(a) Sketch the sampled signal;
(b) Sketch the spectrum of the sampled signal;

(c) Explain whether you can recover the signal g(¢) from the sampled signal;
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(d) If the sampled signal is passed through an ideal low-pass filter of bandwidth 5 Hz,
sketch the spectrum of the output signal.

4. Lathi, 6.1-8
Prove that a signal cannot be simultaneously time-limited and band-limited. Hint: show
that contrary assumption leads to contradiction. Assume a signal simultaneously time-
limited and band-limited so that G(w) = 0 for |w| > 27B. In this case G(w) =
G(w)rect(w/4nB’) for B’ > B. This means that g(t) is equal to g(t) * 2B’sinc(27 B't).

Show that the latter cannot be time-limited.

5. Lathi, 6.2-2
A compact disc (CD) records audio signal digitally by using PCM. Assume the audio
signal bandwidth to be 15 kHz.

(a) What is the Nyquist rate?

(b) If the Nyquist samples are quantized into L = 65,536 levels and then binary coded,

determine the number of binary digits required to encode a sample.

(c¢) Determine the number of binary digits per second (bit/s) required to encode the

audio signal.

(d) For practical reasons, signals are sampled at a rate well above the Nyquist rate.
Practical CDs use 44,100 samples per second. If L = 65,536, determine the number

of bits per second required to encode the signal.

6. Lathi, 6.2-3
A television signal (videl and audio) has a bandwidth of 4.5 MHz. This signal is sampled,
quantized, and binary coded to obtain a PCM signal.

(a) What is the sampling rate if the signal is to be sampled at a rate 20% above the
Nyquist rate.

(b) If the samples are quantized into 1024 levels, determine the number of binary pulses

required to encode each sample.

(c¢) Determine the binary pulse rate (bits per second) of the binary-coded signal, and

the minimum bandwidth required to transmit this signal.

7. Lathi, 6.2-4
Five telemetry signal, each of bandwidth 1 kHz, are to be transmitted simultaneously
by binary PCM. The maximum tolerable error in sample amplitudes is 0.2% of the peak
signal amplitude. The signals must be sampled at least 20% above the Nyquist rate.
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Framing and synchronizing requires an additional 0.5% extra bits. Determine the min-
imum possible data rate (bits per second) that must be transmitted, and the minimum

bandwidth required to transmit this signal.

8. Lathi, 6.2-6
A message signal m(t) is transmitted by binary PCM. If the SNR (signal-to-quantization-
noise ratio) is required to be at least 47 dB, determine the minimum value of L required,

assuming that m(t) is sinusoidal. Determine the SNR obtained with this minimum L.

9. Sklar, 1.4
Using time averaging, find the average normalized power in the waveform z(¢) = 10 cos 10t+
20 cos 20¢.

10. Sklar, 1.13

Use the sampling property of the unit impulse function to evaluate the following integrals.

a) [0 cos6t d(t —3) dt

(a) J

(b) [°2.106(t) (1+¢t)~tdt

(c) 22 106(t+4) (> + 6t + 1) dt
(d) [°2 exp(—t?) 6(t —2) dt

11. Sklar, 1.14

Find X;(f) * Xo(f) for the spectra shown below.

Xq(f)

Al
ot

12. Sklar, 2.8
Consider an audio signal with spectral components limited to the frequency band 300 to
3300 Hz. Assume that a sampling rate of 8000 samples/s will be used to generate a PCM
signal. Assume that the ratio of peak signal power to average quantization noise power
at the output needs to be 30 dB.
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13.

14.

15.

16.

(a) What is the minimum number of uniform quantization levels needed, and what is

the minimum number of bits per sample needed?

(b) Calculate the system bandwidth (as specified by the main spectral lobe of the signal)
required for the detection of such a PCM signal.

Sklar, 2.9
A waveform, z(t) = 10 cos(10007t+7/3)+20 cos(20007t+7/6) is to be uniformly sampled

for digital transmission.

(a) What is the maximum allowable time interval between sample values that will ensure

perfect signal reproduction?

(b) If we want to reproduce 1 hour of this waveform, how many sample values need to
be stored?

Sklar, 1.15

A signal in the frequency range 300 to 3300 Hz is limited to a peak-to-peak swing of 10
V. It is sampled at 8000 samples/s and the samples are quantized to 64 evenly spaced
levels. Calculate and compare the bandwidths and ratio of peak signal power to rms
quantization noise if the quantized samples are transmitted either as binary pulses or as
four-level pulses. Assume that the system bandwidth is defined by the main spectral lobe
of the signal.

Sklar, 1.16
In the compact disc (CD) digital audio system, an analog signal is digitized so that the
ratio of the peak-signal power to the peak-quantization noise power is at least 96 dB. The

sampling rate is 44.1 kilosamples/s.

(a) How many quantization levels of the analog signal are needed for (S/N,)
96dB?

peak —

(b) How many bits per sample are needed for the number of levels found in part (a)?

(c) What is the data rate in bits/s?

Haykin, 3.2
In natural sampling, an analog signal g(t) is multiplied by a periodic train of rectangular
pulse ¢(t), each of unit area. Given that the pulse repetition frequency of this period train

is fs and the duration of each rectangular pulse is 7' (with fT' << 1), do the following:
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(a) Find the spectrum of the signal s(t) that results from the use of natural sampling;
you may assume that time ¢t = 0 corresponds to the midpoint of a rectangular pulse
in c(t).

(b) Show that the original signal g(t) may be recovered exactly from its naturally sam-

pled version, provided that the conditions embodied in the sampling theorem are
satisfied.

17. Haykin, 3.8
Twenty-four voice signals are sampled uniformly and then time-division multiplexed. The
sampling operation uses flat-top samples with 1 ps duration. The multiplexing operation
includes provision for synchronization by adding an extra pulse of sufficient amplitude

and also 1 pus duration. The highest frequency component of each voice signal is 3.4 kHz.

(a) Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses

of the multiplexed signal.

(b) Repeat your calculation assuming the use of Nyquist rate sampling.
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1.2 Assignment 1 Solutions

. Lathi 6.1-1: The bandwidth of g;(t) and ¢5(¢) are 100 kHz and 150 kHz, respectively.
Therefore,
e the Nyquist sampling rates for g;(¢) is 200 kHz, sampling interval T, = 1/200k = 5us

e the Nyquist sampling rates for go() is 300 kHz, sampling interval Ty = 1/300k =
3.33115.

e the bandwidth of g7 (¢) is 200 kHz, fn,, = 400 kHz, fy,, = 1/400k = 0.25us.
e the bandwidth of g3(¢) is 450 kHz, fn,, = 900 kHz, fn,, = 1/900k = 1.11us.
e the bandwidth of ¢;(t) - g2(t) is 250 kHz, fn,, = 500 kHz, fn,, = 1/500k = 2pus.

. Lathi 6.1-2:
e since
w
inc(1007t 0.01rect [ ——
sinc(1007t) — rec <2007r)
the bandwidth of this signal is 100 7 rad/s or 50 Hz. The Nyquist rate is 100 Hz
(samples/sec).

inc?(1007t) — 0.01A (w>
sinc”(1007t) — 100+

the bandwidth of this signal is 200 7 rad/s or 100 Hz. The Nyquist rate is 200 Hz

(samples/sec).

sinc(1007t) + sinc(507t) — 0.01rect <20u(1)7r> + 0.02rect <1Oué)7r>

the bandwidth of the first term on the right-hand side is 50 Hz and the second term
is 25 Hz. Clearly the bandwidth of the composite signal is the higher of the two,
that is, 100 Hz. The Nyquist rate is 200 Hz (samples/sec).

sinc(1007t) 4 3sinc?(607t) — 0.01rect <20“67T) + 0.05A (24%7?)

the bandwidth of the first term is 50 Hz and that of the second term is 60 Hz. The
bandwidth of the sum is the higher of the two, that is, 60 Hz. The Nyquist sampling
rate is 120 Hz.
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sinc(507t) — 0.02rect (@) sinc(100mt) — 0.01rect (200(})7r>

The two signals have BW 25 Hz and 50 Hz respectively. The spectrum of the product
of two signals is 1/(27) times the convolution of their spectra. From width property
of the convolution, the width of the convoluted signals is the sum of the widths of
the signals convolved. Therefore, the BW of the product is 25450=75 Hz. The
Nyquist rate is 150 Hz.

3. Lathi 6.1-4: The BW of the signal g(¢) is 5 Hz (107 rad/s), since the FT as below:

g(t) =sinc®*(57t) — G(w)=0.2A (20(;)71)

Therefore, the Nyquist rate is 10 Hz, and the Nyquist interval is 7' = 1/10 = 0.1s.

e When f, = 5Hz, the spectrum 7G(w) repeats every 5 Hz (107 rad/sec). The
successive spectra overlap, and the spectrum G(w) is not recoverable from G(w),
that is, g(¢) cannot be recovered from its samples. If the sampled signal is passed
through an ideal lowpass filter of BW 5 Hz, the output spectrum is rect(w/207), and
the output signal is 10sinc(207t), which is not the desired signal sinc?(57t).

