BME-328 Lab-7

BME328 LAB7
Implementation of Simple Processor

Objective:

e Design and implementation of simple 8-bit microprocessor
e The processor consists of ALU, Registers to store data, Control unit to execute
instructions pointed to by program counter (PC)

Summary of System Operation:
An abstract view of system is illustrated in Fig.1.

1. 8-bit input data is entered in the simulation phase through the Quartus I1
waveform editor, and stored in register R1 when instruction LD-R1 is executed

2. 8-bit ALU perform operation on input A and input B based on OP code of

executed instruction

ALU input A is connected to R1, input B is connected to Accumulator AC.

4. Results of each operation is displayed on two 7 Seg display unit connected to
output of AC

5. RC register stores 8-bit input data when LD-RC instruction is executed and RC
output is used as a conditional register for control flow

6. PC is a counter that is used to point to next instruction to be executed and starts
from Instruction 0 to Instruction N. Each clock cycle it increments PC to point
to next instruction

7. Combinational circuit stores the Instructions starting from address 0 to address
N. Each instruction has its op code to be used by ALU.

w

BME-328 Lab-7 2
INPUT
i LD-RC I ¥
o RC == = ——
>
dlock | e
ﬁﬁ Instructions

LD-R1

PS

Add

Reset

Condition

Combinational circuit

LR

Dec-RC

_| SHL-Acc
SHR-AcC

oP

SHL-Acc

SHR-Acc

Lab Procedure:

This processor consists of different components that functions in specific sequence to

Fig.1 SIMPLE PROCESSOR Organization

generate the desired output according to the instruction being executed. A processor is
usually divided to 4 distinct sub-units Memory Unit, Control Unit, Data storage and ALU

core unit. The Memory Unit performs the fetching of instructions. Data storage unit

stores data from input switches and results of ALU unit to registers R1, RC and Acc. The
ALU Core performs the arithmetic and logical operations on desired inputs and produces

the required outputs. The Control unit decode the instruction and activates the control
signals to execute it. In this project, we will be implementing distinct tasks by varying

logic of control unit.

BME-328 Lab-7

Description of system functioning and implementation details:

Part 1: Data Storage Unit

Input data is entered in the simulation phase through the Quartus Il waveform editor. The
input data bus is connected to two 8-bits registers namely R1 (Data register) and RC
(Control Register). The data from input bus is loaded into either register R1 or register
RC depending on the control signals from the control unit. The control signals associated

with storing input data are as follows:
e LD-R1=>1: Load register R1 from input bus
e LD-RC =>1: Load register RC from input bus

e Dec-RC=>1: Decrement content of register RC by 1.

Suggested implementation for register R1 is as follows:

LIBRARY ieees [
USE ieee.std logic 1164.all ;
use IEEE.numeric std.all;
EHENTITY RC IS
EIPORT ¢ D: IN unsigned(7 DOWNTO 0) ;
LD RC, Dec RC : IN STD LOGIC ;
Q: OUT unsigned (7 DOWNNTCO 0))}/
END RC;

ClARCHITECTURE Behavier OF RC IS
'—Signal D signal, Q signal: unsigned (7 DOWNTO 0);
ElBEGIN
| b_signal <= D;
ElPROCESS (LD_RC, Dec RC)
BEGIN

——— Insert your code here{

END PROCESS [
Q <= @ signal;
END Behavior

LIBRARY iesee ;
USE ieee.std logic 1164.all ;
use IEEE.numeric std.ally
HENTITY RC IS
EHPORT ¢ D: IN unsigned (7 DOWNTO 0)
LD RC, Dec RC : IN STD LOGIC ;
Q: OUT unsigned ({7 DOWNTO 0))/,
END RC;

[CJARCHITECTURE Behavior OF RC IS
'—Signal D signal,Q signal: unsigned({7 DOWNNTCO 0);
ElBEGIN
| D_signal <= D;
[ElPROCESS (LD RC, Dec RC)
BEGIN

——— Insert your code herel

END PROCESS ;
Q <= Q signal;
END Behavior ;

BME-328 Lab-7

Part 2: Arithmetic Logic Unit Core

The heart of every processor unit is the ALU core where all arithmetic and logical
operations are to be implemented and applied as required. In this part students are
required to implement all functionalities and operations using VHDL syntax compatible
with Altera FPGA boards. ALU core consists of two components ALU and accumulator
(ACC). ACC is a register in which intermediate arithmetic and logic results are stored
and fed back to the ALU.

The ALU will take two 8-bit inputs (A and B) and a 4-bit opcode from Control unit. The
opcode input from controller unit is the operation-selector signal, deciding the operation
that is to be applied on the inputs A and B based on the instruction being executed.

