Parallel Computing:
Opportunities and Challenges

Victor Lee
Parallel Computing Lab (PCL), Intel

Who We Are: Parallel Computing Lab

Parallel Computing -- Research to Realization

— Worldwide leadership in throughput/parallel computing, industry role-model for application-driven
architecture research, ensuring Intel leadership for this application segment

— Dual Charter:
e Application-driven architecture research and multicore/manycore product-intercept opportunities

e Workload focus:

— Multimodal real-time physical simulation, Behavioral simulation, Interventional medical

imaging, Large-scale optimization (FSI), Massive data computing, non-numeric computing

e Industry and academic co-travelers

— Mayo, HPI, CERN, Stanford (Prof. Fedkiw), UNC (Prof. Manocha), Columbia (Prof. Broadie)
e Architectural focus:

— “Feeding the beast” (memory) challenge, unstructured accesses, domain-specific support,
massively threaded machines
e Recent accomplishments:
e First TFlop SGEMM and highest performing SparseMVM on KNF silicon demo’ed at SC’09
e Fastest LU/Linpack demo on KNF at ISC’10
* Fastest search, sort, and relational join — Best Paper Award for Tree Search at SIGMOD 2010

¥ = EEeTEe e i
g el e T

Victor.W.Lee@intel.com 2

Motivations

 Exponential growth of digital devices

— Explosion of the amount of digital data

Motivations

 Exponential growth of digital devices

— Explosion of the amount of digital data

e Popularity of World-Wide-Web

— Changing the demographics of computer users

Motivations

 Exponential growth of digital devices

— Explosion of the amount of digital data

e Popularity of World-Wide-Web

— Changing the demographics of computer users

e Limited frequency scaling for single core

— Performance improvement via increasing core
count

What these lead to

Massive data needs massive computing to process

Birth of multi-/many-core architecture

Parallel computing

Victor.W.Lee@intel.com

The Opportunities

What parallel computing
can do for us?

Semantic Barrier

an Norman’s Gulf __
Computer’s Simulated Human’s Conceptual Model

Execution Gap

e Lower semantic barrier => Make computers solve
problems the human way => Makes it easier for human to
use computers

Victor.W.Lee@intel.com 8

Model Driven Analytics

e Data-driven models are now tractable and usable
— We are not limited to analytical models any more
— No need to rely on heuristics alone for unknown models
— Massive data offers new algorithmic opportunities
 Many traditional compute problems worth revisiting

 Web connectivity significantly speeds up model-
training

* Real-time connectivity enables continuous model
refinement

— Poor model is an acceptable starting point
— Classification accuracy improves over time

Create a new
model instance

Find an existing
model instance

Most RMS apps are about enabling interactive (real-time) RMS Loop (iIRMS)

10 VictorW.Lee@intel.com 10

RMS Example: Future Medicine

22 Weeks: 357.61 mm”®

Images courtesy: http://splweb.bwh.harvard.edu:8000/pages/images_movies.html

It is all about dealing efficiently with complex multimodal datasets

RMS Example: Future Entertainment

i i
e i s
S

i

G

L
.
.
.
.
.

G

i

Tomorrow'’s interactions and collaborations: Interactive story-nets, multi-party real-time
collaboration in movies, games and strategy simulations

Opportunities (Summary)

* More data

— Model-driven analytics

* More computing

— Interactive RMS loops

 Lower computing barrier

— Computer easier to use for the mass

The Challenges

Why Parallel Computing is hard?

Multi-Core / Many-Core Era

Single Core Multi-Core Many-Core

Multi-core / many-core provides more
compute capability with the same area / power

Architecture Trends

Rapidly Increasing Compute

Core Scaling (Nhm (4-cores) 2 Wsm (6-cores) = ...~ Intel Knights Ferry (32-
cores) ...)

Data-Level Parallelism (SIMD) Scaling
e SSE (128-bits) > AVX (256-bits) =...~>LRBNI(512-bits) = ...

Increasing Memory Bandwidth, But...

