
Advanced Multi-Threaded
Programming

by Aaron Coday

April 2005

The information contained in this document is provided for informational purposes only and represents the current view of
Intel Corporation Intel on the date of publication. Intel makes no commitment to update the information contained in this
document, and Intel reserves the right to make changes at any time, without notice.

DISCLAIMER. THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN IS PROVIDED AS IS. INTEL MAKES NO
REPRESENTATIONS OF ANY KIND WITH RESPECT TO PRODUCTS REFERENCED HEREIN, WHETHER SUCH
PRODUCTS ARE THOSE OF INTEL OR THIRD PARTIES. INTEL EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES,
IMPLIED OR EXPRESS, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, AND ANY WARRANTY ARISING OUT OF THE INFORMATION
CONTAINED HEREIN, INCLUDING WITHOUT LIMITATION, ANY PRODUCTS, SPECIFICATIONS, OR OTHER MATERIALS
REFERENCED HEREIN. INTEL DOES NOT WARRANT THAT THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN IS FREE FROM ERRORS, OR THAT ANY PRODUCTS OR OTHER TECHNOLOGY DEVELOPED IN
CONFORMANCE WITH THIS DOCUMENT WILL PERFORM IN THE INTENDED MANNER, OR WILL BE FREE FROM
INFRINGEMENT OF THIRD PARTY PROPRIETARY RIGHTS, AND INTEL DISCLAIMS ALL LIABILITY THEREFOR.

INTEL DOES NOT WARRANT THAT ANY PRODUCT REFERENCED HEREIN OR ANY PRODUCT OR TECHNOLOGY
DEVELOPED IN RELIANCE UPON THIS DOCUMENT, IN WHOLE OR IN PART, WILL BE SUFFICIENT, ACCURATE,
RELIABLE, COMPLETE, FREE FROM DEFECTS OR SAFE FOR ITS INTENDED PURPOSE, AND HEREBY DISCLAIMS ALL
LIABILITIES THEREFOR. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT OR TECHNOLOGY DOES SO AT
HIS OR HER OWN RISK.

Licenses may be required. Intel and others may have patents or pending patent applications, trademarks, copyrights or other
intellectual proprietary rights covering subject matter contained or described in this document. No license, express, implied,
by estoppels or otherwise, to any intellectual property rights of Intel or any other party is granted herein. It is your
responsibility to seek licenses for such intellectual property rights from Intel and others where appropriate.

Limited License Grant. Intel hereby grants you a limited copyright license to copy this document for your use and internal
distribution only. You may not distribute this document externally, in whole or in part, to any other person or entity.

LIMITED LIABILITY. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO YOU OR TO ANY OTHER THIRD PARTY, FOR
ANY LOST PROFITS, LOST DATA, LOSS OF USE OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES, OR FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE OF
THIS DOCUMENT OR RELIANCE UPON THE INFORMATION CONTAINED HEREIN, UNDER ANY CAUSE OF ACTION OR
THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF
ANY LIMITED REMEDY.

Intel, the Intel logo, Pentium, Intel Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2005 Intel Corporation

Introduction

In this course and i ts accompanying labs, you wi l l become fami l iar with intermediate to

advanced techniques for expl ic it threading and OpenMP* threading. You’ l l demonstrate your

understanding of expl ic i t threading by adding GUI responsiveness to the Apfel* appl ication.

You’ l l demonstrate your understanding of OpenMP threading by improving the performance

of the fractal calculat ion that the program is executing.

To complete the Advanced Mult i -Threading labs included in this course, you’ l l need the

fol lowing tools:

• Microsoft Visual Studio*

• Intel® Compi ler 7.1 or later

• Intel® Threading Toolki t (recommended, but not required)

You can download the Apfel source code and other f i les you wi l l need for the labs by

cl icking this l ink. ftp://download.intel.com/software/products/col lege/advMT/Lab/ Please

download and extract these f i les before continuing with the course.

This course is div ided into two parts, each structured around one of the mult i-threading

labs. Each sect ion starts with a descript ion of the mult i -threading problem to be addressed,

fol lowed by detai led instruct ions as to a possible solut ion. Each of the two sections then

concludes with a lab act iv i ty, in which you wi l l implement the proposed mult i -threading

solut ion.

