Multiprocessors Motivations:
e [0 increase computing power

e advanced single processors are reaching di-
minishing returns

e Improve reliabi;ity of systems
Different Models:

e SISD: Single Intruction Single Data Stream.
This is the single processor.

e MISD: Multiple Instruction Streams, Single
Data Streams. No machine of this type.

e MIMD: Multiple Instruction Streams, Multi-
ple Data Streams. Uses multilple of single
Processors

e SIMD: Single Instruction Stream, Multiple Data
Streams. Uses vector operations with one in-
struction is fed to multiple processors using
different data streams.

MIMD

-Can use off the shelf processors , can function
as single user machine or high performance as in
mutiprogrammed machines

Types of MIMD:

1-Shared Memory Architecture. UMA: Uniform
Memory Access uses centeralized shared memory.

P5o

_______________ C

| | Shared Bus

1/0

Shared Memory

2-NUMA: Non uniform Memory Access. Used in
Distributed Memory Processors.

Distributed Memory Systems

@

M

1/0

@,

1/0

1/0

1/0

‘/\o Network

-

It consists of individual nodes and an Intercon-
nection Network.

Each node has processor, cache, local memory
and I/0O.

Has the following advantages-
e Cost effective to scale memory bandwidth

e reduces latency of memory accesses to local
memory

the disadvantages:-

e cCOmmunication between processors is more
complex

Models for Communication and Memory Ar-
chitectures

1-Shared Memory:
Processors Communicate with shared address space.
Easy for small scale machines
Advanrages:-

e Model of choice for single processors, and small
scale multiprocessors

e |lOw latency
e casy to program
e casy to use cache

2- Message Passing:

Processors communicate with messages and have
private memories.

advantages:

e less hardware and easier to design

e SCale better

Performance Metrics for Communication Mech-
anisms

1- Bandwidth:
-Limited by processor, memory and interconnec-
tion bandwidth.
-most likely is limited by the communication mech-
anism

2-Latency:

-affects performance and programming of multi-
Processors

-processor might have t wait

-must hide latency (overlap message with compu-
tation).

latency hiding needs software support and de-
pends on the application (effectivness)

Advantages of Shared Memory Communica-
tions

e Compatibility

e Easy to programm and simllify compiler de-
sign

e Low overhead for communication (not using
operating system)

e AbDbility to use caching to reduce latency
Advantages of Message Passing
e Simpler hardware (no cache coherency)

e Communication is explicit forcing program-
mers and compilers to pay attention to it.

Challanges of Parallel Processing

e 1-Limited parallelism in programs
Amdahl’s law: performance improvements is
limited by small part that cannot be executed
in parallel.

Example: what fraction of original computa-
tion can be sequential for having 80 speed up

of 100 processors.

speedyp = 1+-(fractionenhanced—+(seedypenhanced)-
(1 — fractionenhanced))
80=1-(n+-1004+(1—-n))

Nn=.9975, only .25% is allowed to be sequen-
tial.

e Communication Overhead
Example: Assume 32 processor machine that
has 2000 ns communication overhead. Pro-
cessor cycle time = 10 ns, if base CPI=1, find
how much faster if the machine has no com-
munication overhead versus .5%.
No over head CPI =1
with communication = 1042000 x .005 = 20
ns, two times faster

Centralized Shared Memory Architectures

Feaures:
-Small scale multiprocessor system

-Using one bus
-Need large caches to reduce bus requirements

i

--------------- CN

Shared Bus

/0

Shared Memory

Data types in Multiprocessor system

e 1-Shared Data: Used by multiple processors
to communicate (readwrite)

e 2-Private Data: Used by a single processor
(readwrite)

Private and shared data can be cached by local
Processors.

Cache helps to reduce demand for bus, and re-
duce latency to access memory.

Processor uses private data in its own cache the
same way as a single processor uses its data on
cache (dirty,..)

Shared data caching should be handeled differ-
ently.

Multiple copies of a shared data item could exist
on multiple caches. This reduces bus contention
and reduces access time.

