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Who We Are: Parallel Computing Lab

Parallel Computing -- Research to Realization

— Worldwide leadership in throughput/parallel computing, industry role-model for application-driven
architecture research, ensuring Intel leadership for this application segment

— Dual Charter:
e Application-driven architecture research and multicore/manycore product-intercept opportunities

e Workload focus:

— Multimodal real-time physical simulation, Behavioral simulation, Interventional medical

imaging, Large-scale optimization (FSI), Massive data computing, non-numeric computing

e Industry and academic co-travelers

— Mayo, HPI, CERN, Stanford (Prof. Fedkiw), UNC (Prof. Manocha), Columbia (Prof. Broadie)
e Architectural focus:

— “Feeding the beast” (memory) challenge, unstructured accesses, domain-specific support,
massively threaded machines
e Recent accomplishments:
e First TFlop SGEMM and highest performing SparseMVM on KNF silicon demo’ed at SC’09
e Fastest LU/Linpack demo on KNF at ISC’10
* Fastest search, sort, and relational join — Best Paper Award for Tree Search at SIGMOD 2010
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Motivations

 Exponential growth of digital devices

— Explosion of the amount of digital data

e Popularity of World-Wide-Web

— Changing the demographics of computer users

e Limited frequency scaling for single core

— Performance improvement via increasing core
count



What these lead to

Massive data needs massive computing to process

Birth of multi-/many-core architecture

Parallel computing
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The Opportunities

What parallel computing
can do for us?



Semantic Barrier

an Norman’s Gulf __
Computer’s Simulated Human’s Conceptual Model

Execution Gap

e Lower semantic barrier => Make computers solve
problems the human way => Makes it easier for human to
use computers
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Model Driven Analytics

e Data-driven models are now tractable and usable
— We are not limited to analytical models any more
— No need to rely on heuristics alone for unknown models
— Massive data offers new algorithmic opportunities
 Many traditional compute problems worth revisiting

 Web connectivity significantly speeds up model-
training

* Real-time connectivity enables continuous model
refinement

— Poor model is an acceptable starting point
— Classification accuracy improves over time



Create a new
model instance

Find an existing
model instance

Most RMS apps are about enabling interactive (real-time) RMS Loop (iIRMS)
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RMS Example: Future Medicine

22 Weeks: 357.61 mm”®

Images courtesy: http://splweb.bwh.harvard.edu:8000/pages/images_movies.html

It is all about dealing efficiently with complex multimodal datasets



RMS Example: Future Entertainment
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Tomorrow'’s interactions and collaborations: Interactive story-nets, multi-party real-time
collaboration in movies, games and strategy simulations




Opportunities (Summary)

* More data

— Model-driven analytics

* More computing

— Interactive RMS loops

 Lower computing barrier

— Computer easier to use for the mass



The Challenges

Why Parallel Computing is hard?



Multi-Core / Many-Core Era

Single Core Multi-Core Many-Core

Multi-core / many-core provides more
compute capability with the same area / power



Architecture Trends

Rapidly Increasing Compute

Core Scaling (Nhm (4-cores) 2 Wsm (6-cores) = ...~ Intel Knights Ferry (32-
cores) ...)

Data-Level Parallelism (SIMD) Scaling
e SSE (128-bits) > AVX (256-bits) =...~>LRBNI(512-bits) = ...

Increasing Memory Bandwidth, But...

Not keeping pace with compute increase.
Used to be 1-byte/flop

Current: Wsm (0.21 bytes/flop); AMD Magny Cours: (0.20 bytes/flop); NVIDIA
GTX 480 (0.13 bytes/flop)

Future: 0.05 bytes/flop (GPUs, 2017)(ref: Bill Dally, SC’09)

One clear trend: More cores in processors
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Architecture Trend

Intel Core i7 990X
(a.k.a. Westmere)

Sockets 2 1
Cores/socket 6 32
Core Frequency (GHz) 3.3 1.2
SIMD Width 4 16
Peak Compute 316 GFLOPS 1,228 GFLOPS

Increase in compute comes from
more cores and wider SIMD

Implication: Need to start programming for

Parallel Architecture
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Parallel Programming

e What’s hard about it?

