[image: image35.emf]fcct5

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Processors

Time (Sec)

fcct5

Department of Computer and Electrical Engineering
PROJECT REPORT
Parallel Implementation
of Lee Algorithm

By:
Drago Ignjatovic

Arayeh Norouzi

Owojaiye Oluwaseun

EE8218: Parallel Computing

Submitted to:
Dr. Nagi Mekhiel

April 2010
Abstract
Lee's algorithm is a path finding algorithm and one possible solution for maze routing, which is often used in computer-aided design systems to route wires on printed circuit boards and . This report discusses the parallelization of Lee algorithm which can be used in certain contexts to improve its efficiency and processing time. Lee algorithm is parallelized and implemented on several processing units. Our algorithm parallelizes the front wave expansion scheme and performs front wave expansions concurrently, thus increasing the processor utilization and decreases the processing time. This however, is carried out using single-layer routing.
Table of Contents

2Abstract

41.
Introduction

52.
Maze Routing Algorithm

53.
Lee algorithm

53.1
Applications

53.2
Strengths and Weaknesses

63.3
Description

73.4
Lee algorithm in action

104.
Mapping Lee Algorithm onto Parallel Architectures

115.
Parallel Implementation

125.1
Sequential Flow chart for Lee Algorithm

135.2
Parallelized Flow chart for Lee algorithm

146.
Results and Findings

207.
Final Results

218.
Conclusion

229.
References

23Appendix

1. Introduction
Routing is the task of finding a set of connections that will wire together the terminals of different modules on a printed circuit board or VLSI chip. Each connection connects a source terminal to a destination terminal. The Maze Routing algorithm is an algorithm to find connections between the terminals and the Lee algorithm is one possible solution for Maze routing problems. Lee algorithm searches for the shortest path between two terminals and guarantees to find a route between two points if the connection exists. This algorithm also guarantees the shortest path between the source and the destination terminals. Routing algorithms can be applied to automated wiring, global routing, detailed routing, CAD and other problems such as robot path planning.
[image: image2.png]

[image: image3]
Fig 1. Printed Circuit Board – Ref [2]
[image: image4.jpg]

Fig 2. VLSI chip – Ref [7]
2. Maze Routing Algorithm
Maze routing algorithm tries to find the shortest path between two points in a maze for a single wire if such a path exists. In this scheme the source cell sends messages to its four neighbors. The message propagates in the form of a wave to other nodes. The first wave front that reaches the destination determines the connecting path. There are two phases in this algorithm. In the first phase nodes are labeled with their distances from the source. In the next phase distances are used to trace from sink to source choosing a path with the least distance to the source.
3. Lee algorithm
Lee algorithm is one possible solution for Maze routing problems. This algorithm represents the routing layer as a grid, where each grid point can contain connections to adjacent grid points.
3.1 Applications
· VLSI routing

· Computer Aided Design (CAD)

· Robot Path planning

· Global and detailed routing
3.2 Strengths and Weaknesses
Strengths:

· Guarantee to find connection between 2 terminals if it exists.

· Guarantee minimum path.

Weaknesses:

· Requires large memory for dense layout

· Slow

3.3 Description
It searches for a shortest-path connection between the source and destination nodes of a connection by performing a breadth-first search and labeling each grid point with its distance from the source. This expansion phase will eventually reach the destination node if a connection is possible. A second trace back phase then forms the connection by following any path with decreasing labels. This algorithm is guaranteed to find the shortest path between a source and destination for a given connection. However, when multiple connections are made one connection may block other connections. The wave expansion marks only points in the routable area of the chip, not in the blocks or already wired parts. To minimize segmentation it is best to keep in one direction as long as possible.
1) Initialization
 - Select start point, mark with 0

 - i := 0

2) Wave expansion

 - REPEAT

 - Mark all unlabeled neighbors of points marked with i with i+1

 - i := i+1

 UNTIL ((target reached) or (no points can be marked))