When f, = 10H z, the spectrum G(w)consists of back-to-back, nonoverlapping rep-
etition of £G(w) repeating every 10 Hz. Hence, G(w) can be recovered from G(w)
using an ideal lowpass filter of BW 5 Hz (Fig.1(f)), and the output is 10sinc?(5nt).

in the last case of oversampling (fs = 20 Hz), with empty band between successive
cycles. Hence, G(w) can be recovered from G(w) using an ideal lowpass filter or even

a practical lowpass filter. The output is 20sinc?(5mt).

4. Lathi 6.1-8: assuming a signal ¢(t) that is simultaneously time-limited and bandlimited.
Let g(w) = 0 for |w| > 27 B. Therefore,

g(w)rect ( ) =g(w) for B > B.

w
47 B’

Therefore, from the time-convolution property

g(t) = g(t) * [2B'sinc(2n B't)] = 2B'g(t) * sinc(27 B't).

Because ¢(t) is time-limited, g(¢t) = 0 for |t| > T. But g(t) is equal to convolution of

g(t) with sinc(27 B’t) which is not time-limited. It is impossible to obtain a time-limited

signal from the convolution of a time-limited signal with a non-timelimited signal.
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5. Lathi 6.2-2:

(a): the bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

(b): 65536 = 26 50 that 16 binary digits are needed to encode each sample.
(¢): 30,000 x 16 = 480,000 bits/s.
(d): 44,100 x 16 = 705,600 bits/s.

6. Lathi 6.2-3:
(a): The Nyquist rate is 2 x 4.5 x 10 = 9 MHz. The actual sampling rate =1.2 x 9 = 10.8
MHz.
(b): 1024 = 10'° so that 10 bits or binary pulses are needed to encode each sample.
(c): 10.8 x 10% x 10 = 108 x 10° or 108 Mbits/s.

7. Lathi 6.2-4:
If m,, is the peak sample amplitude, then

mp

quantization error < 0.2% x m, = =00

Because the maximum quantization error is

g:0.5><2ﬂ

2 L

e it follows that L > 500. Since L should be a power of 2, we choose L = 512 = 2°.
This requires 9-bit binary code per sample. The Nyquist rate is 2 x 1000 = 2000 Hz.
20% above this rate is 2 x 1.2 = 2.4 kHz. Thus, each signal has 2400 samples/second,
and each sample is encoded by 9 bits. Therefore, each signal uses 9 x 2.4 = 21.6
kbits/second.

e Five such signals are multiplexed. Hence, we need a total of 5 x 21.6 = 108

Kbits/second data bits.

e Framing and synchronization requires additional 0.5% bits, that is 108,000 x 0.005 =
540 bits, yielding a total of 108,540 bits/second.

e The minimum transmission bandwidth is 108.54/2 = 54.27 kHz.

8. Lathi 6.2-6:
Let m,, denote the peak amplitude of the sinusoid signal, signal power is E[m?(t)] = m_/2.
Let L denote the number of steps, then the stepsize is ¢ = 2m,,/L. The noise power is
0% = ¢*/2 =m?/(3L?). The required SNR is 47 dB=50119, which is

Elm? 2
m*(t)] _ 32 > 50119

o2
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9.

10.

11.

which implies L > 182.8. Because L is a power of 2, we select L = 256 = 2%, The SNR

for this value L is

E[W;Z@)] = 352 = 3(256)2(0.5) = 98304 = 49.43dB
Sklar 1.14:
Xo(f) = k[6(f — fo) +6(f + fo)
Xi(f) * Xa(f) = X2 (f) % KIS(F — fo) +6(f + fo)
2}0
Sklar 2.8:

(a) Let L denote the number of quantization levels. The peak signal power to quantization

S
— =3L°.
(N)peak:

We have 101og;,(3L?) > 30 (dB), and L can be solved as

noise power is

L =118.26] =19 levels
The number of bits per sample is

N = [log, L] = [log, 19] =5 bits/sample

(b) Let T}, denote the time duration of a bit. Since the sample rate is 8000 samples/s,
each sample is represented by 5 bits. Therefore, there are 8000 x 5 bits each second and

1

.~ _95
8000 x 5 a

T

the required bandwidth W is
1

W=_—=40 kH
T :
Sklar 2.9:

(a) The maximum frequency is w,, = 2xf,, = 2000 and f,, = 2000/(27) = 318.3 Hz.

Therefore, sampling rate should be

fs > 2fm =2 x318.3=0636.6 samples/s
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12.

13.

The sampling interval should satisfy:

Ty = } < 0.00157 s

(b) 636.6 samples/s x 3600 s = 2.29 x 10° samples.

Sklar 2.15:

(a) Binary case:
R = 8000 samples/s x 6 bits/sample = 48,000 bits/s

1
W =_—-=R=48,000H%
1y

(5) — 312 = 3(64)2 = 12,288 ~ 41dB
N/q

(b) Four-level case:
48,000 bits/s

s = o U5 9y 000 symbol
2 bits/symbol symbols/s

W = ; — R, = 24,000H 2

S
(N) = the same as in the binary case ~ 41dB
q

Sklar 2.16:

(a) Assuming that the L quantization levels are equally spaced and symmetrical about
zero. Then, the maximum possible quantization noise voltage equals 1/2 the ¢ volt interval
between any two neighboring levels. Also, the peak quantization noise power, IV, can be

expressed as (¢/2)2.

The peak signal power, S, can be designated (V},/2)?, where V,, =V, — (=V},) is the
peak-to-peak signal voltage, and V), is the peak voltage.

since there are L quantization levels and (L — 1) intervals (each interval corresponding to

q volts), we can write:

<5> _ /2 _ e =1)/2 L4,
NoJ pear  (@/2)? (¢/2) q?/4

q
Thus, we need to compute how many levels, L, will yield a (S/Ny)pear = 96 dB. We

therefore write:
96dB = 101og,(S/Ny)pear = 10log;, L* = 201og,, L

L = 10°/2° — 63096 levels
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(b) The number of bits that corresponding to 63096 levels is

[ = [log, L] = [log, 63096] = 16 bits/sample

(¢) R=16 bits/sample x 44.1 k samples/s = 705,600 bits/s

3: see course notes.

4: (a) For each sampling interval, there are 24+1=25 pulses. Therefore, each pulse occupies:

T, 1

T:—:iz
25 8000 x 25

BYIE]
Therefore, the spacing between successive pulses of the multiplexed signal is 5-1=4 us.

(b) With Nyquist sampling, each pulse occupies:

T, 1

Tl - _§2
55 ~ 6400 x 25 0-2oms

Therefore, the spacing between successive pulses of the multiplexed signal is 6.25-1=5.25 us.
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2.1 Assignment 2 Problems

. Lathi, 7.2-1

(a) Find PSDs for polar, on-off, and bipolar signalling, where p(t) is a full-width rect-
angular pulse, that is, p(t) = rect(t/T})?

(b) Sketch roughly these PSDs and find their bandwidths. For each case, compare the
bandwidth of the case where p(t) is a half-width rectangular pulse.

. Lathi, 7.2-2

(a) A random binary data sequence 100110... is transmitted using a Manchester (split-

phase) line code. Sketch the waveform y(t).

(b) Derive Sy(w), the PSD of a Manchester (split-phase) signal in part (a) assuming 1
and 0 equally likely. Roughly sketch this PSD and find its bandwidth.

. Lathi, 7.2-3
Derive the PSD for a binary signal using differential code with half-width rectangular
pulses. Determine the PSD S, (w).

. Lathi, 7.3-2
In a certain telemetry system, there are eight analog measurements, each of bandwidth 2
kHz. Samples of these signals are time-division multiplexed, quantized, and binary coded.

The error in sample amplitudes cannot be greater than 1% of the peak amplitude.
(a) Determine L, the number of quantization levels.
(b) Find the transmission bandwidth By if Nyquist criterion pulses with roll-off factor

r = 0.2 are used. The sampling rate must be at least 25% above the Nyquist rate.

. Lathi, 7.3-4
The Fourier transform P(w) of the basic pulse p(t) used in a certain binary communication

system is shown below:
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P(w)
10 ¢

— 2 < 10° 0 27 x10° W —=

(a) From the shape of P(w), explain if this pulse satisfies the Nyquist criterion.
(b) Find p(t) and verify that this pulse does (or does not) satisfy the Nyquist criterion.

(c) If the pulse does satisfy the Nyquist criterion, what is the transmission rate (in bits

per second) and what is the roll-off factor?