Overview

Apfel* is a fractal benchmark program writ ten by Andreas Sti l ler f rom C’T Computer
magazine in Germany. I t is used to test computation performance of var ious systems by

generat ing fractals, a task requir ing repetit ive and recursive f loat ing point computations.

Page 1

http://www.intel.com/software/products/compilers/index.htm
http://www.intel.com/software/products/threading/tcwin/pricelist.htm
ftp://download.intel.com/software/products/college/advMT/Lab

We have two goals for enhancing the program. The f i rst is to use mult i -threading to add

greater GUI responsiveness by separat ing the GUI from the fractal computations. Any

computer system can benef i t f rom this f i rst part. The second goal is to improve the speed of

the fractal computation i tsel f by ut i l iz ing mult iple threads. Note that this technique wi l l only

improve performance in Hyper-Threading Technology, dual core, or dual processor systems.

However, thanks to our implementat ion, single processor systems wi l l not experience any

loss of performance.

After you download and extract the Apfel source code and other f i les you wi l l need for the

labs, run the Apfel program in hard, medium, and easy prof i les. You’ l l notice when you cl ick

on the green button to calculate the fractal that the GUI becomes unresponsive; you can’t

move the window, or even cl ick on the cancel button (red button). In the f i rst part, you’ l l

change the functional i ty to al low GUI responsiveness whi le calculat ing the fractal.

Also, note the number of i terat ions and the t ime elapsed, both of which are displayed in the

lower-left corner of the appl ication. The number of i terat ions can be used for veri fy ing

correctness, and the t ime is a measure of performance. The shorter the t ime, the better the

performance. This wi l l be the focus of the second part of the labs.

Guidelines

Apfel* is a big program. In order to complete the labs in this course, you wi l l only need to

modify the CApfelRun and CApfelView c lasses.

The Apfel software architecture is based on Microsoft* Foundation Classes (MFC).

CApfelRun is the class which performs the fractal computat ion. CApfelView represents

the GUI. When the GUI Update() cal l is made, i t eventual ly cal ls the CApfelRun::Run

method, which in turn cal ls the CApfelRun::DoRun method. The Update() method is

cal led whenever i t is necessary to update the GUI. The DoRun method does the actual

fractal computation.

• CApfelRun – class that does the work

• CApfelView::Update ->

o CApfelView::RenderToDIB ->

 CApfelRun::Run ->

 CApfelRun::DoRun – performs the calculat ion

H in t : I t would be good software architecture to introduce mult i -threading in the CApfelRun

class and not in the CApfelView class. This way, the GUI doesn’t need to know too much

about threading. I t wi l l a lso faci l i tate future program enhancements.

Page 2

ftp://download.intel.com/software/products/college/advMT/Lab/

The DoRun method basical ly calculates one row of the screen at a t ime. Each iterat ion is

essential ly independent from every other one. We’l l be working with this method in the

second lab when we learn how to speed up the fractal calculat ion. Since i terat ions are

independent, we’l l spl i t them up among mult iple threads. More on this in Lab Activ ity 2.

• DoRun (ScreenBuffer, Stats)

o For each row

 Buf <- Calculate row (CalcRow)

 Look up in color reference and output to ScreenBuffer

Files and Structure

• Visual Studio*: Apfel.dsw

• Focus

o CApfelRun = computation

o CApfelView = GUI

• Sample data sets: hard, medium, simple

This describes the tree structure of the f i les on the computer. I t may vary depending on

where the class f i les were instal led.

Page 3

Part 1: Responsiveness

• Goals:

o Add mult i -threading to enhance GUI responsiveness

o Use Win32* threading

• Tasks:

o Add thread function to CApfelRun to execute DoRun asynchronously

o After calculat ion is complete, send a WM_DONE message back to the GUI so

that the screen updates

There are two main tasks that need to be completed to separate the GUI from the

calculat ion – that is, to do the calculat ion asynchronously.

Task 1: Add thread function to CApfelRun c lass to execute DoRun method asynchronously.

To cal l DoRun asynchronously, you’ l l need to launch it on a second thread.

• Win32 requires that we have a thread function in order to create a new thread, so we

need to wrap the DoRun method in a thread function. Win32 requires this to be of a

special type, such as:

o static DWORD WINAPI ApfelThreadFunc(LPVOID param)

• Notice that this type is stat ic, so in order to cal l the DoRun method, you’ l l need to

use a tr ick simi lar to that described in the sect ion cal led “Hint #1” in the appendix to

this course.