Not keeping pace with compute increase.
Used to be 1-byte/flop

Current: Wsm (0.21 bytes/flop); AMD Magny Cours: (0.20 bytes/flop); NVIDIA
GTX 480 (0.13 bytes/flop)

Future: 0.05 bytes/flop (GPUs, 2017)(ref: Bill Dally, SC’09)

One clear trend: More cores in processors

Victor.W.Lee@intel.com 16

Architecture Trend

Intel Core i7 990X
(a.k.a. Westmere)

Sockets 2 1
Cores/socket 6 32
Core Frequency (GHz) 3.3 1.2
SIMD Width 4 16
Peak Compute 316 GFLOPS 1,228 GFLOPS

Increase in compute comes from
more cores and wider SIMD

Implication: Need to start programming for

Parallel Architecture

Victor.W.Lee@intel.com 17

Parallel Programming

e What’s hard about it?

We don’t think in parallel

Parallel algorithms are
after-thoughts

Victor.W.Lee@intel.com

18

Parallel Programming

e Best serial code doesn’t always scale well for
arge # of processors

12 ’
— —a=Paralel code based on best /
no 10 4— serial algorithm
©
E 8 |— ——Parallel code with more parallel
+ friendly algorithm
2 5
@
o
8 4
£
E __*—_’_——4
- "
(=

D | | | |
1 2 4 & 16 32
of Processors

Victor.W.Lee@intel.com

Scalability for Multi-Core

e Amdahl’s law for multi-core architecture:

Multi-core Speedup
8
7 /
B
_!: A / ‘m —f—0.75
g 3 / / —8-0.85
/—_—‘_—__——. —&—0.39
2 —(].98
1
Serial component Parallel ° . , .) .
Component # of Cores

4/21/2011 Intel Confidential

Scalability of Many-Core

e Amdahl’s law for many-core architecture:

Many-core Speedup
k=1.5

Serial component Parallel
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
component 4 of Cores

Perf. ratio between 1 core
in single-core processor and

Significant portion of applications must be

parallelized to achieve good scaling

Challenges (Summary)

e Architecture changes for many-core
— Compute density vs. compute efficiency
— Data management: Feeding the Beast

e Algorithms
— |Is the best scalar algorithm suitable for parallel computing

e Programming model

— Human tends to think in sequential steps. Parallel
computing is not natural

— Non-ninja parallel programming

Our approach

Application Specific
HW/SW Co-design

Our Approach: App-Arch Co-Design

Architecture-aware analysis of computational needs of parallel
applications

Workload
requirements
drive design

decisions

Workloads

Programming environments

Execution environments

Platform firmware/Ucode

1/0, network,

Memo
&/ storage

On-die fabric

Cache

Cores

Focus on specific co-travelers
workioads - gnd domains:

‘aneate HPC/Imaging/Finance/Physical
Simulations/Medical/...

Multi-/Many-core features that accelerate applications in a
power-efficient manner (bonus point: simplify programming)

Victor.W.Lee@intel.com 24

Steps

1. Understand algorithm behind applications

. Analysis characteristics of key kernels for
algorithms

. Evaluate the sensitivities to various
architecture parameters

4. Develop architecture straw-man

. Adjust algorithm to target architecture

Repeat Step 1 if necessary

Workload Convergence

C i i : :
omputer . Physical ‘ i
Visi i Rendering i 'y : E (Fmanc.:lal) i Data Mining
ision i | Simulation i Analytics |
Body Face | Global | Face, | Rigid | Portfolio Option |
. . I @ CFD | e |
Tracking |Detection}] Illumination} Cloth § Body | Mgmt] Pricing J

Text
Index

1 W\ -
Ry
I "Collision

SVK fVM PO detection LCP NLP FIMI
Classification || Tyaining
IPM K-Means
v Level Set (LP, QP) v
P.artl.cle Filter/ Fast Marching Text
Filtering || transform Method Monte Carlo Indexer

Krylov Iterative Solvers Direct Solver Basic Iterative Solver Non-Convex
(PCG) (Cholesky) (Jacobi, GS, SOR) Method

_— 26

1.
2.

