Register-Level Design

A digital system can be treated at different level of abstraction or complexity.
So far, we have seen it at the gate level and the transistor level.

At a higher level than the gate level, we have the register level. The central
component at this level 1s an n-bit storage device, or register.

Central Component

Transistor Level Transistor

Higher level
Gate Level Logic Gate of abstraction

Register Level Register

Page 1

Logic Circuit for the 74X181 ALU

Page 2

From the logic circuit for the 74X181, we can write

F,=(M+C,)w(a,+B,S,+B,S,)w(A4,B,S,+4,B,S;)
which gives little information on what functions the circuit perform.

Using a truth table to describe the functions of the circuit 1s not a good
1dea either as the circuit has 14 inputs, which means the truth table will

have 2'*=16384 rows!

The 74X181 1s actually a 4-bit ALU which performs 32 different arithmetic
and logical operations on two 4-bit inputs A=A4,4,A4, A, and
B=B,B,B, B, producing the result F=F,F,F F,

The operation to be performed is determined by the control signals
M and §=85,5,85,5, In particular, the mode control signal M

is set to 1 for logical operations, and O for arithmetic operations. The
select control signal S 1s use to select the required operation.

Page 3

Register-Level Model of the 74X181 ALU

Controlomt A=B P G C, .,

‘ j t t t #

= o A < 7 Data
ata in ;
4 4 selection 4 IP
B ra » - and 7 -
4 functu?n Multifunction
| generation data-processing
.“. w #
4-bit inverter 513 cireuit DP _.7“4 F
(word gate) ” (carry-lookahead (;
N addition, logical | D42 U
: operations)
4 selection 4 IG
== ﬂﬂd raa -
4-bit bus g | Tnedon
, "« | generation
1-bit line 21
4 r 2 J S]S: f ,ﬁ F 3 E‘
Select § - E < - ‘ "
Control in Mode M ' DO—

Carry in C,

Page 4

74X181 Arithmetic and Logical operations

P — ACTIVE-HIGH DATA
M=H M=L;: ARITHMETIC OPERATIONS
$3 s2 S1 SO A Ca=H Co-tL
FUNCTIONS (no carry) (with carry)
L L L L FoA FeA F=APLUS 1
L L L H F=A+8 F=A+B Fe=(A+B)PLUS I
L L H L F=AB F=A+B F=(A+BPLUS
L L H H F=0 F = MINUS 1 (2's COMPL) F = ZERO
L H L L F=AB F=APLUS AB F=APLUS AB PLUS 1
L H L H F=B F={A+B] PLUS AB F=(A+B) PLUS AB PLUS 1
L H H L F=A®B F=AMINUS BMINUS 1 F=AMINUS B
L H H H F = AB F=AB MINUS 1 F=AB
H L L L F=A+B F=APLUS AB F=APLUS AB PLUS 1
H L L H F=A®B F=APLUSB F=APLUSBPLUS1
H L H L F=8 F=(A+B)PLUS AB F={A +B) PLUS AB PLUS 1
H L H H F=AB F = AB MINUS 1 F=AB
[H L L F=1 F = APLUS AT F=APLUS APLUS1
H H L M F=A+B F=(A+B)PLUS A F=(A+8B)PLUS APLUS1
H H H L FeuA+8 F=(A+BlPLUS A F=(A+B} PLUS A PLUS 1
H H H H F=A F=AMNUS 1T F=A

T Each bit is shifted to the next more significant position.

Page 5

Register-level design 1s geared toward the processing of words as the
basic units of information or signals. In contrast, in gate-level design
individual bits are treated as basic signals.

The word length 1s register-level design varies, but it 1s always a multiple of 4.

Another important aspect of register-level design 1s the data-flow representation
which views the function of a digital circuit as processing data words that flow
between computational and storage devices. The computational devices are
typically multifunction combinatorial circuits (e.g. the ALU), and the storage
devices are registers.

To manage these devices and control the data flow, control signals and circuits
that generate these signals are required.

Page 6

Complex digital circuits can be divided into a data-processing (DP)
part and a control part (CU) at the register level.

Control in
(instructions)

Data
in

_..n.;;.’.

Control unit
CU
(controller)

r, Control

Control
signals

p,i« g % S.tatus
signals

—

Data-processing
unit DP

(datapath)

out
n
| ; Data
out

Page 7

Example of a small processor

To master - Control unit
controller - Function Operation
select status
> A \ {._A__\

(T 1]

-~ |abpsuB ovr Datapath
. . 2 anit
- —g—— A P
Data Pty Aritmetic-logic unit n n Data
i 3 P - (combinational gl AR W out
" n circuit) a

Input registers Output register

Page 8

The behavior of a register-level circuit can be described using behavioral
style VHDL code.