• You’l l also have to f igure out how to pass the parameters of DoRun , because the

thread function only takes a single LPVOID . (You can create a struct yoursel f , or

store i t in the CApfelRun c lass and pass the this pointer.)

• So the CApfelRun::Run method wi l l create the thread and pass the parameters

and return immediately, al lowing the GUI to continue. However, how do we know

when the calculat ion is done?

Task 2: After the thread function f in ishes (i .e., the calculat ion is done), we need to send a

message back to the GUI to alert the GUI that the calculat ion is done.

• We’l l need to change the CApfelView::RenderToDIB to comment out the cal l to

the OnDone method. Do you know why? (Hint: possible race condit ion.)

Page 4

• You’l l use PostMessage to send a WM_DONE message back to the GUI, so that i t

can f inal ly draw the bi tmap. Pay attent ion to what you need in order to cal l

PostMessage , s ince you may need to pass i t to the thread function, as wel l .

Cl ick here [l ink to Appendix: Win32 Threads] for a review of common Win32 threading

functions you’ l l need for Lab Activ i ty 1: Add GUI Responsiveness. You can check out more

detai ls on MSDN.microsoft.com.

Extra Credit

As an “Extra Credit” exercise, make the “Abort” or “Cancel” feature (red button) funct ion

correct ly. Hint: Consider synchronization and race condit ions.

Lab Activity 1: Add GUI Responsiveness

Asynchronous Thread Function in CApfelRun

Setup

1. Launch Microsoft Visual Studio.

2. Open workspace from C:\Lab\CONTEST\apfel\apfel .dsw.

3. Make sure that Intel Compiler is selected.

4. Bui ld the appl ication by selecting Re lease bu i ld and then Bu i ld (F7).

5. Press Ct r l -F5 to run the appl icat ion.

Adding thread function to CApfelRun

Basical ly you add a thread function to CApfelRun and then take care of start ing and

passing the necessary information into the thread. The new thread is responsible for

performing the DoRun method.

1. Add a thread function to the CApfelRun class (that is, in the header f i le) ; leave

the body empty for now (that is, in the cpp f i le).

The function prototype to add to CApfelRun (this signature
is required by CreateThread):

static DWORD WINAPI ApfelThreadFunc(LPVOID
param);

Page 5

http://msdn.microsoft.com/

The function body for now:

DWORD WINAPI CApfelRun::ApfelThreadFunc(LPVOID param)

{

/* nothing for now */

};

2. In this step you f igure out how to communicate the DoRun parameters from

the cal l ing thread to the thread funct ion and then on to DoRun.

CApfelRun::Run method wi l l be cal l ing CreateThread with

CApfelRun::ApfelThreadFunc and then CApfelRun::ApfelThreadFunc wi l l cal l

CApfelRun::DoRun. For this to work, you need a way to communicate the

CWnd, the DIB, and the CApfelStat ist ics objects for the parameters to DoRun.

You also need the this pointer, so that you can cal l DoRun inside of

ApfelThreadFunc (i t is a stat ic method of CApfelRun).

One way to do this is to store these objects in the
CApfelRun class itself. So, add the following to the
CApfelRun class (in the header fi le):

CWnd* m_pWnd;

 HDIB m_hDIB;

 CApfelStatistics* m_pStat;

3. Modify the CApfelRun::Run method to cal l CreateThread and also to store the

parameter objects for ApfelThreadProc to access later.

Modify the Run method to look l ike this:

OOL CApfelRun::Run(CWnd* pWnd, HDIB hDIB,

CApfelStatistics* pStat /*= NULL*/)

{

 LPSTR lpDIB = (LPSTR)::GlobalLock(hDIB);

 if (!lpDIB)

 {

 return NULL;

 }

 DWORD ymax = ::DIBHeight(lpDIB);

 ::GlobalUnlock(hDIB);

 m_pWnd = pWnd;

 m_hDIB = hDIB;

Page 6

 m_pStat = pStat;

CreateThread(NULL, 0, ApfelThreadProc,

(LPVOID)this, 0, NULL);

 // Notice we pass this pointer, so that we can call

the DoRun

 // method on the CApfelRun object

 BOOL bRes = TRUE;

 // No longer call DoRun synchronously.