6. Lathi, 7.3-5
A pulse p(t) whose spectrum P(w) is shown below satisfies the Nyquist criterion. If
f1i=08MHz and fy = 1.2M H z, determine the maximum rate at which binary data can
be transmitted by this pulse using the Nyquist criterion. What is the roll-off factor?

f MHz >

7. Lathi, 7.3-6
Binary data at a rate of 1 Mbits/s is to be transmitted using Nyquist criterion pulses
with P(w) shown in 7.3-5. The frequencies f; and fy (in hertz) of this spectrum are
adjustable. The channel available for the transmission of this data has a bandwidth of
700 kHz. Determine f; and f5 and the roll-off factor.

8. Sklar, 3.8

(a) What is the theoretical minimum system bandwidth needed for a 10-Mbits/s signal
using 16-level PAM without ISI?

(b) How large can the filter roll-off factor be if the allowable system bandwidth is 1.375
MHz?
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9. Sklar, 3.10
Binary data at 9600 bits/s are transmitted using 8-ary PAM modulation with a system
using a raised cosine roll-off filter characteristic. The system has a frequency response
out to 2.4 kHz.

(a) What is the symbol rate?
(b) What is the roll-off factor of the filter characteristic?
10. Sklar, 3.11
A voice signal in the range 300 to 3300 Hz is sampled at 8000 samples/s. We may

transmit these samples directly as PAM pulses or we may first convert each sample to a

PCM format and use binary (PCM) waveforms for transmission.
(a) What is the minimum system bandwidth required for the detection of PAM with no
IST and with a filter roll-off characteristic of r = 17

(b) Using the same filter roll-off characteristic, what is the minimum bandwidth required
for the detection of binary (PCM) waveforms if the samples are quantized to eight

levels?

(c) Repeat part (b) using 128 quantization levels.
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2.2 Assignment 2 Solutions

7.2-1  For full width rect pulse p(¢) = rect(TLJ
b

P(w) = T}, sinc (_@27"_,,)
For polar signaling [see Eq. (7.12)]

5y(@) = 1P‘;" F g e ()

b

For on-off case [see Eq. (7.18b)]

2
sy(w):lﬁg% [nﬂ’- ¥ a(m—"'—;’lﬂ

Ty pe—o b

o0
=Tb gine? (KTL) 1422 S slo-22
4 2 Ty noceo Ty

T}
But sinc? (&;L) =0 for w= 277”"- foralln=0,and =1 for n=0. Hence,
b

Ty . 2wl m
S = —L2 1y =6
(@) 2 Sine ( 5 > (@)
For bipolar case [Eq. (7.20b)]

2
P
Sy(0) = |—(H3Lsin2 (ﬂzb_)
T, 2
=T, sinc? (_aﬂ},) sin? [—-wa)
2 2

The PSDs of the three cases are shown in Fig. S7.2-1. From these spectra, we find the bandwidths for all
three cases to be R, Hz.

The bandwidths for the three cases, when half-width pulses are used, are as follows:

Polar and on-off: 2R, Hz; bipolar: R, Hz.

Clearly, for polar and on-off cases the bandwidth is halved when full-width pulses are used. However, fi
the bipolar case, the bandwidth remains unchanged. The pulse shape has only a minor influence in the

; . T ). P .
bipolar case because the term sin’ (%) in S, () determines its bandwidth.

4‘\
Sj(‘-’)
Ppla\f‘
b:%o\ar

O Ro F H?y"_
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2-2

7.2-3

pit)
M Toi> _ 5,,@)
.-T-'h .& =
)
1 0o o0 1 1 0
{t:
7t AR
i L]t 41T g
‘ T W-» 7
(% (b)
Fig. §7.2-2
(+1b (T
P(1) = rect T4 - rect T4
b b
2 2

and

P(w)zisinc ol ej(”T”/4+Zblsinc OTp | gt
2 4 2 4
o (0T wa)
= jT, sinc|{ —| sin | —
= (4) (4

From Fig. $7.2-2, it is clear that the bandwidth is%—’i rad/s or 2R, Hz.
b

For differential code (Fig. 7.17)
; 1|N,.2 N 2
Ry = lim —|—=(1) +=(-1)" [=1]
g 3 2]
To compute Ry, we observe that there are four possible 2-bit sequences 11, 00, 01, and 10, which are
equally likely. The product aay .,y for the first two combinations is 1 and is ~1 for the last two
combinations. Hence,
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7.3-2

7.3-3

7.3-4

7.3-7

m
Quantization error A—2V- = Tp < 0.0Imp = L2100
(a) Because L is a power of 2, we select L = 128 =27

(b) This requires 7 bit code per sample. Nyquist rate = 2 x 2000 = 4 kHz for each signal. The sampling
rate f; =125x4000 =5 kHZ.

Eight signals require 8 x 5000 = 40,000 samples/sec.

Bit rate = 40,000 x 7 = 280 kbits/s. From Eq. (7.32)

(1+r)R,  12x280x10°

Br =
r 2 2

=168 kHz.

(@) Br =2R, = R, = 15kbits/s.
(b) Br =R, = R, =3 kbits/s.
1. .
(¢) Br= I;L—er. Hence, 3000 = %RI, = Ry =48 kbits/s.
(d) Br =R, = Ry, =3 kbits/s.
() Br =R, = Ry, =3 kbits/s.
(a) Comparison of P(w) with that in Fig. 7.12 shows that this P(w) does satisfy the Nyquist criterion with

wp=27x10% and r = 1. The excess bandwidth @, = 7 x 10,
(b) From Table 3.1, we find

p(t) = sinc? (7r>< 1061)

From part (a), we have @, = 27 x 10% and Ry = 10°, Hence, T = 107, Observe that
plnT)=1 n=0
=0 n#0
Hence P(r) satisfies Eq. (7.36).

. ;
(¢) the pulse transmission rate is = Ry = 108 bits/s.
b

In this case —l-;ﬁ = 1MHz. Hence, we can transmit data at a rate Ry =2 MHz.
Also, By = 12 MHz. Hence, from Eq. (7.32)
1
12x10° = 22 (2x10%) = r = 02
2

/2 =700kHz. Also, % =500kHz and f, =700-500 = 200 kHz.

Hence, r = Je | 04and f; = &—fx =500-200 = 300 kHz.
Ry /2 2

To obtain the inverse transform of P(w), we derive the dual of Eq. (3.35) as follows:

g(t~T) = G(w)e™ ™ and gt + T) G(w)e/T®
Hence,
glr+7)+g(t~T) & 2G(w)cos Tw 6]

Now, P(w)in Eq. (7.34a) can be expressed as

P(w) =lrcct @ +lrect @ lcod -2 )
2 4Ry ) 2 47R, 2R,

59
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3,8; (SKLM)
(@) 16 Lo  pAM s‘«‘w s k=1 = g=4 b.‘fs/syml,ci.

T/\wam e dgrbal rode s

= R oMbk . :
IQS ‘e"J,L = % L“-‘/S/m,l»’ = 2.5 MS/ML}[.C /5

Theo wﬁ‘o‘u&, Hhe Mind ML Y%MM@( éﬂv\.ﬂ(WM 4

Bvuz—/f} =/.2§»14&

(b)) Sine = < (1+%) R
15315 MHy = - () .20 M

X :0.]

3.1¢
[a) For S'W’a PAM . endk Sngbcf rzfre/sewf' ,&;513 =3 it
Tl synkl rate o Goov bitsfs  data fos s,
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3. ASSIGNMENT 3

3.1 Assignment 3 Problems

1. A company has three machines By, Bs, and Bs for making resistors. It has been observed
that 80% of resistors produced by B; are qualified. The percentage for machines By and
By are respectively, 90% and 60%. Each hour, machines By, B, and Bs produce 3000,
4000, and 3000 resistors, respectively. All of the resistors are mixed together at random

in one bin and packed for shipment.
(a) What is the probability that the company ships a resistor that is qualified?
(b) What is the probability that an acceptable resistor comes from machine Bj?
2. Lathi, 10.1-15
A binary source generates digits 1 and 0 randomly with probabilities P(1) = 0.8 and
P(0) =0.2.
(a) What is the probability that two 1’s and three 0’s will occur in a five-digit sequence?
(b) What is the probability that at least three 1’s will occur in a five-digit sequence?
3. Lathi, 10.1-16
In a binary communication channel, the receiver detects binary pulses with an error

probability P,. What is the probability that out of 100 received digits, no more than

three digits are in error?

4. Lathi, 10.2-1

For a certain nonsymmetric channel it is given that
P,.(0]1) =0.1 and P,,(1|0) =0.2

where x is the transmitted digit and y is the received digit. If P.(0) = 0.4, determine
P,(0) and P,(1).
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5. Lathi, 10.2-5
The PDF of a Gaussian RV X is given by

Determine (a) P(X > 4); (b) P(X > 0); (c) P(X > —2);

6. Lathi, 13.5-2
Binary data is transmitted by using a pulse p(¢) for 0 and a pulse 3p(t) for 1. Show that
the optimum receiver for this case is a filter matched to p(t) with a detection threshold
of 2E,,. Determine the error probability P, of this receiver as a function of E},/Nj if 0 and

1 are equiprobable.