For example, the operations of ALU of the small processor can be described
using the following VHDL code:

if ADD = 'l' then
C<=A + B;

elsif SUB = 'l' then
C<=A - B;

end if;

if overflow_occurs then
OVF <= 1;
end if;

Page 9

Basic components of register-level design:

Basic register-level component types: (a) combinational; (b) sequential.

Component type
Word gate

Multiplexer
Decoder/encoder
Adder
Comparator
ALU

Component type

(Parallel) register
Shift register
Counter

Fanctions' -

Logzcal (Boolean) operations: AND, OR, NOT, NAND,
EXCLUSIVE-OR, etc.

- Data selection and noutmg, Boolean function generation

Data format conversion

Binary addition and subtraction
Data comparison

Anthmetlc and log__lcal operations
(a)

Functions

Data storage
- Data storage and format conversion
Control state generation; arithmetic operations; tnmng

(b)

Page 10

Component Expansion by Bit Slicing

X, —ver i

"2 %Zl
X2 + n,

M : Zz
X3 —'/—P'

Data in l’ Data out
k

Control X

Control K

Page 11

Serial

|:|alainliil_—"“4

SHIFT/LOAD
| CLOCK
CLEAR

Shift Register Expansion using Bit Slicing

Parallel datain X,:X

ma=|

H‘Hl{.f
A
n ﬂJr
Slice 1 v Slice2
n-bit n-bit
D paraliel-load parallel-load
shiftregister <[|~ shiftregister <[
sH/iD CLK i sH/LD CLK cip

l

l

Pae —

n
Slice m

n-bit
D parallel-ioad
shift register

. Serial
data out 0

SH/LD CIK cpp |

Page 12

Datapath Units (DP)
DP's are used to move and process data (in words).

Accumulator register

o

X, g > Combinational
Data. i circuit C Z
X; —»| gl—| (arithmetic-logic unit) | Data out
5, s
(a)
Input Buffer Buffer Output
registers registers registers registers
Data g C; % C, % Cs i Data
in . | (Stage 1) X (Stage 2) ; (Stage 3)| : out
cre—1 IE‘IL’] Eﬂ T
(b)

Some datapath configurations: (a) an accumulator; (b) a three-stage pipeline.
Page 13

32
1 Two-way [7™ 32 321
v 32, | 32.bit mgx o . ’
| —— X Combinational
y ‘g , 32 32
circuit C (32-bit —¢——~
Xs 3,2#' - 32 arithmetic-logic unit)
B F———4—
—
'k
INPUT CLR CLK FUNCTION STATUS
SELECT SELECT

A more detailed logic diagram for the accumulator-based datapath

Page 14

X1 L ? Four-
16,
- I Way 16, Cout
16-bit
¥i] mux
| 16-bit XOR 16-bit 16
Input word gate binary Z
registers = adder
Four- 6 - Output
] Wa}r = &
: < 16 register
Oac 16 z- 16-bit oyl
15¢ 1 @, 3 Mux K
' I — 16
I | SUB = 0 for add
Two-bit ; SUB = 1 for subtract
erp—1
cacader 1-to-16 point
. X = 3 of fan-out
I ~SU'B
L1 Instruction codes
(ol 1 2 3 4 5 B 7
T en b1 ADD X1, Y1 000
decoaee SUB X1,Y1 001
SUB Y1, X1 010
2 INC X1 011
DEC X1 100
Instruction code LOAD X1 101

A 16-bit datapath unit to execute o small instruction set

Page 15

Control Units (CU)

CU's direct the operations of DP's through a set of output control signals.

X <

r""

Instructions
from master
controller MC

Status signals

from controlled —

unit DP

Contro}l
unit
cU

Clock

Status signals
to master
controller MC

Control signals
to controlled
unit DP

>z

Page 16

The Control Unit (CU) has a well-defined and fairly small set of
states and 1s often implemented as a FSM.

Output
logic

Input | nys(x. y)| State
logic | register
C, M
§ f~
Clock
A Input NS(X, Y) State
logic [register
C, M

Fal

QOutput
logic

—Z(Y)

Clock

'_*Z(X- }")

Mealy machine

Moore machine

Page 17

Example: A CU for a 4-word LIFO stack.

PUSH (write) —

POP (read) —=

ERROR =+

Data in

l 1

Data out

RS (right/down shift)

Control
unit

LS (left/up shift)

cu

POP/LS

w bits >

Datapath unit DP

POF/LS

Word 0 (top)
Word 1
Word 2

Word 3 (bottom)

POF/ERROR

Page 18

Programmable CU

i

¥ —— 5] S
- | Microsequencer | .
MS 5

Programmable
=1 control memory

CM

E".