3) Backtrace

 - go to the target point

 REPEAT

 - go to next node that has a lower mark than the actual node

 - add this node to path

 UNTIL (start point reached)

4) Clearance

 - Block the path for future wirings

 - Delete all marks

Although Lee algorithm guarantees to find the connection between 2 terminals if it exists and also it guarantees minimum path, it requires large memory for dense layout and it is slow. The time and space complexity for this algorithm for an M by N grid is O(MN).
3.4 Lee algorithm in action
(Figures 3 to 6 shows demonstration)

1. Routing layer is represented as a grid

2. Each grid point contains connections to adjacent grid points.

3. Search for a shortest-path connection between the source and destination by:

4. Performing a breadth-first search

5. Labeling each grid point with it's distance from the source

6. Trace-back phase forms the connection by following paths with decreasing labels.

In figure 3, source and destination nodes are chosen in the grid. In the expansion phase as shown in figure 4, waves start to propagate and expand from source “S” to destination “T” terminals. When target is reached, the trace back phase is ignited. As shown in figure 5, the algorithm starts from the destination point and looks for nodes with the least label to add to the chosen path to obtain the shortest path between the nodes. In figure 6, trace back is complete and the connection is formed. This path is marked and blocked for future wiring.

[image: image5]
Fig 3. Ready to route – S: Source, T: Destination

[image: image6]
Fig 4. Expansion phase – Target is found

[image: image7]
Fig 5. Traceback phase

[image: image8]
Fig 6. Traceback complete
Figure 7 demonstrates the algorithm trying to find a separate connection on both sides of a blockage. The waves propagate around the blockage to reach the destination node.

[image: image9]
Fig 7. Dealing with blockage

4. Mapping Lee Algorithm onto Parallel Architectures
Lee Algorithm is simple and easy to implement; however, since it is computationally intensive, it seems to be an attractive candidate for implementation on parallel systems. Mapping the cells onto parallel format is critical to the efficiency of the algorithm. Grid cells can be mapped directly onto a parallel architecture. Different parallelization methods acquire different mapping strategies to improve efficiency of the system. One scheme maps the algorithm to a mesh or hypercube computer and performs wave front expansion in parallel. Some systems use pipelining methods to parallelize subsequent phases of the algorithm. Also letting expansion waves start from both source and destination could contribute in the enhancement of the parallel system. One strategy aims to increase processor utilization by partitioning the grid space into covering rectangles and by mapping each triangle to a processor. In this scheme they keep the size of rectangles as parameters and try to find the optimal parameters to increase processor utilization. In this case when size of covering rectangles decreases, the number of boundary cells and therefore the processor utilization increases.
5. Parallel Implementation
Lee algorithm can work very well in a SIMD application. In this scheme a wave can be propagated in parallel and each node can propagate many waves. MPI allows parallel processing of many signals which is limited by number of processors. In this case each node can connect one signal. Speedup is the result of having each process route the portion of connections which is obtained by dividing the number of connections by the number of processors. The routing can be done in parallel. Speedup is expected to be proportional to number of processors especially for large ASICs.
Figure 8 and 9 depict the flow charts of the sequential and parallel implementations. As shown in figure 9, the first part of the algorithm is accomplished by processor 0 and the task of finding connections between different terminals are performed by all processors in parallel format to enhance system performance. At the end of the program all processors report to processor 0 to demonstrate the final result.
5.1 Sequential Flow chart for Lee Algorithm
[image: image1.emf]
Fig 8. Sequential implementation flow chart

5.2 Parallelized Flow chart for Lee algorithm
[image: image16.wmf]Start

Read input

file

Grid size

,

Connections

Create empty

grid based on

input

Fill grid with

blockages

/

routing blocks

(

known

)

Wave

expansion

Found

connection

Store new grid

Go to next start

/

end pair

Finished

routing

.