7. Sklar 1.6
Determine which, if any, of the following functions have the properties of autocorrelation
functions. Justify your determinations. [Note: Fourier transform of R(7) must be a

nonnegative function, why?|

(a) (1) =

(b) x(1) = 6(7) + sin 27 f, 7

{1 for —1<7<1

0 otherwise

(¢) (7) = exp(|7])
(d) z(r)=1—7 for —1<7<0,0 elsewhere

8. Sklar 1.7
Determine which, if any, of the following functions have the properties of power spectral

density functions. Justify your determination.

9. Sklar, 3.4
Assuming that in a binary digital communication system, the signal component out of
the correlator receiver is a;(7") = +1 or -1 V with equal probability. If the Gaussian noise

at the correlator output has unit variance, find the probability of a bit error.
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10.

11.

12.

13.

Sklar, 3.5

A bipolar binary signal, s;(t), is a +1 or -1 V pulse during the interval (0,7"). Additive
white Gaussian noise having two-sided power spectral density of 1073 W/Hz is added to
the signal. If the received signal is detected with a matched filter, determine the maximum

bit rate that can be sent with a bit error probability of B, < 1073.

Sklar, 3.7
A binary communication system transmits signals s;(t),7 = 1, 2. The receiver test statistic
2(T) = a; 4+ ng, where the signal component q; is either a; = 41 or a; = —1 and the noise
component ng is uniformly distributed, yielding the conditional density functions p(z|s;)
given by

p(elsy) = { 1 02<z <18
0 otherwise

and
-1.8<2<0.2

p(z|s2) =
(2ls2) { 0 otherwise

Find the probability of a bit error, Py, for the case of equally likely signaling and the use

N[ —=

of an optimum decision threshold.

Sklar, 3.14

Consider that NRZ binary pulses are transmitted along a cable that attenuates signal
power by 3 dB (from transmitter to receiver). The pulses are coherently detected at the
receiver, and the data rate is 56 kbit/s. Assume Gaussian noise with Ny = 10~% Watt/Hz.
What is the minimum amount of power needed at the transmitter in order to maintain a
bit-error probability of P, = 10737

The purpose of a radar system is basically to detect the presence of a target, and to
extract useful information about the target. Suppose that in such a system, hypothesis
Hyj is that there is no target present, so that the received signal z(t) = w(t), where w(t)
is white Gaussian noise with power spectral density Ny/2. For hypothesis H;, a target is
present, and x(t) = w(t) + s(t), where s(t) is an echo produced by the target. Assumed
that s(t) is completely known and the probability of the existence of a target is 0.5.

(a) Determine the structure of the optimal receiver.

(b) Determine the pdf of the decision variable and the optimal decision threshold.

(c) Evaluate the probability of false alarm defined as the probability that the receiver

decides a target is present when it is not.
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(d) Evaluate the probability of detection defined as the probability that the receiver

decides a target is present when it is.

14. Two equiprobable messages are transmitted on an AWGN channel with two-sided power

spectral density Ny/2. The signals are of the form
s1(t) = VE@ (1),  sa(t) = agi(t) + VE — a? go(t)

where —VE < a < VE and [} ¢(t)¢s(t) dt = 0.

(a) Determine the structure of the optimal receiver.

(b) Determine the probability of error of this binary system.
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3.2 Assignment 3 Solutions

Problem 1. a: Let A={qualified resistor}, then we can have
P[A|B;] =0.8 P[A|By] = 0.9 P[A|B;3] = 0.6 (3.1)

The production figures states that 3000+40004-3000=10,000 resistors per hour are produced.
The fraction from machine By is P[B;] = 3000/10000 = 0.3. Similarly, P[By] = 0.4 and

P[B3] = 0.3. Applying the law of total probability we have
P[A] = P[A|B;|P|B;]| + P[A|By|P[By] + P[A|Bs]|P|Bs] (3.2)
= (0.8)(0.3) + (0.9)(0.4) + (0.6)(0.3) = 0.78 (3.3)

b: applying Bayes’ Theorem, we have

P[AB;]  P[A|Bs]P[Bs] 0.6x03
P[A] P[A] = o 0 (3:4)

P[B;|A] =

Lathi, 10.1-15: A binary source generates digits 1 and 0 randomly with probabilities P(1) =
0.8 and P(0) = 0.2.

1. What is the probability that two 1’s and three 0’s will occur in a five-digit sequence?

2. What is the probability that at least three 1’s will occur in a five-digit sequence?

Solution: (a) Two 1’s and three 0’s in a sequence of 5 digits can occur in ( 2 ) = 10 ways.
The probability one such sequence is

P =(0.8)%-(0.2)* = 0.00512
since the event can occur in 10 ways, its probability is

10 x 0.00512 = 0.0512
)
(b) Three 1’s occur with probability ( ; ) (0.8)3 - (0.2)? = 0.2048;
. . D
Four 1’s occur with probability ( A ) (0.8)%-(0.2)! = 0.4096;

5
Five 1’s occur with probability ( - ) (0.8)° - (0.2)° = 0.3277;
Hence, the probability of at least three 1’s occurring is

P =0.2048 + 0.4096 + 0.3277 = 0.9421
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Lathi, 10.1-16: In a binary communication channel, the receiver detects binary pulses with
an error probability P,. What is the probability that out of 100 received digits, no more than

three digits are in error?

Solution: Prob(no more than 3 error) = P(no error)+P(1 error) +P(2 error) +P(3 error), which

is

P = (1-P)® ( ' ) PL-P)" ¢ ( 120 ) P21 - P)™ ( v ) PY(1 - P 5)

= (1 —100P,) 4+ 100P.(1 — 99P.) + 4950 P?(1 — 98P.) + 161700P>(1 — 97P,)

Lathi, 10.2-1: Solution: Based on law of total probability,
Py(0) = P y(1,0) + Pry(0,0) = Po(1) Py (0]1) 4 Pr(0) P12 (0[0)

which is
P,(0) =0.6 x 0.1+ 0.4[1 — PW(1|O)] =0.06+0.32 = 0.38

we can have,
P,(1)=1- P,0) =0.62

Lathi, 10.2-5: X is Gaussian with mean p = 4 and o, = 3, therefore,

1.
Pezy=0(—L)=0(*57) =00 =05
2.
Plx>0)=Q (0 - ’“‘) ~Q (0;4) — Q(—4/3) =1 — Q(4/3) = 1 — 0.09176 = 0.9083
3.

Pz >-2)=0Q (_20_ “) _Q (_23_ 4) —Q(=2) = 1—Q(2) = 0.9773

Lathi, 13.5-2: The conditional probability density functions of the receiver decision RV are

N
frapr ~ N (38, 52F)

N,
frwo ~ N (E, Q()E)
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Therefore, the optimal decision threshold is 2E. The probability of transmission error is
a9 — A1 3E — F 2F
e L =Q<\/>
20 2./ E Noy/2 No

Sklar, 1.6: Fourier transform of R(7) must be a nonnegative function because F[R(7)] = S(f);

and the power spectral density, S(f), must be a nonnegative function.

(a) It satisfies x(7) = x(—7), £(0) > z(7), but the Fourier transform of z(7) is a positive and

negative going function. Therefore, z(7) cannot be a valid autocorrelation function.
(b) Since z(7) # x(—7), therefore, z(7) cannot be a valid autocorrelation function.

(c) It satisfies x(7) = x(—7), but it doesn’t satisfy x(0) > xz(7). Therefore, not a valid

autocorrelation function.

(d) Tt satisfies z(7) = z(—7), £(0) > z(7), and Fourier transform of z(7) is 2sinc?f7, which is

a non-negative function. Therefore, z(7) is a valid autocorrelation function.
Sklar, 1.7:

(a) X(f) = 6(f) + cos?2mf. Yes, it can be a PSD function since (i) it is always real; (ii)
Px(f) = 0; (iii) Px(—f) = Px(f).

(b) X(f) =10+46(f—10). No, it cannot be a PSD function. It satisfies the first two conditions
(i) it is always real; (ii) Px(f) > 0; but the third condition (iii) Px(—f) # Px(f).

(¢) X(f) = exp(—2n|f — 10]). No, it cannot be a PSD function. It satisfies the first two
conditions (i) it is always real; (ii) Px(f) > 0; but the third condition (iii) Px(—f) # Px(f).

(d) X(f) = exp[—2n(f? — 10)]. Yes, it can be a PSD function since (i) it is always real; (ii)
Px(f) = 0; (iii) Px(=f) = Px(f).