Instruction

] Instruction

address

State register

M

CM implemented
with Moore-type

state table.

4
Z Control signals

Output logic C;

General structure

Control memory CM

X=[I —
Cu rrent Microsequencer
input MS
Current
state

Next states

Possible next states
for current state S,

Output signals for
current state S,

State register M

Current output
(control) signals

Page 19

CM Next-state Next-state Next-state Control
address address0 address 1 address2 signals

o00ojo1o01(o010{0000[000]s,
o001fo101/0010{0000|010fs,,
00100 101/0010/0000]/100]s,,
oo11f1000(0001{0011|000]|s,
0100j1000[(0001[0011[010][s,
” 0101{1000/0001/0011]|001]s,,
Thme_wa).-! 0]1[]10110100 GI].O 00051“
' 4-bit 0111101 1(0100{0110|010]S5,,
multiplexer 5 ;
1wool1 011 0110/001]s..
P 00|10 0100 S
. worft110fo111/to001|000]|s,
PUSH {0 4|: “: wrof111o0flo111[too01o10]s,,
Two-bit
POP — oy iy 0 2, 1011]1110/0111|/1001|001]S,,
e“coder IIDU 1 !Ul 1010 1100 OOO 54_[_\
2
ENC 1morfrr1otfro1o/t1o00f100]s,
0—=|3 E i1 1ot1frorojt1o0foo1]|s,
T 1nitfloooolooooloooo|oo o] Unused
1 1 L
0,1,0,1(0,01,0{0000][010]|M
i o Y !—»RS
S '

+ ERROR

A programmable implementation of a control unit for the stack memory.

Page 20

Contents

EPROM
d7 d6 d5 d4 d3 d2 d1

Address

a3
push pop Present State

EPROM

Alternative Programmable CU for the 4-Word LIFO Stack

do

O~ OO X X XOOTOrm X X XrmOvvmOO X X X X X X X X X X X

YO

OO~ O X X XOOOrmrm X X XOrmrm OO X X X X X X X X X X X

Next State
2 Y1

V|00001XXXOOOOOXXX00011XXXXXXXXXXX
LIOOOOO X X Xrm—mOOOO X X XOOOO™ X X X X X X X X X X X
500000XXXO1111XXXOOOOOXXXXXXXXXXX

nD\nuOOOOOXXXOOOOOXXX1111OXXXXXXXXXXX

O OO OO~ OO+ OO OO~ O~ O+~ 0O +—0O+«v—Or+

a0
y0

OO OO OO0~ OO OO0 OO0 OO rmOO™r+—

al

a2

OO0OO0OO T rmmmrm—O0O0O0OO0O ™ OO0 O0O0OTrr—rm—O0O0O™ v

OO0 O0O0O0OO0OFT T~ —000000O0OO0O 771

w0 vy2 vyl

a4

eclololololololololololololololeak i ol ol ol el ol ol sl sl ol ol onll el s

wi

CLOCK

-

-
(o S o
&
B B
A o
-
H0]2345
MDDDDDD
&
—
= 4

do
d1
d2
d3
d4
ds

32X8
EPROM

al
al
a2
a3
ad

w0 (POP)
w1 (PUSH)

Page 21

The Architecture Level

At the next higher level, we have the architecture level. This level deals
with memories and processing units that store and process blocks of
data words known as program instructions and program data.

The interconnection of the digital system to the outside world 1s also
dealt with at this level through input/output circuits.

The major components at this level are: CPU, memory and I/O circuits.
The operations of these components are determined by executing a series
of control words, or program instructions.

Page 22

Overall architecture of a digital computer.

CPU |

:{ processing unit |

Instructions

Data being
processed

Central

Main memory e
(RAM and ROM) |

[F REld WREAT e
: LT A

Input/output
control units

Input/output devices

(keyboard, video display, secondary
memory, sensors, actuators)

Stored
programs
and data

_ System bus

[nput/output
transfer
_ operations

The primary function of the CPU is to fetch instructions from the
main memory and execute them.

Page 23

The CPU can be divided into 2 parts: the control part and the data part.

The control part 1s called the instruction unit (I-unit). It contains an
instruction register (IR), a program counter (PC), an instruction
decoder.