Print

Grid

Fig 9. Parallel implementation flow chart

6. Results and Findings
For the input data 5 different routing files named fcct1, fcct2, fcct3, fcct4 and fcct5 were used. All files are grids with the collection of routing terminals that are simulated to be connected. “fcct1” has a very small grid with only 7 connections. “fcct2, 3, 4, 5” have increasingly larger size and more connections thus require more computation time. “fcct5” which is the largest file has about 4000 connections. This is the file that we expect to observe the best result after system parallelization.
The first set of experiment was done with the following setup:
· MPI for Windows

· 3 Machines

· DragoAMD – AMD Phenom II x4, 3.2 GHz - Ethernet

· Dina-netbook – AMD Athlon,1.2 GHz – Wi-Fi

· HTPC – AMD k8 x2, 2.1 GHz – Wi-Fi

Process 0 was used to measure time. HTPC turned out to be the slowest while DragoAMD was the fastest. Two different setups were used to collect results:

Trial 1: Dina-netbook is process 0
Trial 2: HTPC is process 0

Trial 1 had a bug and all processes ran one after another. Therefore execution time increased as more processes were added. In this case the results were especially bad because process 2 was HTPC which was the slowest processor. Trial 2 had HTPC as the first process so by adding processes, we improved performance. Figure 10 demonstrates the sample program output where all processes print their machine name to screen. This is how we know all machines are running. Process 0 prints timing data to the log file

[image: image10]
Fig 10. Sample output
Real program output demonstrates the routing results which were not printed with parallel program since it is difficult to recompile with the graphics package. Figure 11 shows the sequential program outputs grid. In this figure each routing track is recognized with different color.
[image: image11.png]SRS NI RS NI R R A A A i i A N

ikt P
SRS I8 1 o8 | ﬁ)\ FEFEEEE L
P

Tracks Used: 3580

Fig 11. Sequential program outputs grid

Figures 12 to 15 demonstrate the result when experiment was done with the above mentioned processors and trial specifications.

[image: image12]
Fig 12. Trial 1 for fcct1, 2, 3, 4

[image: image13]
Fig 13. Trial 1 for fcct5

[image: image14]
Fig 14. Trial 2 for fcct1, 2, 3, 4

[image: image15]
Fig 15. Trial 2 for fcct5
In this set of experiments the MPIBarrier function did not seem to work as expected. This might have been the cause for the unexpected results for fcct1, 2, 3, and 4. It seems that it did not synchronize processes properly. We tested the matter by putting a print statement immediately after the Barrier call. The print to screen did not come at the same (or even similar) time from all CPUs. For this set of experiment where not all CPUs have the same performance, there can be significant gains from carefully splitting the workload. One option is to dynamically assign tasks to the process with least workload. In this case one process would be wasted on dispatching tasks.
We parallelized the Lee algorithm, not the chip routing algorithm. The Lee algorithm is just one step in chip routing. To successfully route the entire chip, there needs to be communication between processes, since they’re all using joint routing resources

7. Final Results
For the second set of experimentations we used 19 processors gradually to measure performance. Figure 16 and 17 demonstrate the result when experiments were done in Ryerson lab with 19 Linux machines. We expected to see best result in the larger files specifically in file “fcct5” with around 4000 connections. By adding processes, we improved performance in these files as expected. As shown in figure adding the sixth processor to the largest file saturated the system. Five processors turned out to be the optimal number for the file of this size.
[image: image17.wmf]Start

Read input

file

Grid size

,

Connections

Create empty

grid based on

input

Fill grid with

blockages

/

routing blocks

(

known

)

Finished

routing

.