Sklar, 3-4: Using equation

Sklar, 3-5: Using equation:

where E, = A?T, and A = 1 for bipolar signalling. Since

Py=Q(z) <107°
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we need x = ,/%Eob > 3.09. which implies E,/Ny > 4.77; while Ny/2 is given as 1073, hence,
Ey=T>47Tx2x107?

and therefore,
1
R= T < 104.8 bits/s

Sklar, 3-7: The optimal decision threshold is 0, therefore,

P, = P(z>0[“0")P(“0”) + P(z < 0]“0”)P(“0”) (3.6)
0] 02 1 17, 02

= P(sl)/ —dz+ P(s2) —dz = {z} Too=—=0.1 (3.7)
-0.2 2 0o 2 2 ' 2

Sklar, 3-14: Signalling with NRZ pulses represents an example of antipodal signalling. There-

fore, we have

since Q(3.1) ~ 1073, hence

\/2A2(1/56000) 4

106
we can solve that A? = 0.268. Thus if there were no signal power loss, the minimum power

needed would be approximately 268 mW. With a 3-dB loss, 536 mW are needed.

Problem 12: (a) the structure of the optimal receiver is a matched filter (diagram refer lecture

notes).

(b) Let T denote the pulse width of s(t). The energy of s(t) is
T
E= / |s(1)[2dt
0
Then the conditional density of the decision variable y(7T') is
y;(T) ~ N(my,0?) when there is a target

y2(T) ~ N(my,0?) when no target

where m; is the pulse energy F and ms is zero because no target and o2 = %E . Decision
threshold, U = E/2. The decision rule is:

u > o a target is present (3 8)
u < o no target '
given
target present ~ N(FE,0?) (3.9)
no target ~ N(0,0?) .
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where 02 = #

(c) Probability of false alarm is

P{false alarm} = P{target detected | no target} = Ply(T) > U| no target] (3.10)

= Plum) >v=0(5) =@ (%) =« (ﬁ)

(d) Probability of detection is

P{detection} = P{target detected | target present} (3.11)

= Py (T) > Ultarget] = Ply1(T) > U] =1-Q (\/E)

Problem 13 see lecture notes.
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4.1 Assignment 4 Problems

1. Sklar, 4.7
Find the probability of bit error, Pg, for the coherent matched filter detection of the
equally likely binary FSK signals

s1(t) = 0.5 cos 20007t

and
So(t) = 0.5 cos 20207t

where the two-sided AWGN power spectral density is Ny/2 = 0.0001. Assume that the
symbol duration is T' = 0.01 s.

2. Sklar, 4.8
Find the optimum (minimum probability of error) threshold ~q, for detecting the equally

likely signal s1(t) = /2E/T coswyt and so(t) = /E /2T cos(wot + ) in AWGN, using a
correlator receiver. Assume a reference signal of ¢ (t) = /2/T coswot

3. Sklar, 4.9
A system using matched filter detection of equally likely BPSK signal, s1(t)) = /2E/T coswpt
and sy(t)) = /2E/T cos(wot + 7), operates in AWGN with a received Ej/N, of 6.8 dB.
Assume that E[z(T)] = +VE.

(a) Find the minimum probability of bit error, Pg, for this signal set and Ej,/Ny.
(b) If the decision threshold is v = 0.1v/E, find Pp.

4. Sklar, 4.13
Consider a coherent orthogonal MFSK system with M = 8 having the equally likely
waveforms s;(t) = Acos2n fit,i = 1,---, M,0 <t < T, where T = 0.2 ms. The received
carrier amplitude, A, is 1 mV, and the two-sided AWGN spectral density, Ny/2, is 10~
W/Hz. Calculate the probability of bit error, Pg.
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5. Sklar, 4.14
A bit error probability of Pz = 1073 is required for a system with a data rate of 100 kbits/s
to be transmitted over an AWGN channel using coherently detected MPSK modulation.
The system bandwidth is 50 kHz. Assume that the system frequency transfer function is
a raised cosine with a roll-off characteristic of » = 1 and that a Gray code is used for the

symbol to bit assignment.
(a) What E;/Nj is required for the specified Pg?
(b) What E,/Ny is required?

6. 3.1 Determine whether or not s;(t) and s;(¢) are orthogonal over the interval (—1.57, <
t < 1.573), where s1(t) = cos(2m fit + ¢1) and fo = 1/T5 for the following cases

(a) Show that the three functions illustrated in Figure P3.1 are pairwise orthogonal over

the interval (-2,2).

(b) Determine the value of the constant A, that makes the set of functions in part (a)

an orthonormal set.

(¢) Express the following waveform, x(¢), in terms of the orthonormal set of part (b)

{1 for 0 <t <2
z(t) =

0 otherwise
8. 3.3 Consider the functions
Ui(t) = exp(—[t])  a(t) =1 — Aexp(—2[t])

Determine the constant, A, such that v (t) and v,(t) are orthogonal over the interval

(—00, 00).
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4.2 Assignment 4 Solutions
Sklar, 3.1: (a) f1 fg and gbl d)g
15T, 15Ty
/ s1(t) - so(t)dt = / S2(£)dt # 0
— 15T — 15Ty
therefore, not orthogonal.
(b) fi =3/f2 and &1 = &,
Let ¢1 = @2 =0,
15Ty 15Ty 15T, 4
/ s1(t) - so(t)dt = / cos 27 ( fg) tdt + — / cos 27 <f2> tdt  (4.1)
—1.5T} 2 J1sm 1.5T% 3
_ sin 27 n sin 4w _ 0 (4.2)

4/3m(1)Ty)  8/3n(1/T3)
therefore, orthogonal.
(¢) fi=2f, and ¢, = ¢ Let ¢y = ¢ =0,
15T, 1 [L5Th
/ s1(t) - so(t)dt = 7/ (cos 2 fot + cos 67 fot)dt =0
—~1.5T% 2J-15m,

therefore, orthogonal.

(d) fi =7fy and ¢1 = ¢ Let ¢ = ¢ =0,
1.5T, 1 b 1
/1.5T2 s1(t) - sa(t)dt = 5/(1 cos(m — 1)27 fotdt + §/a cos(m + 1)27 fotdt # 0

therefore, not orthogonal.
(e) fi = fr and ¢1 = ¢y + 7/2

/ab sin 27 fot - cos 27 fotdt = 0
therefore, orthogonal.

(f) fi = f2 and ¢1 = ¢o + 7 Let ¢1 = 0,

/b cos?(2m fot) dt # 0
not orthogonal.
Sklar, 3.2 (a):
/221/)1(t)1/)2(t)dt _ [ (-4 dt+/ )dt+/01(A)(A)dt+/12(—A At

= A A2+A2
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-1
-2

= A’ - A2 - A2+ A%2=0

[t = [ ay-ad [ @) [ [ -ay- )

[ 22 Do ()5 ()t = [ Z(—A)(—A}dt + /0 “(A)(—A)dt = 247 — 247 = 0

b):
(b) , .
/ Vi(t)dt = / APdt = 2A% + 2A% = 4A*
-2 -2

To be orthonormal, 44? = 1 which implies A = 1/2.

(c): @(t) = ¢a(t) — s(t)

Sklar, 3.3: the correlation between v (t) and 9(t) is

0 0
R = / e'(1 — Ae*) dt —|—/ e '(1— Ae ) dt
0

—00

0 o)
= / (e — Ae®) dt + / (e7! — Ae %) dt
0

—00

Aedt]’ Ae—37%° A A 24
— et = ZE 4|t 4 26 =l-——-[-14++]=2—-—
3 3

0

—00

In order to make ¢, (t) and 15(t) orthogonal, we need R = 0, which solves A = 3.
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5. EXPERIMENT 1: SAMPLING THEORY

1. Objectives:

e In this experiment you will investigate Sampling Theorem.

2. Prelab Assignment:

Given signal z(t) = sinc(t):

—_

. Find out the Fourier transform of x(t), X (f), sketch them.
2. Find out the Nyquist sampling frequency of z(t).

3. Given sampling rate f, write down the expression of the Fourier transform of x(t), Xs(f)
in terms of X (f).

4. Let sampling frequency f; = 1Hz. Sketch the sampled signal x4(t) = z(kTs) and the

Fourier transform of x4(t), Xs(f).
5. Let sampling frequency f; = 2Hz. Repeat 4.
6. Let sampling frequency f; = 0.5Hz. Repeat 4.
7. Let sampling frequency f; = 1.5Hz. Repeat 4.
8. Let sampling frequency f; = 2/3Hz. Repeat 4.
9. Design a Matlab function to calculate the Fourier transform of a sampled signal z4(¢),
Xs(f) =2, x(kTs) exp(—j - 2mf - kTy). This is necessary in your experiments.
NOTE: In Matlab and this experiment, sinc() is defined as sinc(t) = sin(nt)/(7t). Under this
definition: sinc(2Wt) — 1/(2W) rect(f/2W).

3. Procedure:
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1. Design Matlab programs to illustrate items 4-8 in Prelab. You need to plot all the graphs.