. Instruction unit Internal CPU
The data part 1s called the execution unit o L control signals
(E-unit). It contains at least a datapath : 1 o]
. Address- Instruction-
and a set of registers for temporary data || generation |« decoding
. . : logic logic
storage. Some E-units also contain a .
fast local memory called the cache memory. ~ _
Program Instruction
counter PC register IR
Control lines — ‘i = . | R
System bus < Address lines — - —— e
{ Data lines — j — 8 -

General-purpose
data registers
Ry.R, ..., R

Arithmetic-
logic unit

K P

Execution unit (E-unit)

‘Central processing unit (CPU) Page 24

The Instruction Unit (I-Unit)

The I-unit 1s responsible for generating the control signals to ensure
the proper operations and correct data flow are performed on the input data.

Its components are:

Instruction unit Internal CPU
(I-unit) control signals
e Instruction register '. SLD
) Address- Instruction-
* Program counter]| eneration (< decoding
. : logic logi
* [nstruction decoder B
* Address generator T ——
counter PC register IR
Control lines ‘i - —
System bus < Address lines ———————f— e i e
Data lines — i — o § :
General-purpose * Arithmetic-
data registers logic wnit

BBy B P

Execution unit (E-unit)

‘Central processing unit (CPU) Page 25

In order to perform computing operations, a CPU executes instructions from
a program written in its machine language. The machine language of a CPU
1s simply a collection of instructions (called the instruction set) that define
all the possible operations of the CPU.

A typical sequence of operations performed by the I-Unit is:

1. Load the location (address) of the first instruction of the program
into the Program Counter (PC).

2. Load the instruction into the Instruction Register (IR).

3. Imitiate the instruction decoder to decode the instruction so that the
appropriate control and address signals for the datapath unit are generated.

4. Increment the value of the Program Counter (PC) by 1.

5. Repeated Steps 2 to 4 until the end of the program 1s reached.

Page 26

The datapath consists of at least 2 main components: the register file, and
the ALU.

* The ALU performs logical and arithmetic operations on the input data.
* The register file provides a set of fast local storage locations.

The interconnections of these units determine the allowable data flow paths.
The properties of these units and how they are connected together define
the architecture of the CPU.

Some datapaths also contain a local memory called the cache memory. It
allows the CPU to access the main memory (M) more efficiently.

Page 27

Instruction Set

The 1nstruction set of a CPU i1s determined by its architecture.

A machine language instruction 1s a binary-encoded word. In other words,

it 1s just a binary code. The code 1s derived from the property of the datapath
and the data flow paths.

A machine language instruction usually consists of two parts: the opcode
and the operand. Some nstructions do not have operands.

For example:

The processor in Lab 7 uses 8-bit machine language instructions. For
instructions with operands, the most significant 4 bits used as opcode and the

remaining 4 bits as operand. For instructions without operands, the most
significant 4 bits and the least significant bit form a 5-bit opcode.

Page 28

The instruction set of a typical commercial CPU i1s quite large, but can be
categorized 1nto the following groups:

1. Data-transfer instructions
(load, store and I/0O)

2. Data-processing instructions
(arithmetic and logic operations)

3. Program-control instructions
(conditional and unconditional branching)

Page 29

General Instruction Cycle

Fetch
ImSOreaC Lo

Drvecockse
instmoeciion

Read data fromm

Reoset

= oo instmuasction
R into LT

-

5 Decode opoode i
= iR, Increment 20

S I ITIESATL IS TNy

Fetch

ircpuat

opcrands

Excecunes

Trraim

O e R RO

s Write data oo
a main mermory

5 Executs required |
a aperaticon in E-uanit

opeerands

Servioce
intermapt

Page 30

Example:

Program Segment:

ADD R2, R1
STO R1, FFFF

JMP 2167

; R1:=(R1) + (R2)

; (FFFF) := R1

; Jump to address 2167

I-unit
Address-generation Control
logic circuits
PC | AR | IRt
2167 0000 0000
3 Y [I
Control
Address
Data
E-unit
Ry 0000
R, Al74 |« Arithmetic-logic
R, 0003 unit
R, 8B41

General registers

Main memory M
Address
hex

0000
2167 | ADD R2, R1 | Add instruction
2168 STORI A

. Store instruction
2169 FFFF
216A] IMP Unconditional
216B 2167 jump instruction
216C
FFFD 0000
FFFE 0000
FFFF 0000

Page 31

F-umit

Address-generation | Coritre]
losic CIFCuits
PC_§ AR ¥ IR
| 2167 || o000 | [apDr2 ri]
l 1
Cortrer]
Auddress i |
hzara __Jr_ i
E-umit
R, OO0
m, AlTa - Arithmetic-logic
R O3 - LErREL
Ry gBal

General registers

l-1mic

Sddress—pemneraticn

(o)