 //BOOL bRes = DoRun(hDIB, pStat);

 return bRes;

}

4. Fi l l in the body of the CApfelRun::ApfelThreadProc funct ion so that i t uses the

this pointer to cal l DoRun and to pass i t the parameters.

Modify ApfelThreadProc to look like the following:

/*static*/ DWORD WINAPI CApfelRun::ApfelThreadProc(LPVOID

pParam)

{

 // Get the CApfelRun pointer

 CApfelRun* pThis = (CApfelRun*)pParam;

 ASSERT(pThis);

 ASSERT_VALID(pThis);

 // Call the method on CApfelRun::DoRun

 BOOL bRes = pThis->DoRun(pThis->m_hDIB, pThis-

>m_pStat);

 return (DWORD)TRUE;

}

Posting WM_Done message

Post a WM_DONE message after the calculat ion is f in ished. You also need to prevent

the CApfelView::OnDone method being cal led in the CApfelView::RenderToDIB

method.

Page 7

5. In the CApfelView::RenderToDIB method, comment out the cal l to OnDone.

This is to prevent a race condit ion because the CApfelRun::Run method now

immediately returns even before the calculat ion has f in ished computing.

6. After the DoRun cal l has completed, you must post the message manual ly from

the CApfelRun::ApfelThreadProc function.

After the DoRun call, add the following:

// Now we post a done message so that we render

pThis->m_pWnd->PostMessage(WM_DONE, 100,

(LPARAM)bRes);

7. Bui ld and then run the lab. When you cl ick to start the computat ion of the

fractal, you should be able to move the window around and the GUI should be

responsive.

Part 2: Performance

In the second lab, our goal is to speed up the fractal calculat ion by using mult i-threading to

improve the performance of the DoRun method.

Our task is to use OpenMP to paral le l ize the DoRun method. As you do this, be aware of the

fol lowing issues:

• You need to convert the main loop to a for-loop. OpenMP works only with for-loops.

• Make sure you synchronize where necessary.

• Each thread may need separate resources (memory for each row…).

You can conf irm that you have the correct result by comparing the number of i terat ions

displayed in the GUI with the number of i terat ions before mult i -threading. They should be the

same.

Open MP i tems you may need for the Adding Performance lab include:

• #pragma omp parallel

• #pragma omp for

• #pragma omp critical

• omp_get_thread_num()

• private clause

Page 8

I f you are not fami l iar with these, you can check out the OpenMP speci f icat ion in the docs

directory, or get the ful l spec from www.openmp.org.

Lab Activity 2: Adding Performance with OpenMP

Paral lel ize the CApfelRun::DoRun Method

The fol lowing describes in high-level detai l the steps to paral le l ize the DoRun Method. I t is

fol lowed by L is t ing 1, which shows an example solut ion. Again there are actual ly several

ways to solve the problem.

Setup

Make sure to enable OpenMP compiler support. By default, this is not enabled in the Intel

Compi ler. I t can be enabled through the sett ings menu or by adding /Qopenmp to the

compiler command l ine.

Convert do-whi le loop to for loop

 OpenMP paral le l constructs do not work on do-whi le loops. Therefore, convert the

do-while loop into a for loop .

Paral lel ize for loop

 Use the “#pragma omp parallel for” construct to paral le l ize the for loop.

Thread private data

Make sure to use the pr ivate clause as necessary for thread private var iables.

1. Create thread private versions of the buf data structure. Each thread should

have a separate copy of buf. This can be done in one of two ways:

a. Create an array of bufs and access the correct one with

omp_get_thread_id()

b. Create the buf data structure inside the paral le l region.

In the second case, you must protect the AlignedAlloc
function call because it is not thread-safe.

2. Make sure you protect the addit ion to dwIterat ions variable. You do not want

to put an “omp crit ical” around the whole l ine because the computation is

down in the function cal l . Solve this by returning the CalcRow into a

temporary and then with “omp cri t ical” add that value to dwIterat ions.

Page 9

http://www.openmp.org/

Speed up the loop

To speed up the loop, you can use:

1. The schedule clause on the “pragma omp paral le l” construct to choose a

better schedul ing for the threads.

2. The Intel Thread Prof i ler® to track the performance of the schedule.

3. The reduction clause on the “pragma omp paral le l” construct to replace the

“omp cri t ical” on dwIterat ions.

Verify

 Veri fy that the appl icat ion runs faster AND that the number of i terat ions displayed

in the GUI is the same as the non-openmp version.