2. Compare your results with your sketches in your Prelab assignment and explain them.



6. EXPERIMENT 2: BINARY SIGNALLING FORMATS

1. Objectives:

In this experiment you will investigate how binary information is serially coded for transmission

at baseband frequencies. In particular, you will study:

line coding methods which are currently used in data communication applications;

e power spectral density functions associated with various line codes;

causes of signal distortion in a data communications channel;

effects of intersymbol interference (IST) and channel noise by observing the eye pattern.

2. Prelab Assignment:

1. Given the binary sequence b ={1,0,1,0,1,1}, sketch the waveforms representing the

sequence b using the following line codes:

(a) unipolar NRZ;
(b) polar NRZ;

)

)

(c) unipolar RZ;

(d) bipolar RZ;
)

(e) manchester.
Assume unit pulse amplitude and use binary data rate R, = 1kbps.

2. Determine and sketch the power spectral density (PSD) functions corresponding to the
above line codes. Use R, = 1kbps. Let f; > 0 be the location of the first spectral null in
the PSD function. If the transmission bandwidth Br of a line code is determined by fi,

determine By for the line codes in question 1 as a function of R,,.
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3. Procedure:

A. Binary Signalling Formats: Line Code Waveforms

Binary 1’s and 0’s such as in pulse-code modulation (PCM) systems, may be represented in
various serial bit signalling formats called line codes. In this section you will study signalling

formats and their properties.

A.1 You will use the MATLAB function wave_gen to generate waveforms representing a binary
sequence:
wave_gen( binary_sequence, ’line _code name’, R}, )

where Ry, is the binary data rate specified in bits per second (bps). If you use the
function wave_gen with the first two arguments only, it will default to the binary data
rate set by the variable binary_data_rate, which is 1,000 bps. Create the following

binary sequence:
> b=l 0 1 0 1 1];

Generate the waveform representing b, using unipolar NRZ line code with R, =

1 kbps and display the waveform x.
> = wave_gen(b,'unipolar nrz’, 1000);

> waveplot(x)
A.2 Repeat step A.1 for the following line codes:

e polar NRZ (’polar nrz’);
e unipolar RZ (’unipolar rz’);
e bipolar RZ (’bipolar_rz’);

e manchester (’manchester?’).

You may want to simplify your command line by using:
waveplot ( wave_gen( b, ’line_code_name’)

Since you will compare waveforms at the same Ry, you can use the function wave_gen

with only two arguments.

Q2.1
For the above set of line codes determine which will generate a waveform with
no dc component regardless of binary sequence represented. Why is the absence of a dc

component of any practical significance for the transmission of waveforms?
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A.3

A4

Power spectral density (PSD) functions of line codes: Generate a 1,000 sample

binary sequence:
> b= binary(1000);

Display the PSD function of each line code used in part A.1:
> psd(wave_gen(b, line_code name’));

Let:

fp1: first spectral peak; fn1: first spectral null

fp2: second spectral peak; fn2: second spectral null

such that all f(y > 0. Record your observations in Table 2.1.

Table (2.1)
Rb = fpl fnl fp2 fn2 BT
unipolar NRZ
polar NRZ

unipolar RZ
bipolar NRZ

manchester

Location of the first spectral null determines transmission bandwidth Br.

To illustrate the dependence of the PSD function on the underlying binary data rate, use

the manchester line code and vary Ry:
> psd(wave_gen(b, manchester’,Rb))

where Rb € {5kbps, 10kbps, 20kbps}. You may replace manchester by any other line
code used in part A.1. Observe the location of spectral peaks and nulls and relate them

to Rb-

2.2
For a baseband data communications channel with usable bandwidth of 10 kHz,

what is the maximum binary data rate for each of the line codes examined in part A.1.
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B. Channel Characteristics

In this part you will simulate characteristics of a communications channel.
NOISE

|

INPUT ——= CHANNEL ——= OUTPUT

Fig 2.1 Channel model
The MATLAB function that represents the channel response is channel which is called with
the following arguments:
channel ( input, gain, noise_power, bandwidth )
B.1 Create a 10 sample binary sequence b and generate a waveform representing b in polar
NRZ signalling format. Use R, = 1kbps.
> b =Dbinary(10);
> x = wave_gen(b, polar nrz’, 1000);
From your observation in part A, determine the transmission bandwidth By of x:
Br = Hz

B.2 Consider a baseband data transmission channel with unity gain and additive white Gaus-
sian noise (AWGN) where the noise power is 107 W and the channel bandwidth is 4.9 kHz.

Transmit waveform x over this channel. Display the channel input and output waveforms:
> y = channel(x,1,0.01,4900);
>  subplot(211),waveplot(x);
> subplot(212),waveplot(y);

If the signalling format is polar NRZ at R, = 1 kbps, estimate the transmitted sequence

from the display of the channel output waveform.
b=

Compare your estimate with the original sequence b.
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B.3

B.4

B.5

Effect of channel noise on the transmitted waveform: Gradually increase the
channel noise power while keeping the channel bandwidth at 4.9 kHz and observe changes

in the channel output.
> y = channel(x, 1, sigma, 4900);
> waveplot(y);

where sigma € {0.1,0.5,1,2,5}. At what noise power level, does the channel output

waveform becomes indistinguishable from noise?

You can also observe effects of increasing channel noise power by looking at the PSD of

the channel output waveform.
> b = binary(1000);
> x = wave_gen(b, polar nrz’, 1000);
> clf;subplot(121); psdf(x);
>  subplot(122);psdf(channel(x, 1,0.01,4900));
> hold on;
>  subplot(122); psdf(channel(x,1,1,4900));
>  subplot(122); psdf(channel(x,1,5,4900));

Q2.3
Since the channel noise is additive and uncorrelated with the channel input,
determine an expression that will describe the PSD of the channel output in terms of the

input and noise PSD functions.

Effects of channel bandwidth on transmitted waveform: Distortion observed in
the time display of the channel output is due to finite bandwidth of the channel and due
to noise. To study distortion due to channel bandwidth only, set noise power to zero and

regenerate the channel output waveform:
> hold off; clf;;
> b= binary(10);
> x =wave_gen(b,’ polar nrz’, 1000);

>  subplot(211),waveplot(x);
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> subplot(212),waveplot(channel(x, 1,0,4900));
B.5 Investigate effects of channel bandwidth on the output waveform.
> subplot(212),waveplot(channel(x, 1,0,bw));

where bw € {3000, 2000, 1000,500}. Observe the delay in the output waveform due to
filtering characteristics of the channel. Plot the input and output waveforms. Determine

the appropriate sampling instants for the decoding of the waveform for the case bw = 500.

C. Eye Diagram

Effects of channel filtering and noise can be best seen by observing the output waveform in
the form of an “eye diagram”. The eye diagram is generated with multiple sweeps where each
sweep is triggered by a clock signal and the sweep width is slightly larger than the binary data
period T, = 1/R,. In this simulation the eye diagram is based on a sweep width of 275,
C.1 Generation of Eye Diagram:

> b=[1 0 0 1 0 1 1 0

> x = wave_gen(b, polar nrz’, 1000);

> clf;

> subplot(221),waveplot(x);

> subplot(223),eye_diag(x);

The eye diagram for the waveform x represents what you should expect to see for an
undistorted signal. To observe how the eye diagram is generated and to observe effects
of signal distortion as the signal x is transmitted over a finite bandwidth channel with no

noise component:
> y = channel(x, 1,0,4000);
> subplot(222),waveplot(y);
> subplot(224),eye_diag(y, —1);

If the second argument to the function eye_diag is negative, you have to hit the Return
key for the next trace to be displayed. This will assist you to understand how the eye

diagram is generated.
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C.2 Key parameters to be measured with an eye diagram are shown below.

-3 EYE DIAGRAM

15 T T E w T

A\ R L4

Time [sec] x10°

Fig 2.2 Interpretation of the eye pattern

A time interval over which the waveform can be sampled;
B margin over noise;

C distortion of zero crossings;

D slope: sensitivity to timing error;

E maximum distortion;

t* optimum sampling instant measured with respect to the time origin. If the binary data
period is T}, then the waveform will be sampled at t*, t* 4+ Ty, t* + 2T}, ... for signal

detection.

Generate the eye diagram from a polar NRZ waveform at the channel output for values
of noise variance s2 and channel bandwidth bw shown in Table 2.2. Record t*, A and B

for each set of s2 and bw.
> clf;
> b =Dbinary(100));

> x = wave gen(b,’ polar nrz’, 1000);
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Table 2.2
Polar NRZ Line Code

s2 bw t* A B

3000
0.01 2000

1000
0.02
0.08 4000
0.10

> eye._diag(channel(x, 1,s2,bw));

C.3 Repeat step C.2 for manchester line code and record your results in Table 2.3.