Comntrol

logic CIrCEits
P AR 4 IR
2168 | OO0 | | ADD R2, R |
¥ 1 y r
Control R
Avcdddres=
Drata
E-umnit i
R, bl
R AETT d Arithmetic-logic
R, O3 F— amnit
o EB4 |

Creneral registers

Add instnection
Sitore insuraction

Ui comaditiomal
jump instrecticn

Melain memeory Sd

Address
hex
OO0
2167 | ADD B2, K1
Z168 5T0O R1
216569 FFEFF
216 NP
2168 ZI167T
2160
FEFL> CHICHY
FFrFE CHICHY
FFFF (NI
Address
hex
L
2167 | ADD R2 R1
2168 5T R1
2169 FFFF
216A NP
2168 2167
21
FFFD» O
FFFE L
FFFF LR B

(a) Fetching and (b) executing o register-to-register add instruction.

Add instnection
Store instruction

U Yiti 1

Page 32

I—wurie
Audiress-penoration Cominod
logic CArcLuies
PC AR L |
2168 || ooco || stOor: |

Control

i

Aoddress
Drata 1
E—unit
R, OO MY
"), Fo T — Anthmetic-logic
R OHH3 — wmat
R B4
General registers
(a)
F-uamit
Address-generation | Control
loaic clircraits
PC) AR 4 R
| 2162 || FFEF || sTORI |
E _"‘ F
Comnrra]
Acldress
Pata
E-umnit
Ry CHCW ey
Ay ANTT - Avrithmetic-logic
R OO0 nLoet
R, BEA
General registers =
L))

Elﬁ?ihﬂﬂ RZ, Rl i e
2L68 STO R1 A :

- 3 . i t <
e it] FFFE su;_ e rE]
2164 IMP -l Unconditonal
2168 2167 jump instruction
2160 L
FFFD CHIHOHD)
FFFE OO0
FEFF OO0 |

WEain maomory Ad
2167 | ADD R2. R1 | Add instruction
2GR ST B E
> 6D EFFF
e T INIP
2168 2167
216
2

FFFE (8 0§ R] i
FFFF R

(a), (b) Fetching and (c) executing the store instruction.

Page 33

Bl rmicimeory A

I-unic
Auddress-peneration | Comnrral Address
logic | 2 circuirs - hex
CHHMEF
Pc AR} e 1 : ;
L _21ea | [FreF | [sTtOorm1 | : :
B [§ E 2167 | ADD R2, BRI | Add instruction
{:.Er;::i_ 2168 ST R1 -
Aecdcdre | z Lore insiraction
s - t 2169 FFFF
2164 InMP Unconditional
raB 6T jump instruction
E-~unit 2 1E&C
B, L E R . .
£, ALTT Arithmetic-Fogic) _
R, e 1l s FEFD QOO0
", KB4 1 FFFE RO
FFFF A NTT

General registers
(<)

(a), (b) Fetching and (c) executing the store instruction.

Page 34

Structure of Typical I-Units

The I-unit 1s responsible for controlling the entire instruction cycle.
The actions to be taken depend on the instructions being executed.

An I-unit may be either hardwired, or microprogrammed.

Hardwired I-units: amount of hardware is minimized, speed 1s maximized.

Microprogrammed I-units: flexible and expandable.

Page 35

I-umit *

PC, AR, and other

Status register SR address logic for M

1

I-unit Address-
generation |- ;
\ Control
=1 A
PC, AR, and other g far CM memory CM
. address logic for M pnPC
State machine D
control unit]] 2
Status register SR :
] 5 Microinstruction reg. uiR

Instruction reg. IR Instruction reg. IR | oA

[i r 9 Y
System bus E-unit System bus E-unit
(a) (b)

Internal structure of an l-unit: (a) hardwired; (b) microprogrammed.

Page 36

In a microprogrammed I-unit, the machine language instruction of the
processor 1s used to access a microcode sequence to perform a series of
operations. The microcode sequence 1s stored in a microcode ROM
called the control memory (CM).

The microcode basically contain values of control signals for the CPU.

I-umit e
5 s G PC, AR, and other
tatus register address logic for M
y
Address-
generation |- | Conirol
logic for CM """""‘ A memory CM
uPC b
g D
D i 22 & -

| Microinstruction reg. ulIR

| Instructionreg. /R | 4 } { |...b

System bus E-unit Page 37

A typical microcode consists of a series of bits of the form:

Co Cp €y €3 *** C, ., C,_| hext_addr
where

¢, = the desired value (0 or 1) of some control signal for the CPU

next addr = the address in CM of the next microcode

A group of microcode that performs a specific task is called a

microprogram. The collection of all microprograms of a CPU 1s
called its firmware.

Page 38