H in t : You can also use omp_set_num_threads(1) to see what the non-openmp

version would run l ike.

List ing 1

#include <omp.h>

#define MAX_THREADS 32

BOOL CApfelRun::DoRun(HDIB hDIB, CApfelStatistics* pStat)

{

 COLORREF* pcr = new COLORREF[m_t];

 if (!pcr)

 return FALSE;

 // access DIB

 LPSTR lpDIB = (LPSTR)::GlobalLock(hDIB);

 if (!lpDIB)

 return FALSE;

 // currently we work only with hicolor DIBs

 if (!IsHiColorDIB(lpDIB))

 {

Page 10

http://www.intel.com/software/products/threading/tp/
http://www.intel.com/software/products/threading/tp/
http://www.intel.com/software/products/threading/tp/

 // unaccess DIB

 ::GlobalUnlock(hDIB);

 return FALSE;

 }

 // resolution

 CSize szRes(::DIBWidth(lpDIB), ::DIBHeight(lpDIB));

 ASSERT(szRes.cx % 16 == 0);

 srand(::timeGetTime());

 for (int k = 0; k < m_t; k++)

 {

 pcr[k] = RGB(rand(), rand(), rand());

 }

 if (pStat)

 pStat->Start();

 const float i0s = m_i0s; // 0.0f

 const float r0s = m_r0s; // 0.0f

 const float del = m_del; // 0.01f

 const int t = m_t; // 1024

 const int g = m_g; // 3

 const int xmax = szRes.cx;

 const int ymax = szRes.cy;

 // One buffer for each thread

 unsigned short* buf[MAX_THREADS];

 // Uncomment this if you want to manually set the number

of threads

Page 11

 // omp_set_num_threads(2);

 // Need local version, because can't reduce an element of

type somestruct->variabletoreduce

 DWORD dwIterations = 0;

 int nid;

#pragma omp parallel

 {

 float i, r;

 int x;

 int y;

 int color;

 nid = omp_get_num_threads();

// Could also do this with an omp critical and thread private

buf. But this is instructive.

#pragma omp single

 for (int tid = 0; tid < nid; tid++)

 {

 buf[tid] = (unsigned

short*)::AlignedAlloc(szRes.cx * sizeof(unsigned short), 32);

 if (!buf[tid])

 {

 // unaccess DIB

 //::GlobalUnlock(hDIB);

 //return FALSE;

 }

 }

 tid = omp_get_thread_num();

Page 12

 // Don't forget to use reduction or critical on

dwIterations

#pragma omp for schedule(dynamic, 8) reduction(+: dwIterations)

 for (y = 0; y < ymax; y++)

 {

 i = (i0s - ymax / 2 * del) + del * y;

 r = (r0s - xmax / 2 * del);// + (del * xmax) *

y;

 if (m_bAbort)

 {

 // OMP doesn't allow breaks, so you have

to cheat to allow breaking

 y = ymax;

 }

 dwIterations += CalcRow(buf[tid], xmax, del, i,

r, g, t);

 for (x = 0; x < xmax; x++)

 {

 color = buf[tid][x];

 ASSERT((color >= 1) && (color <= t));

 COLORREF cr = pcr[color - 1];

 ::SetDIBPixel(lpDIB, CPoint(x, y), cr);

 }

 } // for

Page 13

 }

 if (pStat)

 pStat->Stop();

 pStat->m_dwIterations = dwIterations;

 // Cleanup

 for (int ktid = 0; ktid < nid; ktid++)

 {

 ::AlignedFree(buf[ktid]);

 }

 // unaccess DIB

 ::GlobalUnlock(hDIB);

 delete[] pcr;

 return TRUE;

}

Summary

You can use mult i-threading to add extra functional i ty, to increase performance, or both.

You should know and be able to use both expl ici t threading (Win32*) and OpenMP*.

Page 14

Supplemental Material

In te l® Thread ing Too lk i t

• Intel® Thread Checker,

• Thread Prof i ler,

• Intel® VTune™ Performance Analyzer

In te l® Thread Checker

• Locate threading bugs in appl ications on IA-32 systems running Windows*.

• Use remote col lectors to locate threading bugs in appl icat ions on IA-32 and Itanium®-

based systems running Linux*.