Table 2.3
Manchester Line Code

s2 bw t* A B

3000
0.01 2000

1000
0.02
0.08 4000
0.10

2.4
When you compare the eye diagrams from C.2 and C.3 for s2 = 0.01 and
bw = 1000, for which line code do you observe a “reasonable” eye diagram? Explain the

difference in terms of the respective line code properties.

C.4 Generate eye diagrams as in step C.2 for polar RZ and unipolar RZ and unipolar NRZ
line codes and observe how the line code dictates the shape and the symmetry of the eye

diagram.



7. EXPERIMENT 3: MATCHED FILTER AND BIT ERROR RATE (BER)

1. Objectives:
In this experiment you will investigate the signal detection process by studying elements of a
receiver and of the decoding process. In particular you will:

e investigate the characteristics of matched filters;

e study performance of various receiver structures based on different receiver filters by

measuring probability of bit error;

e use the eye diagram as an investigative tool to set parameters of the detection process.

2. Prelab Assignment:

1. A matched filter is to be designed to detect the rectangular pulse

(=)

b

r(t) = rect with T, = 1 msec.

Y

(a) Determine the impulse response of the matched filter.
(b) Determine the output of the matched filter if r(¢) is the input.

(c) Repeat parts (a) and (b) for a triangular pulse of 10 msec duration.

2. Let Y(t) = X(t) + n(t), represent the waveform at the output of a channel. X(¢) is a
polar NRZ waveform with unit pulse amplitude and binary data rate R, of 1 kbps. n(t)

is a white noise process with PSD function:
S,(f) = N,/2=0.5x10"* W/Hz.
If Y(¢) is applied to a matched-filter receiver:

(a) Determine the rms value of n(t) and the peak signal amplitude at the output of the
matched filter.
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(b) Determine Ej, the average energy of X (¢) in a bit period.
(c¢) Determine the probability of bit error P, = Q(1/2E,/N,).

3. If Y(¢) in Question 2 is applied to a RC-filter with frequency response:

1

H,.(f) = 15 j27/RC

with RC = 1/(20007),

(a) Determine the peak signal amplitude and rms value of the noise at the filter output;

(b) Determine the probability of bit error P, if X (¢) were to be detected by a receiver
based on the RC-filter.

3. Procedure:

A. Characteristics of Matched Filters

A.1 Generate a rectangular pulse with unit pulse amplitude and 1 msec pulse duration.
> r = wave gen(1,polar nrz’, 1000);
A.2 Display r and the impulse response of a matched filter based on r.
> subplot(311),waveplot(r);
> subplot(312),match('polar nrz’);
A.3 Observe the matched filter output if r is applied to its input.
> rm = match('polar nrz’, r);
> subplot(313),waveplot(rm);

Q3.1
Determine the time when the filter output reaches its maximum value. How is

this time related to the waveform r?
A.4 Repeat parts A.1-A.3 for a triangular pulse with 10 msec pulse width and unit peak
amplitude.
> r =wave gen(1l,/ triangle’, 100);
>  clf;subplot(311), waveplot(r);

>  subplot(312),match(‘triangle’);
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> rm=match('triangle’ r);

>  subplot(313),waveplot(rm);

3.2
If the triangular pulse width is changed to 1 msec, determine the peak amplitude
of the matched filter output?

A.5 Repeat parts A.1-A.3 for a manchester pulse with 10 msec pulse width and unit peak
amplitude. Predict the matched filter impulse response and matched filter output. Verify
your predictions using MATLAB functions.

A.6 Generate a polar NRZ waveform that represents the 5-sample binary sequence [ 1 00 1
0 ]. The binary data rate Ry is 1 kbps and the pulse amplitude A is 1 V.

> xb=wavegen([l 0 0 1 0], 'polar nrz’, 1000);
> clf,subplot(211), waveplot(x5);
Record the waveform x5
A.7 Apply x5 to a matched filter. Record output.

> subplot(212),waveplot(match(‘polar nrz’, x5));

NRZ waveform that represents the binary sequence [100 10 |.

Construct the waveform at a matched filter output if the input is a unipolar

B. Signal Detection

B.1 Generate a 10-sample binary sequence and a waveform that represents this binary se-

quence in polar NRZ signalling format.
> bl0 = binary(10);
> x10 = wave_gen(b10, polar nrz’, 1000);
> subplot(211),waveplot(x10);

B.2 Apply x10 to a channel with 4.9 kHz bandwidth and AWGN where the noise power is 2
W. Display the channel output waveform y10:

>  y10 = channel(x10, 1, 2,4900);
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> subplot(212),waveplot(y10);

Decode the binary sequence from the waveform y10:

—

bl10 =
B.3 Apply y10 to a matched filter. Display the output waveform z10:
> 210 = match('polar nrz’, y10);
> subplot(212),waveplot(z10);

B.4 Let T;, be the binary data period. Sample the output of the matched filter at k T}, k =
1,...,10 and apply the following decision rule:
™ { 0, if sample value > 0;
k pu—

1, if sample value < 0;

where l/); is the estimated value of the kth element of the binary sequence b10. Apply this

decision rule on the matched filter output z10:

—

bl0 =

Compare your decoded sequence with the original sequence b10:

directly from the channel output y10 or from the matched filter output z10. If sampling

Comment on whether it is easier to decode the transmitted binary sequence

instants other than those specified above are used, the probability of making a decoding

error will be larger. Why?

C. Matched-Filter Receiver

C.1 Generate a 2,000-sample binary sequence b and a polar NRZ waveform based on b:
> b = binary(2000);
> x =wave_gen(b,’ polar nrz’);

Apply x to a channel with 4.9 kHz bandwidth and channel noise power of 0.5 W. Let y

be the channel output waveform.

> y = channel(x, 1,0.5,4900);
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C.2

C.3

C.4

Apply y to a matched filter. Display the eye diagram of the matched filter output z.
> z =match('polar nrz’,y);
> eye.diag(z);

From the eye diagram, determine the optimum sampling instants and threshold value
v_th for the detector to decode the transmitted binary sequence b. Sampling instants for
the matched filter output are measured with respect to the time origin. For example, if
the binary data period is 7} and the sampling instant parameter is set to ¢;, then the

detector will sample the signal at t;, t; + Tp, t; + 2Ty, ... etc.
v_th = V.
sampling instant = sec.

Use v_th and sampling instant in the detector which will operate on the matched filter

output. Record the resulting probability of bit error P, (BER) in Table 3.1.

> detect(z,v_th, sampling instant,b);

Table 3.1
a2(W) P, empirical P, theoretical
0.5
1.0
1.5
2.0

Repeat C.1-C.2 for channel noise power of 1, 1.5, and 2 W without displaying the eye
diagram of the matched filter output z. Record P, results in Table 3.1. Remark: In
Experiment 2 you have observed that the optimum sampling instants and the threshold
value are independent of channel noise power. Therefore, you can use the optimum
sampling instants determined in part C.2 to decode the matched filter output for different

channel noise power levels.

If different sampling instants other than the optimum values are used, the resulting BER
will be larger. You can observe this by decoding the binary sequence using values for the
sampling instant parameter that are 0.9 and 0.5 times the optimal value used in part
C.3.

Q3.5

Evaluate theoretical probability of bit error values for all cases considered above

and record in Table 3.1. Note that the PSD function of a white noise process can be
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determined as:
N, o?

Slf) = 2~ 2 x system bandwidth’

where the system bandwidth in this experiment is 4.9 kHz.

D. Low-Pass Filter Receiver

D.1 Apply a rectangular pulse to a first-order RC-filter of 1 kHz bandwidth. Display the filter

output and measure the peak amplitude A,:
> r =wave gen(1,/unipolar nrz’); r 1pf = rc(1000, r);
>  subplot(211); waveplot(r);
> subplot(212); waveplot(r_1pf);
A, = V.
D.2 Generate 2,000 samples from a zero-mean white noise sequence of 0.5 W power. Apply
the noise sequence to the RC-filter. Record the rms value of the output noise power.
> n = gauss(0,0.5,2000);

> meansq(rc(1000,n));

o2 = W.
Q3.6

From the results in parts D.1 and D.2, determine the ratio A, /o, where A, is
the peak signal amplitude measured in D.1 and o, is the rms value of the output noise.
If y in part C.1 is applied to a receiver which uses the above RC-filter, determine the
resulting BER.

D.3 Regenerate y from part C.1. Apply y to the RC-filter. Display the eye diagram of the
output waveform z_1pf.
> y = channel(x, 1,0.5,4900);
> z.1pf = rc(1000,y);
> clf,eye diag(z_1pf);
D.4 From the eye diagram, determine the optimum sampling instant and threshold value.
Decode the binary sequence form z_1pf.
> detect(z_lpf,v_th,sampling instant,b);

Compare the resulting BER with the BER evaluated in step C.2.
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D.5 Repeat part D.4 for the channel noise power of 1, 1.5, and 2 W. Record results in Table

3.2.
Table 3.2
P
o2(W) BW = 1.0 kHz | BW = 0.5 kHz
0.5
1.0
1.5
2.0

D.6 Repeat parts D.3 — D.5 for a first-order RC-filter with 500 Hz bandwidth. Record the
resulting BER values in Table 3.2.