Print

Grid

Go to next start

/

end pair

Go to next start

/

end pair

Go to next start

/

end pair

Process

0

Process

0

Fig 16. Final results for fcct4 with 5 processors
[image: image18.png]

Fig 17. Final results for the largest file “fcct5” with 13 processors
8. Conclusion
We were able to achieve optimal efficiency of the Lee algorithm by parallelizing the wave expansion phase. Implementing this on up to thirteen processors reduced the processing time drastically. The parallel implementation was more efficient with larger circuits, with a large number of tracks, indicating that the more complex the circuit, the more efficient output result obtained.
9. References
[1] I-Ling Yen, Rumi M Dubash, Farokh B. Bastani, “Stategies for Mapping Lee’s Maze Routing Algorithm onto Parallel Architectures”
[2] Jianjiang Ceng, Stefan Kraemer, “Maze Router with Lee Algorithm”, Rwthaachen Univarsity

[3]http://www.eecs.northwestern.edu/~haizhou/357/lec6.pdf
[4] http://www.princeton.edu/~wolf/modern-

 HYPERLINK "http://www.princeton.edu/~wolf/modern-vlsi/Overheads/CHAP10-1/sld025.htm" \t "_parent" vlsi/Overheads/CHAP10-1/sld025.htm

[5] http://cadapplets.lafayette.edu/MazeRouter.html

[6] http://en.wikipedia.org/wiki/Lee_algorithm

[7] Wikipedia

Appendix

 Source Code of
Parallel Implementation of Lee Algorithm
/* Main program for implementing Lee's algorithm

 */

#include "mpi.h"

#include <iostream>

#include <stdlib.h>

//#include <direct.h>

#include <math.h>

//#define PRINT_GRIDS

//#define DEBUG_PRINT

#define TEXT_PRINT

//#define PRINT_GRIDS_INITIAL

#define CELL_SIZE 100

void print_grid (int[][100], int);

static void delay (void);

static void button_press (float x, float y);

static void drawscreen (int);

static void new_button_func (void (*drawscreen_ptr) (void));

void my_setcolor(int);

void endMe (int, char*);

// This stuff should really be moved to the .h file

// Structure for hol ding data

typedef struct connection {

int x1, y1, p1, x2, y2, p2;

} connection;

typedef struct grid {

int x, y, value;

} grid;

// Function declarations

connection* add_connection(connection *, int, int, int, int, int, int);

void print_connection(connection*, int, int, int, int, int, int);

using namespace std;

double f(double);

double f(double a)

{

 return (4.0 / (1.0 + a*a));

}

//void GetCurrentPath(char* buffer)

//{

//getcwd(buffer, _MAX_PATH);

//}

int main(int argc,char **argv)

{

 int n, myid, numprocs, i ;

 double PI25DT = 3.141592653589793238462643;

 double mypi, pi, h, sum, x;

 double startwtime = 0.0, endwtime;

 int namelen;

 char processor_name[MPI_MAX_PROCESSOR_NAME];

/* */

FILE *fp;

FILE *logfile;

char line[14];

char *p;

int r=5;

// Rows and columns (grid)

int w=55;

// Routing tracks in each channel

int x1, y1, p1, x2, y2, p2;

int point_count;

int found;

int level;

int prevJ;

int prevK;

int startX;

int startY;

int endX;

int endY;

char filename[40];

 char my_string[40];

int k, j, z;

int line_count=0;

int conn;

int
grid_size=6;

int grid[100][100];

int grid_tracks[100][100];

int tracks_used = 0;

int total_tracks_used;

int starting_grid[100][100];

// Initialize MPI

MPI::Init(argc,argv);

 numprocs = MPI::COMM_WORLD.Get_size();

 myid = MPI::COMM_WORLD.Get_rank();

 MPI::Get_processor_name(processor_name,namelen);

cout << "Process #" << myid << " of " << numprocs << " is on " << processor_name << endl;

// Create variable to hold all connections

connection my_connections[10000];

#ifdef DEBUG_PRINT

char CurrentPath[50];

//GetCurrentPath(CurrentPath);

cout << CurrentPath << endl;

#endif

MPI::COMM_WORLD.Barrier();