BME-328 Lab-7

Suggested implementation for ALU is as follows:

use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ALU IS

Port (

A, B : in STD_LOGIC_VECTOR(7 downto 0); -- 2 inputs 8-bit
ALU_Opcode : 1in STD_LOGIC_VECTOR(3 downto 0); -- 1 input 4-bit for selecting function
Output_bus : out STD_LOGIC_VECTOR(7 downto G)); -- control signals
end ALU;

architecture Behavioral of ALU is

signal ALU Result : std_logic_vector (7 downto 0);

begin

process(A,B, ALU_Opcode)

begin

case(ALU_Opcode) is

when "0600" => --Load Rl from input_bus
ALU_Result <= B; -- ALU idle

when "0601" => -- Load RC from input_bus
ALU_Result <= B;

when "0010" => -- ACC = ACC + RL
ALU_Result <= A +B ;

when "0611" => --Acc= ACC-R1
ALU_Result <= A - B ;

when "0100" => -- Acc=Acc + 1
ALU_Result <= B + 1;

when "0101" => -- Acc= Acc -1
ALU_Result <= B - 1;

when "0110" =» -- RC=RC-1
ALU_Result <= B;

when "0111" => -- Acc=Acc&RL
ALU_Result <= A and B;

when "1600" => -- Acc | Rl
ALU_Result <= A or B;

when "1001" => -- Acc XOR RL A or B;
ALU_Result <= A xor B;

when "1010" => -- Acc NAND RL
ALU_Result <= A nand B;

when *1011" => --- Shift Left Acc
ALU_Result <= B;

when "1100" => --- Shift Right Acc
ALU_Result <= B;

when "1101" => --- branch to start if RC !=0; goto state
ALU_Result <= B;

when "1110" => --- load the content of ACC to the outout bus
ALU_Result<= B;-- ALU out

when "1111" => --- not defined
ALU_Result <= B;

end case;

end process;

Output_bus <= ALU_Result;

end Behavioral;

LIBRARY icces ;
USE ieee.std logic 1164.all ;
use ieee.numeric std.all [
EHENTITY ACC IS
HPORT (D: IN unsigned({7 dewnte 0) ;
SHI ACC, SHR ACC, Clock, Reset : IN STD LOGIC ;
@: OUT unsigned (7 DOWNNTO 0));
END ACC ;

EHARCHITECTURE Behavier OF ACC IS

Lsignal store signal : unsigned({7 downte 0) := (ethers => '0");
ElBEGIN

HPROCESS (SHL ACC, Clock, Reset, SHR ACC,D)

| BEGIN
[ElIF Reset = '0' then
store signal <= "oooooooo”;
HELSIF((Reset = '1') and (falling edge (Clock)}))then —-raising edge of clock
| store signal<= D;
= IF SHL ACC = '1' THEN
store signal <= store signal =11 1 ;
END IF;
= IF SHR ACC = '1' THEN
store signal <= store signal srl 1 ;
END IF ;
END IF;
END PROCESS ;

@ <= store signal;
END Behavior ;

BME-328 Lab-7 6

Part 3: Control Unit

The Control unit decides the microcode that is to be delivered to the ALU core and will act as the
operations-selector for the ALU core. The Control Unit produces an output OP, which is passed
to ALU core as the operations selector. This component consists of program counter (PC) and
combinational circuit. The control unit uses Finite State Machine (FSM) to implement PC and
combinational circuit is an instruction memory. The details of instruction set to be implemented
by control unit are given in following table.

Instruction Set

Mnemonics Description Opcode
Register Transfer

LDR1 Load R1 from input; R1I=INPUT 0
LDRC Load RC from input; RC= INPUT 1
Arithmetic Operations:

ADDA Add R1 to Acc; Acc= Acc + R1 2
SUBA Sub R1 from Acc; Acc= ACC-R1 3
INCA Increment Acc; Acc=Acc +1 4
DECA Dec Acc; Acc= Acc -1 5
DEC-RC Dec RC; RC=RC-1 6
Logic Operations

ANDA And Acc with R1; Acc=Acc&R1 7
ORA Or Acc with R1; Acc = Acc | R1 8
XORA XOR Acc with R1; Acc =Acc XOR R1 9
NAND Invert Acc; Acc = Acc NAND R1 A
SLA Shift Left Acc; Acc=Acc*2 B
SRA Shift Right Acc; Acc = Acc/2 C
Control flow

BNEQZ branch to start if RC 1=0; goto state D

BME-328 Lab-7

Task-1: Calculate average of 4 numbers entered from input x1, X2, x3, x4

Instruction Sequence to execute the task-1

Sequence | Instruction Result from execution of the instruction
No.