Runn ing In te l® Thread Checker

1. Stat ist ics col lected within VTune™ analyzer

• Compi le with ic l /Qopenmp_prof i le (/MD /Qopenmp)

2. Stat ist ics col lected outside VTune analyzer

• Compi le with ic l /Qopenmp_prof i le

• Run program outside VTune environment

• Import guide.gvs stat ist ics f i le into VTune analyzer

To import guide.gvs f i les, simply do Fi le/Open Fi le for OpenMP Stat ist ics (*.gvs) f i les.

Thread Pro f i l e r

• For Windows*, locate performance bott lenecks in Win32* and OpenMP* threaded

appl icat ions

• For Linux*, now you can locate performance bott lenecks in POSIX* and OpenMP

threaded appl icat ions, f rom a host Windows system

• View graphic displays that show each thread's state and paral le l-ser ial transi t ions to

conf i rm that performance is meeting expectat ions or where i t is fal l ing short — helps you

decide where to focus optimizat ion efforts

Page 15

http://www.intel.com/software/products/threading/tcwin/index.htm

In te l ®VTune™ Per fo rmance Ana lyzer

Error List

• Customizable

• Links to source view

Source View

• Error context

• Error locat ions

• Stack trace

Page 16

Appendix – Win32 Threads

The fol lowing is a review of common Win32 threading functions.

Crea t ing Win32* Threads

// Thread handle

HANDLE CreateThread(

 LPSECURITY_ATTRIBUTES ThreadAttributes,

 DWORD StackSize,

 // Functions are explicitly mapped to threads

 LPTHREAD_START_ROUTINE StartAddress,

// One 32-bit value parameter passed

LPVOID Parameter,

DWORD CreationFlags,

// NULL or CREATE_SUSPENDED

LPDWORD ThreadId);

Wai t ing fo r Kerne l Ob jects

This is the hub function for synchronization.

DWORD WaitForSingleObject (

 HANDLE hHandle,

 DWORD dwMilliseconds);

 // Timeout (0 .. INFINITE)

This function waits for a kernel object to become “signaled.” The meaning of “signaled”

depends on the object type. For threads, WaitForSingleObject() waits for a thread to

terminate.

WaitForMultipleObjects() waits for more than one kernel object at the same t ime.

Page 17

Post ing Window Message

HANDLE CWnd->PostMessage(

 UINT message,

 // Message (WM_DONE)

 WPARAM wParam,

 LPARAM lParam);

 // Additional Message info

PostMessage sends a message to the given CWnd object. I t is useful for signal ing done

(WM_DONE) .

H in t #1 : CreateThread and C++

This is a tr ick to create a thread cal l ing an object method. Win32 needs a C style or stat ic

method for a CreateThread cal l , but you can work around this by using a stat ic method on

the class, then passing the this pointer of the object and having the stat ic method just

invoke the desired method on the object.

Class Foo {

 Static DWORD WINAPI _threadimpl(LPVOID param);

 Bool ThreadProc();

};

…

Foo::_threadimpl(LPVOID param) {

 Foo* pFooObj = (Foo*) param;

 pFooObj->ThreadObj();

}

…

Foo SomeFoo;

HANDLE hThread = CreateThread(NULL, 0, Foo::_threadimpl,

(LPVOID)&SomeFoo, 0, NULL);

Page 18

ter contained or described in this document. No lic
Limited License Grant. Intel hereby grants you a limited copyright license to copy this document for your use and internal distribution only. You may not distribute this document externally, in whole or in part, to any other person or entity.
LIMITED LIABILITY. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO YOU OR TO ANY OTHER THI
Intel, the Intel logo, Pentium, Intel Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2004 Intel Corporation
 The information contained in this document is provided for informationalx

as the property of others.

 Copyright © 2005 Intel Corporation

	195578-insert.pdf
	Introduction
	Overview
	Guidelines
	Files and Structure
	 Part 1: Responsiveness
	Extra Credit
	Lab Activity 1: Add GUI Responsiveness
	Asynchronous Thread Function in CApfelRun
	Adding thread function to CApfelRun
	Posting WM_Done message

	Part 2: Performance
	Lab Activity 2: Adding Performance with OpenMP
	Parallelize the CApfelRun::DoRun Method
	Setup
	Convert do-while loop to for loop
	Parallelize for loop
	Thread private data
	Speed up the loop
	Verify
	Listing 1

	Summary
	 Supplemental Material
	
	
	
	
	
	
	
	
	 Appendix – Win32 Threads