Data Types:

R

X=1 X=1 X=1
| |
Memory Memory

X=1 X=1

X=5 X=1 X=5 X=1*%
| |
Memory Memory
X=1 X=1**
P1 writes5to X Coherency problem

using WB Cache

Memory Coherency Requirements
Memory is coherent if any read will return the
most recent written value of data.
The following operations satisfy coherency:

e 1-read by a processor, follows a write by same
processor to same location , with no writes by
other processors to that location.
last write is from same processor

o If the write to X is from other processor, Pro-
cessor must read X=5 for the memry to be
coherent. (processor must read value of last
write even if it occurs at other processor cache)

Memory Coherency Requirements

C
X=5

1 L

#1 #2 @ #3 @
C
X=1

P reads X P writes 5 to X P readS X=5 is coherent

Memory Coherency Requirements

e Writes to same location must be serialized. If
P1 writes 5 to X, tthen P5 writes 7 to X, then
P1 should read X=7 (not 5). [If P1 misses
cache, P5 hits , we must still have X=7 as
final value |

BASIC SCHEMES FOR COHERENCY
Need a protocol to maintain coherence for multi-
ple processors. This is needed to track the state
of data shared between different processors.
Types of Coherence Protocols
Directory Based:

Status of blocks is kept in the directory (which
cache has the most recent value) it is centralized
Snooping:

Every cache has status of shared data block. All
caches monitor or snoop on the bus to determine
whether or not they have a copy of the block.

Two Ways to maintain coherence in caches

e 1-Write Invalidate: The protocol maintain
an exclusive access to a data item through
invalidating all copies on other caches.

Example for write invalidate protocol

Write Invalidate:

) @ #2 @
C1l C2 C1l C2

) X=1 X=1 _X=1
I
Memory Memory
N X=1 X=1
P1 reads miss X P2 read miss X

C1
T /X =5 X=nv

Memory

X=1

P1 writes5to X
using WB Cache
invalidate X in C2

W WG
C2 C1 C2

P2 reads X
generates read miss

e 2-Write Update or write Brodcast: To keep
most update copy in cache.
It requires higher bandwidth as every write will
be transfered to all caches.
It must isolate shared data from private data
and should not brodcast writes to private data

Write Update

) @ #2 @
C1l C2 C1l C2

) X=1 X=1 _X=1
|
Memory Memory
N X=1 X=1
P1 reads miss X P2 read miss X

e
C1 C2
=5 X=

Memory

X=1

P1 writes5to X
using WB Cache
update X in C2

P2 reads X

Performance of Write Invalidate Compared
to Write Update
The differences are:-

e 1-Multiple writes to same data requires mul-
tiple write updates (bus bandwidth), on write
update protocol, but only one invalidate for
invalidate protocol.

e Multiword blocks in cache requires multiple
transfer of all words on update protocol.

e delay between write followed by a read is usu-
ally less in write update. (no cache read miss
"invalidate”).
because bus bandwidth is performance bottel-
neck, write invalidate has become the proto-
col of choice.

Implementation Techniques for Invalidate Pro-
tocol

e Using shared bus for Invalidation.

e All processors continuously snoop on bus for
addresses that matches cache addresses.

e If there is a match, the block is invalidated

e Processor must obtain bus access (arbitrate)
to write and must have cache misses
with write back cache, if processor has read
miss, and processors snoop bus and find that
it has a dirty copy of it, then it must supply
it to other processor that has requested it.

e For writes: If shared, then invalidate all other
copies.
with write back: Each block should be marked
dirty with a write/hit
For writes to not shared data, we need not to
send invalidate signal.

Read Miss

miss read item from
cache. hit/miss?

all processors
snoop address

yes is processor cache
has a match?
supply requested
processor with this
copy

Read Miss

Status of Cache Block
It uses 3 bits

e Dirty: write hit makes block dirty

e Invalid: write invalidate signal from a write
to same block in different cache

e bf SharedPrivate: when write invalidate all
other copies, the local copy becomes not shared
or private.

If private block is requested by other procesor,
it will be made shared.

Status of Ccahe Block

Tag

Data

S: shared
D: Dirty
V:vaid

Coherency in Multi-Level Cache
The shared bus is connected to one level only.

Must keep coherence between data in both lev-
els, but only one level is connected to the bus??
(for invalidate)

Solution: Inclusion

Level closer to processor (C1l) are a subset of
those further away (C2).

If C2 cache has to invalidate or change status
of a block, primary cache C1 must update block
status.

Coherency in Multi-Level Cache

C2

C2

Multi—Level Ccahe

©

C2

Inclusion

Cache Coherency Protocols

Write Through Cache Coherency Protocol

Two States: Valid and Invalid

Requests are from:

1- local processor i for a read or write

2-remote processor j for read or write through the
bus

If state is Invalid and there is another processor
reading or writing to it, will result in no change
in state

If processor needs to read or write to a block and
the state is invalid, processor will change block
state to Vvalid

On state Valid, processor can read and write to
block with no change in the state, but if other
processor writes to the block, the state change
to Invalid.