1 LDR10 R1=0;

2 ANDA Acc=0

3 LDR1 X1 R1=X1

4 ADD Acc=X1

5 LDR1 X2 R1=X2

6 ADD Acc= X1+X2

7 LDR1 X3 R1=X3

8 ADD Acc=X1+X2+X3

9 LDR1 X4 R1=X4

10 ADD ACC=X1+X2+X3+X4

11 SR Acc= (X1+X2+X3+X4)/2
12 SR Acc= (X1+X2+X3+X4)/4

FSM implementation of PC for task-1

Reset

S
&

Ne) 2 &
i

BME-328 Lab-7

Suggested implementation of PC and instruction memory for task-1 is as follows: Please
note that next two figures are part of a single vhdl code file. Please focus on bottom of
first figure and top of second figure to find continuation between them.

LIBRARY icce;

USE ieee.std logic 1164.all;

ENTITY PC comb ckt examplel IS

PORT (Clock, Reset : IN STD logic;

z : OUT STD_LOGIC VECTOR (3 DOWNTO 0);

RC : IN STD LOGIC VECTOR{7 DOWNTO 0); -- used for branch instruction

LD R1, LD RC, Dec RC, SHL Ace, SHR Ace, ACC ocutput bus select : out std legic);
—— RC select = 1 ——> input connected to RC

—— RC select = 0 ——> input connected to RI1

—— A select = 1 -—> ACC connected to input A of ALU

—— A select = 0 —-—> ACC connected to output bus connected to 7-segment signal
END PC_comb_ckt_ examplel;

ARCHITECTURE Behavier OF PC_comb_ckt_examplel IS

TYPE State type I8 (80, 81,82,53,84,85,96,97,58,89,810);

SIGNAL y: State type;

SIGNAL contrel signal: STD LOGIC VECTOR (2 DOWNTO 0);

BEGIN

PROCESS (Reset, Clock)
BEGIN

IF Reset='0"' THEN
y<=80;

ELSTF (Clock 'EVENT AND Clock='1') THEN
CASE y IS

WHEN S0=> y <= §1;
WHEN S1=> y <=§2;
WHEN S2=> y <=8§3;
WHEN S3=> y <=854;
WHEN Sd=> y <=855;

WHEN S5=> y<=8S6;
WHEN S6=> y<=S7;
WHEN S7=> y<=88;
WHEN S8=> y<=83;
WHEN §9=> y<=8510;
WHEN S10=> y<=850;
END CASE;

END IF;

END PROCESS;
PROCESS (y)

BEGIN

CASE y I8

WHEN S0=>

centrol signal <= "0000010000"; --Load Rl frem input X1

BME-328 Lab-7

WHEN S9=> y<=510;
WHEN S10=> y<=S0;
FEND cASE;

FEND IF;

[END PROCESS;
EIPROCESS (y)

| BEGIN

ElcasE y IS

WHEN So=>

control signal <= "0000010000"; —-—Load R1 from input X1

WHEN S1=>

contrel signal <= "0000000010"; —— Acc = Acc + RI

WHEN S2=>

contrel signal <= "0000010000"; ——Leoad R1 from input X2, set input to X2
WHEN S3=>

contrel signal <= "0000000010"; —— Acc = Acc + RI

WHEN Sd=>

contrel signal <= "0000010000"; ——Load R1 from input X3

WHEN S5=x>

contrel signal <= "Q000000010"; -— Acc = Acc + RI1

WHEN S&=>

control signal <= "0000010000"; ——Load R1 from input X4

WHEN S7=>

contrel signal <= "0000000010"; —— Acc = Acc + RI

WHEN S8=>

control signal <= "0l100000000"; ——SRA

WHEN S3=>

contrel signal <= "0lo0Q000000"; ——SRA

WHEN Sl1o0=> —— Connect output of ACC to 7 segment display

control_signal <= "l1000000000";

rEND CASE;
END FPROCESS;

Zz <= control signal (5 DOWNTO 0);

LD R1 <= control signal (4);

LD RC <= contreol signal (5);

Dec RC <= contrel signal (5);

SHL Acc <= contrel signal (7):

SHR Acc <= control signal (8);

ACC output bus select <= contrel signal (7);
—END Behavior;

Task- 2:
Executing a Loop for number of times. For example

for(i=5;i>0;i— —){result = result + x}

Instruction Sequence to execute the task-2

Sequence | Instruction Result from execution of the instruction
No.