//Get connectivity information from file. Only Host process needs to do this

if (myid == 0){

 fprintf(stdout, "1: fcct1\n2: fcct2\n3: fcct3\n4: fcct4\n5: fcct5\nPick file:");

 fflush(stdout);

 if (scanf("%d",&n) != 1) {

fprintf(stdout, "No number entered; quitting\n");

endMe(myid, processor_name);

}

else {

fprintf(stdout, "you entered: %d \n", n);

switch(n){

case 1:

sprintf(filename, "%s", "fcct1");

break;

case 2:

sprintf(filename, "%s", "fcct2");

break;

case 3:

sprintf(filename, "%s", "fcct3");

break;

case 4:

sprintf(filename, "%s", "fcct4");

break;

case 5:

sprintf(filename, "%s", "fcct5");

break;

default: sprintf(filename, "%s", "fcct1");

}

}

#ifdef DEBUG_PRINT

printf("Filename: %s\n", filename);

#endif

fp = fopen (filename, "r");

// Open file

if(myid == 0)

logfile = fopen ("mylogfile.log", "a+");

// Open file

if(fp==NULL){

cout << "ERROR: Cant open file. Process " << myid << " of " << numprocs << " on " << processor_name << endl;

}

line_count = 0;

while(!feof(fp)){

if (line_count ==0) {

fscanf(fp, "%d", &r);

}

else if (line_count ==1) {

fscanf(fp, "%d", &w);

}

else {

fscanf(fp, "%d %d %d %d %d %d\n", &x1, &y1, &p1, &x2, &y2, &p2);

//printf("%d,%d,%d,%d,%d,%d\n", x1, y1, p1, x2, y2, p2);

if(x1==-1|y1==-1|x2==-1|y2==-1)

break;

else{

add_connection(my_connections + line_count-2, x1, y1, p1, x2, y2, p2);

}

}

line_count++;

}

fclose(fp);

startwtime = MPI::Wtime();
// Get Starting time

} // End Process 0 portion

MPI::COMM_WORLD.Bcast(&line_count, 1, MPI_INT, 0);

MPI::COMM_WORLD.Bcast(&r, 1, MPI_INT, 0);

MPI::COMM_WORLD.Bcast(&w, 1, MPI_INT, 0);

MPI::COMM_WORLD.Bcast(&my_connections, 10000, MPI_INT, 0); // if it doesn't work change to 10000

MPI::COMM_WORLD.Barrier();
// Synchronize all processes

#ifdef DEBUG_PRINT

printf("R: %d\nW: %d\nline_count: %d\n", r, w, line_count);

#endif

point_count = line_count-2;

// Create grid - it will have (r+2)*2-1 rows and colums

// This number comes from the fact that there are 2 extra rows/colums for IOs,

// and we'll need to label both BLEs and routing resources on the grid

grid_size = (r+2)*2-1;

#ifdef DEBUG_PRINT

printf("Process %d found Grid size %d, r: %d\n", myid, grid_size, r);

#endif

// Fill the grid:

// 99

-> blocked off

// 98

-> BLE

// 97

-> Switchbox - assume routable

// 96

-> Routing track

// w

-> Routing track - the value will tell us how many tracks are available

for(k=0; k<(r+2)*2-1; k++){

for(j=0; j<(r+2)*2-1; j++){

if(k==0 || k==grid_size-1){

if(j%2==0){

grid[j][k] = 98;

grid_tracks[j][k] = 98;

}

else {

grid[j][k] = 99;

grid_tracks[j][k] = 99;

}

}

else if(k%2==0){

if(j%2==0){

grid[j][k] = 98;

grid_tracks[j][k] = 98;

}

else{

grid[j][k] = 96;

grid_tracks[j][k] = w;

}

}

else{

if(j==0 || j==grid_size-1) {

grid[j][k] = 99;

grid_tracks[j][k] = 99;

}

else if(j%2==0){

grid[j][k] = 96;

grid_tracks[j][k] = w;

}

else{

grid[j][k] = 97;

grid_tracks[j][k] = 97;