Write Through Coherency Protocol

R(i), W(i), R()

—_

(&)

Write Through Protocol

Write Invalidate Coherence Protocol
Must deal with:-

1-Processor ReadWrite to its cache
2-Bus (other processor's ReadWrite)
Coherency Protocol has three states:

e Invalid: This copy has been changed by an-
other processor write to it. Only bus write
causes block to be invalid

e Shared (Read Only): Processor reads a vari-
able that was not in its cache. A read miss
generates this state.

e Exclusive (privatenot shared): Processor
writes to a variable, causes the block to be
labeled Exclusive, as other copies in other pro-
cessors caches are invalidated.

Write Back Coherency Protocol
Processor actions are:

1-Read hit

2-Read miss

3-Write hit

4-\Write miss

Using three state protocol

e 1-Processor writes (hitmiss) makes block pri-
vate

e 2-Processor Read miss makes block shared

e 3-Processor Read hit no change if it is shared
or private but if it is invalid it makes it shared

e 4-bus write makes block invalid

e 5-bus read makes block shared except if block
is invalid it will stay invalid

Coherence Protocol for Processor Actions

P—R-hit, P-R—miss P—R—hit, P-R—miss

P-W-miss, P-R-hit, P-W-hit

Coherence Protocol for Bus Actions

Complete Write Back Coherence Protocol
It includes Processor and Bus actions.

R(), R(j), read miss(i)

W()

R(), W() shared

W(i)

private

()

W(i), R(i), write miss(i)

I = same processor
j= other processor

Multiprocessor Model

Model multiprocessor system by the average of
multiplying the probability of each action times
its cost in cycles.

Cost of processor read hit is= 1 cycle
cost of processor write hit to private block = 1
cycle
cost of processor write hit to shared block = 1
cycle 4+ bus invalidation
cost of read miss = bus latency + memory latency
(DRAM or other processor cache) 4+ 1 cycle
cost of write miss = bus latency 4+ invalidate +
1 cycle

Example: Find performance of 8 processors as-
suming balanced load is executed on each one
and read=20%, writ=10%, sharing=5%, and in-
valid = 3%. cost of bus latency = 30 cycles,
memory latency=60 cycles, Inst miss = 5%, read
miss= 7%, write miss= 8 %.

Procr

Instructlon
hit miss
/ \ lcycle LB+ TMem+1

miss

I\

shared 1 cycle LB+ TMem_1
lcycle

False Sharing

If block size is greater than word size, two ele-
ments could be mapped to same block, and both
of them will be invalidated even if writing to one
element only.

If P1 writes to X1, X2 will be also invalidated in
P2 cache. P2 has to perform read miss to get
X2 from P1 cache, although X2 value has not
changed.

2

C1 C2

X1 | x2 X1 | x2

Memory

Example: Assume X1, X2 are read by P1 and
P2 and share the same block. Find true and false
sharing in the following sequence:
1-P1 writes to X1, causes P2 to invalidate X1,
X2 in cache. X1 was read by P2 at time 0, so
this is true sharing for X1
2-P2 reads X2, invalid because P1 writing to X1
in step 1, P2 has to miss ; this is false sharing
3-P1 writes to X1 , causes P2 to invalidate X1,
X2. X1 was not read by P2, false sharing (P2
read X2 only).
4-P2 writes to X2, P1 invalidate X1, X2. P1 did
not read X2 , False sharing.
5-P1 reads X2, has to miss and get it from P2
cache, P2 was last to write to X2, It is true shar-

ing.

False Sharing

Time Pl P2 comments
1 Writeto X1 makes X2 invalid
2 Read X2 makes X1 shared
3 Writeto X1 invalidate X2
4 Writeto X2 makes X private, invalid at P1
5 Read X2

Performance of coherence Protocol
1-Increasing number of processors affect miss rate
(coherence miss rate increases as N increases).
2-Increasing cache size improves both coherence
Miss and capacity miss.
3-Increasing block size improves capacity miss but
might incease coherence miss due to false sharing.

Svynchronization
-Need synchronization to know when it is safe to
use shared data
-Need special type of instructions with hardware
capability.
-For large scale machines, sychronization could be
the performance bottelneck.