Case-Study-I (3-D Stencil Operations)?

SIMDification 1.8X

Multi-threading 2.1X
(Non-blocked version is bandwidth bound)

Perform Cache-blocking (2.5D Spatial + 1D Temporal)?

Blocking Optimization 1.7X
Multi-threading

(Blocked version is compute-bound and 1.8X
scales further)

SIMD 1.9X

Further scaling of compute-bound code
ILP Optimization 1.1X
[Overall Speedup 24.1X]

Performance data on Intel Core i7 975, 4c at 3.33 GHz
Details in SC’'10 paper (3.5-D Blocking Optimization for Stencil Computations on Modern CPUs and GPUs by Nguyen et al.)

Victor.W.Lee@intel.com 27

Case-Study-Il (FFT)?

Algorithm/Optimization Incremental Speedup

Algorithm 1.72X

(Radix-4 Vs/ Radix-2)
Multi-threading 3.05X

(Naive Partitioning)
Multi-threading 1.23X
(Intelligent Partitioning: load balanced)

SIMDfication 1.18X

(Full V/s Partial SIMD)
Memory Management 1.32X

(Double Buffering)

L Overall Speedup 10.1X \

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz

Victor.W.Lee@intel.com 28

Case-Study-lIIl
(Sparse Matrix Vector Multiplication)?

Algorithm/Optimization Incremental Speedup

Multi-threading 1.72X
(Naive Partitioning)
Multi-threading 2.2X
(Intelligent Partitioning: load balanced)
SIMDfication 1.13X
Cache Blocking 1.15X
Register Tiling 1.2X
| Overall Speedup 6.0X

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz

Victor.W.Lee@intel.com

29

Case-Study-1V

(Graph Traversal)?!

Efficient Layout 10.1X
(Cache-Line Friendly)

Hierarchical Blocking 3.1X
(Cache/TLB Friendly)

SIMD 1.29X

ILP 1.35X

Multi-threading 3.9X

(Linear Scaling for compute-bound code)

L Overall Speedup 212.6X I

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz

Victor.W.Lee@intel.com

30

1.
2.

Case-Study-V
(Tree Search)'2

Algorithm/Optimization Incremental speedup

Efficient Layout 1.53X
(Memory Page-Blocking)
Cache-Line Blocking 1.4X
SIMD 1.8X
ILP 2X
Multi-threading 3.9X

[Overall Speedup 30.1X \

Performance data on Intel Core i7 975, 4c at 3.33 GHz
Details in SIGMOD’10 paper (FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs by Kim et al.)

Victor.W.Lee@intel.com

31

Case-Study-VI (Matrix Multiply)® 2

Algorithm/Optimization Incremental Speedup

Loop Inversion 9X
Cache-Tiling 1.33X
Multithreading 2.4X
SIMD 2.2X

I Overall Speedup 64X

1. Performance data on Intel Core i7 975, 4c at 3.33 GHz
2. HiPC'2010 (Goa, India) Tutorial “Architecture Specific Optimizations for Modern Processors” by Dhiraj Kalamkar et.al.

Victor.W.Lee@intel.com 32

Learning

Parallel algorithms offer best speedup-effort Rol
— Algorithmic core needs to evolve from pre-multicore era

Technology-aware algorithmic improvements offer the next
best speedup-effort Rol

— Increasing compute density and data-parallelism

Special attention to the least-scaling part of modern
architectures: BW/op will be increasingly more critical to
performance

— Locality aware transformations

Architecture-specific speedup is orders of magnitude less
than commonly believed
— 100-1000x CPU-GPU speedup myth

Summary

Massive Data Computing
Insatiable appetite for compute
It’s all about three C’s:
Content — Connect -- Compute

Algorithmic Opportunity
Algorithmic core needs to evolve from serial to parallel
Massive data approach to traditional compute problems
Data ... data everywhere, ... not a bit of sense ... ©

Performance Challenge
Performance variability on the rise with parallel architectures
Feeding the Beast: increasingly a performance bottleneck
Programmer productivity key to market success

Victor.W.Lee@intel.com

34