> z.1pf = rc(500,y);
> eye.diag(z 1pf);
> detect(z_1pf,v_th,sampling instant,Db);
Explain why the BER resulting from a low-pass filter of 500 Hz bandwidth is

smaller than the BER resulting from a low-pass filter of 1 kHz bandwidth. Will the BER
be further decreased if a low-pass filter of 100 Hz bandwidth is used?



8. EXPERIMENT 4: DIGITAL MODULATION

1. Objectives:

In this experiment you will apply concepts of baseband digital transmission and analog contin-

uous wave modulation to the study of band-pass digital transmission. You will examine:

e generation of digital modulated waveforms;
e coherent (synchronous) and noncoherent (envelope) detection of modulated signals;

e system performance in the presence of corrupting noise.

2. Prelab Assignment:

1. Consider the binary sequence b=1[100 10 |. Let the bit rate R, be 1 kbps and let the

peak amplitude of all digital modulated waveforms be set to 1 V.

(a) Sketch the ASK waveform representing the binary sequence b using a carrier fre-

quency of 5 kHz.

(b) Sketch the PSK waveform representing the binary sequence b using a carrier fre-

quency of 5 kHz.
(c) Let the mark and space frequencies used by an FSK modulator be set to 3 and 6 kHz,

respectively. Sketch the resulting FSK waveform representing the binary sequence

b.

2. Sketch the power spectral density function for each of the modulated signals in Question

1.

3. If an ASK signal is applied to the input of a coherent detector shown in Fig. 4.1, sketch

the waveforms at the output of each block.

3. Procedure:
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In this experiment, the binary data rate R; is 1 kbps and peak modulated signal amplitude is
1 V. The bit period T, = 1/ R, is represented by 100 samples.

A. Generation of Modulated Signals

Amplitude-Shift Keying (ASK)

A.1 Generate a binary sequence with the first 5 bits [1 00 10 |:

> b=[1 0 0 1 Obinary(45)];
A.2 To generate the ASK signal, sa, with a carrier frequency of 8 kHz:

e generate a unipolar NRZ signal xu, from the sequence b;

e mix xu with the output of an oscillator operating at 8 kHz.

>  xu = wave_gen(b,’ unipolar nrz’);
> sa = mixer(xu, 8000);
A.3 Display the first 5 bits of xu and sa in the binary sequence b. Compare the two waveforms.
> subplot(211),waveplot(xu,5);
> subplot(212),waveplot(sa,5b);
Also display and record the respective PSD functions over the frequency interval | 0, 20
kHz ].
> fr = [0,20000];
>  subplot(211),psd(xu, fr);

> subplot(212),psd(sa,fr);

Phase-Shift Keying (PSK)

A.4 To generate the PSK signal sp, with a carrier frequency of 8 kHz:

e generate a polar NRZ signal xp, from the sequence b;
e mix xp with the output of an oscillator operating at 8 kHz.
> xp = wave_gen(b,' polar nrz’);

> sp = mixer(xp, 8000);
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A.5 Display the first 5 samples of the waveforms xp and sp:
> subplot(211),waveplot(xp,5);
> subplot(212),waveplot(sp,5);
What is the phase difference between sp and the carrier sin(2x f.t) during the first and
second bit periods?
A.6 Display the PSD functions of xp and sp over the frequency interval [ 0, 20 kHz ]. Record
main characteristics of each PSD function.
> fr = [0,20000];
>  subplot(211),psd(xp, fr);

>  subplot(212),psd(sp, fr);

Frequency-Shift Keying (FSK)

A.7 To generate the continuous phase FSK signal sf, with mark and space frequencies of 4
and 8 kHz, respectively:

e generate a polar NRZ signal from the sequence b;

e mix xp apply the polar waveform to the input of a voltage controlled oscillator
(VCO). In this experiment the VCO has the free-running frequency set to 6 kHz and
has frequency sensitivity of -2 kHz/V.
> xf = wave_gen(b,’ polar nrz’);

> sf = vcom(xf);

A.8 Display waveforms xf and sf for 0 <t < 57T,
> subplot(211),waveplot(xp,5);
> subplot(212),waveplot(sf,5);
Display and record the PSD function of the FSK signal.
> clf;
>  psd(sf,fr);

4.1
How can you generate an FSK signal from two ASK signals? For a system where

efficient bandwidth utilization is required, which modulation scheme would you prefer?
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B. Coherent and Noncoherent Detection

Coherent Detection

B.1

B.2

B.3

A coherent detector for ASK and PSK signals is depicted in Fig. 4.1.

% o MATCHED A0
Sa() S FILTER SH j[ 8

A
@ sin(w,t) ’%

bit svnc - - -

<

Fig. 4.1 Coherent Detector

To demodulate the ASK signal sa, first multiply sa by a locally generated carrier which
has the same frequency and phase as the carrier used in generating sa. Display the
waveform ya at the output of the multiplier for the first five bit periods. Also display and

record the corresponding PSD function over the interval fr.
> ya=mixer(sa,8000);
> clf, subplot(211),waveplot(ya,5);

> subplot(212),psd(ya, fr);

Apply ya to a matched filter and record its output for 0 <t < 57Ty.
> za =match('unipolar nrz’, ya);

> subplot(212),waveplot(za,5);

Q4.2
Determine the impulse response of the matched filter. Note that za is similar
to the output of the matched filter for a unipolar NRZ signal. Why?

The major difficulty in implementing a coherent detector is carrier synchronization. In
order to achieve optimum performance, the local oscillator should have the same phase and
frequency as the incoming carrier. Phase or frequency deviation will result in degradation

of detection performance.

To observe the effect of phase error, demodulate sa using a local oscillator whose output
is sin(27 f. + ¢). Here, ¢ is the phase error measured with respect to the carrier. Record
the peak signal amplitude at the matched filter output for each phase error shown in
Table 4.1.

> phase_error = 0;
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B4

B.5

> ya=mixer(sa, 8000, phase_error));
> za =match('unipolar nrz’, ya);
> subplot(212),waveplot(za,5);

Table 4.1

Phase Error Peak Amplitude [V]
0°
20°
60°
80°
120°

Q4.3
Recall that the BER resulting from the detection of a signal in the presence of
noise, is a function of peak signal amplitude at the receiver filter output. Determine from

the results displayed in Table 4.1 which phase error will result in smallest BER.

Demodulate sa with 60° and 120° phase errors. Decode the matched filter output to
recover the first five bits of the sequence b. Record each decoded sequence and comment

on the difference.

To observe the effect of frequency deviation in demodulating an ASK signal, demodulate
sa with a local oscillator set to 7,900 Hz. Display and compare the demodulated signals

ya and yal.
> yal = match('unipolar nrz’ mixer(sa, 7900));
> subplot(211),waveplot(ya,5);
> subplot(212),waveplot(yal,5);

Could the original binary sequence be recovered from yal? Consider a second case where
the local oscillator frequency is set to 7,985 Hz. Demodulate sa and generate the matched

filter output:

> ya2 =match(‘unipolar nrz’ mixer(sa, 7985));

> subplot(211),waveplot(ya,5),subplot(212), waveplot(ya2,5);
Determine the frequency of the envelope of the matched filter output.

by multiplying with the output of a local oscillator set to f,, such that f, # f., the

Consider an ASK signal s,(t) with carrier frequency of f.. If s,(¢) is demodulated
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envelope of detector matched filter output is modulated by a sinusoid. Determine the

frequency of this modulating signal as a function of f. and f,.

C. System Performance Under Noise

Coherent Detection

C.1 Generate an ASK signal representing a 500-sample binary sequence:
> b=[1 0 0 1 Obinary(495);
> sa=mixer(wave gen(b, unipolar nrz’),8000);
C.2 Apply sa to a channel with unity gain, channel noise 62 = 1 W, and of sufficient band-

width such that no distortion is introduced to the signal. Display the ASK signal sa and
the channel output y for 0 < t < 5T,

> y = channel(sa,1,1.5,49000);
> subplot(211),waveplot(sa,5);
> subplot(212),waveplot(y,5);
C.3 Use a coherent detector to demodulate y. Display the eye diagram of the matched filter
output.
> zm = match(‘unipolar nrz’, mixer(y, 8000));
> clf,eye diag(zm);

From the eye diagram, determine optimum sampling instants and the threshold value.

Apply zm to the decision circuit, and record the resulting probability of bit error.

> detect(zm, vth,sampling instant,Db);

4.5
Compute the theoretical probability of bit error for the case considered above.
Recall that the PSD function of the channel noise is

N, o?

Snlf) = 2 2x system bandwidth

The system bandwidth in this experiment is 50 kHz.