Special Type of Instructions with Atomic Op-
erations

Atomic operation: Uninterruptable operation to
retreive and change the value in memory.

Need to read and modify memory location atom-
ically.

Typical atomic operations:

e atomic exchange: interchange value in a
register for a value in memory

e test and set: tests a value and sets it if value
passes the test.

e fetch and increment: returns the value of a
memory and atomically increments it.

User Level Synchronization Operation

User uses atomic operations for synchronization.
1-Using atomic exchange operation:-

Use a lock in memory for the variable. If the
lock value=0, the lock is free and processor can
access the variable. If the lock value=1, lock is
unavailable.

Processor sets a value in a register=1, and uses
the exchange instruction

if the register returns O, the lock is available and
now is set to 1 by the value of register exchange
(this for other processors not to access it).

If register returns 1, the lock is used by another
processor.

Spin Locks
processor continuously tries to acquire lock, spin-
ning around a loop

1i R2, #1 ; R2=1
lockit: exch R2, O0(R1) ;atomic exchange
bnez R2, lockit;

Problem with spin lock; the processor is tied up
waiting in a loop.
Solution: can cache the locks and use coherence
to maintain lock value.
Advantages:
-Processor spinning in its local cache (no memory
or bus)
Locality in lock accesses suggest that processor
that used the lock last will use it again soon.
Problem: On local cache, the exch instruction
involves a write to the cache copy, needs to in-
validate all other copies. This causes a lot of bus
traffic.
Solution: repeat just read variable, and only change
it if the value of lock=0 (when available).

example of synchronization using spin lock

lockit: 1w R2, O(R1) ; read lock
bnez R2, lockit ; not available
1li R2, #1 ; Set R2=1
exch R2, 0(R1) ; now can swap
bnez R2, lockit ; branch if lock

was not O

Example of Cache Coherence and Synchro-
nization

step PO P1 P2 Lock state Dbus

1 has waiting waiting shared none
lock lock=0 lock=0

2 set invalid invalid exclusive write
lock=0 received received invalida
from PO
3 cache cache shared cache mi.

miss miss service |

wait lock=0 shared miss sat

for P2
exch shared P2 write:
invalida
lock=1 exclusive write ba
return O P2
reads shared
lock
wait for

lock=0

Coherence and Synchronization Example
Processor PO has lock in its cache
P1,P2 Simultaneously require the lock
PO release it, write invalidate
P1,P2 read miss trying to get lock.
P2 is faster)first), reads lock=0
P2 acquire the lock and sets it to 1 and use write
invalidate.
P1 read miss will return lock=1, and P1 must
wait until P2 releases the lock and lock value=0

Other Instructions for Synchronization
1-Load Linked or load locked + store conditional
-load returns intial value
-store conditional returns 1 if it succeeds
two operations that are separated (readwrite)
load linked does not use bus.

lockit: 1i R2, O(R1); load linked
bnez R2, lockit; not aval
1i R2, #1 ; R2=1
SC R2, O0(R1) ; store
beqz R2,lockit ; if store fails

Need to implement synchronization at hard-
ware level

Multithreading In superscalar, it issues multi-
ple instructions dynamically and extract ILP from
loop unrolling. It uses multiple function units to
execute instructions in parallel. All instructions
are from the same stream (thread).

Multiple threads each has its own PC and differ-
ent reqgisters, different page table.
All threads share same Function Units and other
resources by switching threads.
Advantages:
When one thread stalls, others can execute and
hide stall latency.

PC| | I queue FU1
Cache

FU2

FUn

Superscalar

MUX

VL N =
\

Cache

A

Control

MultiThreading

Types of Multithreading:

e 1-Coarse grain: Switches on L2 stalls, not
effective in hiding shorter stalls because of
pipeline startup latency

e 2-Fine grain: switches on every cycle and could
slow the execution of each individual threads
as it will be interrupted by the other threads.

Simultaneous Multithreading It combine mul-
tiple issue instructions and multithreading together.
TLP 4 ILP at the same time.
multiple instructions from independent threads could
be issued simultaneously.

Superscalar | MT | SMT
____________ | e | —
1-T1 X X | T1 X X | T1,T2 X XYY
2-T1 X | T1 X | T1,T2 X Y
3-T1 XXX | T1 XXX | T1,T2 XX XY
4-T1 X X | | T1,T2 Y Y Y
5- | T2 YYY |
6-T1 X | T2 YYY |

| I