We don’t think in parallel

Parallel algorithms are
after-thoughts
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Parallel Programming

e Best serial code doesn’t always scale well for
arge # of processors
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Scalability for Multi-Core

e Amdahl’s law for multi-core architecture:

Multi-core Speedup
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Scalability of Many-Core

e Amdahl’s law for many-core architecture:

Many-core Speedup
k=1.5

Serial component Parallel
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
component 4 of Cores

Perf. ratio between 1 core
in single-core processor and

Significant portion of applications must be

parallelized to achieve good scaling




Challenges (Summary)

e Architecture changes for many-core
— Compute density vs. compute efficiency
— Data management: Feeding the Beast

e Algorithms
— |Is the best scalar algorithm suitable for parallel computing

e Programming model

— Human tends to think in sequential steps. Parallel
computing is not natural

— Non-ninja parallel programming



Our approach

Application Specific
HW/SW Co-design



Our Approach: App-Arch Co-Design

Architecture-aware analysis of computational needs of parallel
applications

Workload
requirements
drive design

decisions

Workloads

Programming environments

Execution environments

Platform firmware/Ucode

1/0, network,

Memo
&/ storage

On-die fabric

Cache

Cores

Focus on specific co-travelers
workioads - gnd domains:

‘aneate  HPC/Imaging/Finance/Physical
Simulations/Medical/...

Multi-/Many-core features that accelerate applications in a
power-efficient manner (bonus point: simplify programming)
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Steps

1. Understand algorithm behind applications

. Analysis characteristics of key kernels for
algorithms

. Evaluate the sensitivities to various
architecture parameters

4. Develop architecture straw-man

. Adjust algorithm to target architecture

Repeat Step 1 if necessary



Workload Convergence
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1.
2.

Case-Study-I (3-D Stencil Operations)?

SIMDification 1.8X

Multi-threading 2.1X
(Non-blocked version is bandwidth bound)

Perform Cache-blocking (2.5D Spatial + 1D Temporal)?

Blocking Optimization 1.7X
Multi-threading

(Blocked version is compute-bound and 1.8X
scales further)

SIMD 1.9X

Further scaling of compute-bound code
ILP Optimization 1.1X
[ Overall Speedup 24.1X ]

Performance data on Intel Core i7 975, 4c at 3.33 GHz
Details in SC’'10 paper (3.5-D Blocking Optimization for Stencil Computations on Modern CPUs and GPUs by Nguyen et al.)
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Case-Study-Il (FFT)?

Algorithm/Optimization Incremental Speedup

Algorithm 1.72X

(Radix-4 Vs/ Radix-2)
Multi-threading 3.05X

(Naive Partitioning)
Multi-threading 1.23X
(Intelligent Partitioning: load balanced)

SIMDfication 1.18X

(Full V/s Partial SIMD)
Memory Management 1.32X

(Double Buffering)

L Overall Speedup 10.1X \

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz

Victor.W.Lee@intel.com 28



Case-Study-lIIl
(Sparse Matrix Vector Multiplication)?

Algorithm/Optimization Incremental Speedup

Multi-threading 1.72X
(Naive Partitioning)
Multi-threading 2.2X
(Intelligent Partitioning: load balanced)
SIMDfication 1.13X
Cache Blocking 1.15X
Register Tiling 1.2X
| Overall Speedup 6.0X

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz
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Case-Study-1V

(Graph Traversal)?!

Efficient Layout 10.1X
(Cache-Line Friendly)

Hierarchical Blocking 3.1X
(Cache/TLB Friendly)

SIMD 1.29X

ILP 1.35X

Multi-threading 3.9X

(Linear Scaling for compute-bound code)

L Overall Speedup 212.6X I

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz
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1.
2.

Case-Study-V
(Tree Search)'2

Algorithm/Optimization Incremental speedup

Efficient Layout 1.53X
(Memory Page-Blocking)
Cache-Line Blocking 1.4X
SIMD 1.8X
ILP 2X
Multi-threading 3.9X

[ Overall Speedup 30.1X \

Performance data on Intel Core i7 975, 4c at 3.33 GHz
Details in SIGMOD’10 paper (FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs by Kim et al.)
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Case-Study-VI (Matrix Multiply)® 2

Algorithm/Optimization Incremental Speedup

Loop Inversion 9X
Cache-Tiling 1.33X
Multithreading 2.4X
SIMD 2.2X

I Overall Speedup 64X

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz
2. HiPC'2010 (Goa, India) Tutorial “Architecture Specific Optimizations for Modern Processors” by Dhiraj Kalamkar et.al.
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Learning

Parallel algorithms offer best speedup-effort Rol
— Algorithmic core needs to evolve from pre-multicore era

Technology-aware algorithmic improvements offer the next
best speedup-effort Rol

— Increasing compute density and data-parallelism

Special attention to the least-scaling part of modern
architectures: BW/op will be increasingly more critical to
performance

— Locality aware transformations

Architecture-specific speedup is orders of magnitude less
than commonly believed
— 100-1000x CPU-GPU speedup myth



Summary

Massive Data Computing
Insatiable appetite for compute
It’s all about three C’s:
Content — Connect -- Compute

Algorithmic Opportunity
Algorithmic core needs to evolve from serial to parallel
Massive data approach to traditional compute problems
Data ... data everywhere, ... not a bit of sense ... ©

Performance Challenge
Performance variability on the rise with parallel architectures
Feeding the Beast: increasingly a performance bottleneck
Programmer productivity key to market success
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