BME 328 Lab 6 — VHDL for Sequential Circuits: Implementing a Customized

State Machine

15 Marks (1 week)
Due Date: Week 10

1. Objectives

To simulate and verify the operation of a sequential circuit.

To design a finite state machine (FSM) that cycles through the individual digits of your student ID using
the assigned state diagrams.

To learn the difference between Mealy and Moore machines and express the FSMs with different state
assignments.

2. Pre-Lab Preparation

1.
2.

3.
4.

You will be assigned one of the state machines described by the state diagrams shown in Figure 1.
Your implementation will either be a Mealy or Moore state machine as assigned by your lab instructor.
Produce a state table and state-assigned table for your customized state machine.

Design the logic equations for each of the Flip-Flop inputs described in Figure 2.

Draw the logic diagram either as Mealy or Moore state machine for your circuit (depending on the
assignment by your lab instructor.)

Create a file lab6.vhd to simulate your assigned state machine on the Cyclone- Il EP2C35F672C6
FPGA. Each state of your assigned state machine corresponds to a digit of your student ID. For example,
state O corresponds to the first digit of your student 1D, state 1 corresponds to the second digit of your
student ID, and so on. (Hint: Use any of the methods represented in Figures 8.29, 8.33, or 8.35 of the
text book. You can use the VHDL code template in Figure 2).

3. Laboratory Work

1.
2.

3.

Create the subdirectory lab6 in your work directory, and copy the file lab6.vhd to the subdirectory.
Compile and simulate your design. Verify that your design is functioning properly through simulation
results.

Take screenshots of all your Block Diagram, VHDL, and Simulation Waveform Files.

Y FSMz

K1

l 5 -STATE

Dz
curr_stater
~ FF yismsz] il -
=1 = To 7-5EG
{l.n Ca * LED DISP
ressmn [~ curr_stateo
YES =
3
. FF "
> o, | ¥smy: RESETN_BTN
[4
resetn
YESM: | student_idr
Do *
To 7-5EG
. FF Sio yfsmp Cz LED DISP
— — student_ido
OSC —pl]
resetn

Figure 2: Finite State Machine

library icee;
use ieee.std logic 1164.all;
entity machine is

port
(
clk ¢ in std logic;
data in : in std logic;
reset : in std logic;
student_id : out std_logic _vector (3
downto)

current state: out std logic vector (3

DOWNTO)

):
end entity;
architecture fsm of machine is

-= Build an enumerated type with 9 states for
the state machine (9 states for parsing 9 digits of
student id)

type state type is (s0, sl1, s2, s3, s4, s5, s6,
s7, s8);

-- Register to hold the current state

signal yfsm : state type;

begin
process (clk, reset)
begin
if reset = '1' then
yfsm <= s0;

elsif (clk'EVENT ~ND clk = ' ') then
-=- Determine the next state
synchronously, based on
-=- the current state and the input
case yfsm is
when s0=>

when sl=>
when s2=>

end case;
end if;
end process;
-- Implement the Moore or Mealy logic here

process (yfsm, data_in) -- data in if regd only
begin
case yfsm is
when s0=>
when sl=>
when s2=>
when s8=>

end case; end process;
Figure 3: VHDL Code Template