LDRC 5 RC =5;

LDR10 R1=0

ANDA ACC=ACC and 0; ACC=0;

LDR1 X R1=X

OB IWIN|F-

LOOP: ADD ACC = ACC+R1

6 DECRC RC = RC-1;

7 BNEQZ LOOP PC = address of “LOOP”

BME-328

Lab-7

FSM implementation of PC for task-2

Resetj

10

Suggested implementation of PC and instruction memory for task-2 is as follows: Please

note that next two figures are part of a single vhdl code file. Please focus on bottom of
first figure and top of second figure to find continuation between them.

BME-328 Lab-7

[pTBRARY icee;

USE ieee.std logic_1164.all;
ElENTITY PC_comb_ckt_examplel IS
EIPORT (Clock, Reset : IN STD_logi

z : OUT STD_LOGIC_ VECTOR(3 DOWNTO 0);

RC : IN STD LOGIC VECTOR(7 DOWNTO 0); used for branch instruction

LD R1, ID RC, Dec RC, SHL Acc, SHR Acc, ACC output bus_select : out std logic);

END PC_comb_ckt_examplel;

ElARCHITECTURE Behavior OF PC_comb_ckt_examplel IS
[rypz State type IS (S0,51,52,53,54,55,56,57,58,59,510);

SIGNAL y: State type;
SIGNAL contrel signal: STD LOGIC VECTOR (5 DOWNTO 0);
B eEcIN
EIPROCESS (Reset, Clock)
| BEGIN
ElIF Reset='0' THEN
|—ycsa:
ElELSIF (Clock 'EVENT AND Clock='1') THEN
Elcase

Elcase y Is
WHEN S0=>
contrel_signal <= "0000010000"
WHEN S1=:

—-Load R1 from input X1

—— Acc = Acc + R1

contrel_signal <= "0000000010"
WHEN S2=>

control signal <= "0000010000"; ——Load R1 from input X2, set input to X2
WHEN S3=>

-END PROCESS;

1PROCESS (y)

BEGIN

contrel signal <= "0000010000"
WHEN S1=
control_signal <= "0000000010"
WHEN S$2=:
control_signal <= "0000010000"
WHEN S3=:
control signal <= "0000000010"
WHEN S4=:

control_signal <= "0000010000"
WHEN S5=:

control_signal <= "0000000010"
WHEN S6=:
control_signal <= "0000010000"
WHEN S7=:
contrel signal <= "0000000010"
WHEN S8=:

——Load Rl from input X1

—— Ace = Acc + R1

——Load R1 from input X2, set input to X2

-- Acc = Acc + R1
——Load Rl from input X3

—— Ace = Aecc + R1

——Load R1 from input X4

—— Ace = Acc + R1

control_signal <= "0100000000"; ——SRA
WHEN S§3=:
control_signal <= "0100000000"; -—SRA

WHEN S10=>
control signal <= "1000000000"

+END CASE;
END FPROCESS;

z <= control signal (3 DOWNTO 0};

LD R1 <= control signal (4);

LD_RC <= contreol_signal (5);

Dec RC <= control signal(6);

SHL Ace <= control_signal(7);:

SHR Acc <= control_signal (8);

ACC output_bus_select <= control signal (2);
-END Behavior;

11

Displaying Output

The final result of the task which corresponds to the content of ACC during final state of

task sequence should be clearly displayed in the simulation waveforms. Please refer to

the final schematic on the following page.

BME-328 Lab-7

T

Ciack

#i
rg
=
&
Clack LD_R1
i
g
Dack Dec_RC
ik
T
| = o
5
#3..0]
pws
>
AEE
Clexk SHL_Acc
e
SHR_Ace
sel

BME-328 Lab-7 13

Assigned Tasks: -

Logic Operations: -

1-Enter X1, X2, X3, X4 from switches then perform the following: -
Result= (X1 AND X2) OR X3; Sum of products function

2-Enter X1, X2, X3, X4 from switches then perform the following: -
Result= (X1 OR X2) AND X3; Product of sums function

3-Enter X, Y from switches then perform the following: -
Result= (X XNOR Y); A comparator if(X=Y) Result=1;

Arithmetic Operations: -
1-Enter X1, X2, X3, X4 from switches then perform the following: -
Result= 2*(X1+X2+X3+X4); ADD then SHL
2-Enter X1, X2, Y1, Y2 from switches then perform the following: -
Result= (X1-Y1) + (X2-Y2); Difference between two sets of numbers
3-Enter X1, X2, X3, X4 from switches then perform the following: -
Result= (X1+1) + (X2+1) + (X3+1) + (X4+1); Inc each number and find total
4-Enter X1, Y1, X2, Y2 from switches then perform the following: -
Result= 2*(X1-Y1) +2*(X2-Y?2); Calculate double the difference between two sets