}

}

}

}

// Block off corners

grid[0][0] = 99;

grid[0][grid_size-1] = 99;

grid[grid_size-1][0] = 99;

grid[grid_size-1][grid_size-1] = 99;

grid[grid_size-1][grid_size-1] = 99;

// Print out grid to make sure we're ok

#ifdef PRINT_GRIDS_INITIAL

for(k=(r+2)*2-2; k>=0; k--){

printf("+++\n");

for(j=0; j<(r+2)*2-1; j++){

printf("| %2d ", grid[j][k]);

}

printf("|\n");

}

printf("+++\n");

for(k=(r+2)*2-2; k>=0; k--){

printf("==\n");

for(j=0; j<(r+2)*2-1; j++){

printf("| %2d ", grid_tracks[j][k]);

}

printf("|\n");

}

printf("==\n");

#endif

//Copy Grids -starting_grid is non-routed

for(k=(r+2)*2-2; k>=0; k--){

for(j=0; j<(r+2)*2-1; j++){

starting_grid[j][k] = grid[j][k];

}

}

//}
// End Process 0 portion

// Send grid to all processes

//MPI::COMM_WORLD.Bcast(&grid, 10000, MPI_INT, 0);

//MPI::COMM_WORLD.Bcast(&grid_tracks, 10000, MPI_INT, 0);

//MPI::COMM_WORLD.Bcast(&my_connections, 10000, MPI_INT, 0);

//MPI::COMM_WORLD.Bcast(&starting_grid, 10000, MPI_INT, 0);

//MPI::COMM_WORLD.Bcast(&point_count, 1, MPI_INT, 0);

//MPI::COMM_WORLD.Bcast(&r, 1, MPI_INT, 0);

// MAIN FOR LOOP

for(conn=0; conn<point_count; conn++){

if(conn%numprocs == myid){

#ifdef DEBUG_PRINT

cout << "Conn: " << conn << " of " << point_count << " on " << myid << endl;

#endif

//grid = starting_grid;

for(k=(r+2)*2-2; k>=0; k--){

for(j=0; j<(r+2)*2-1; j++){

grid[j][k] = starting_grid[j][k];

}

}

connection *s = my_connections+conn;

// Convert coordinates to new grid

s->x1 = s->x1*2;

s->x2 = s->x2*2;

s->y1 = s->y1*2;

s->y2 = s->y2*2;

// Check that start and enpoints are correct

if((grid[s->x1][s->y1] != 98) || (grid[s->x2][s->y2] != 98)){

printf("Startpoint: X: %d Y: %d\n",grid[s->x1][s->y1]);

printf("Endpoint: X: %d Y: %d\n",grid[s->x2][s->y2]);

printf("Error, incorrect start or endpoint\n");

}

// Get start pin

// Check if it's an IO port

if(s->x1==0){

startX = s->x1 + 1;

startY = s->y1;

}

else if(s->y1==0){

startX = s->x1;

startY = s->y1 + 1;

}

else if(s->x1==grid_size-1){

startX = s->x1 - 1;

startY = s->y1;

}

else if(s->y1==grid_size-1){

startX = s->x1;

startY = s->y1 - 1;

}

else { // Move connection based on which pin we're connecting

if(s->p1==0){

startX = s->x1;

startY = s->y1 + 1;

}

else if(s->p1==1){

startX = s->x1 - 1;

startY = s->y1;

}

else if(s->p1==2){

startX = s->x1;

startY = s->y1 - 1;

}

else if(s->p1==3){

startX = s->x1 + 1;

startY = s->y1;

}

else if(s->p1==4){

startX = s->x1 + 1;

startY = s->y1;

}

}

// Get end pin

// Check if it's an IO port

if(s->x2==0){

endX = s->x2 + 1;

endY = s->y2;

}

else if(s->y2==0){

endX = s->x2;

endY = s->y2 + 1;

}

else if(s->x2==grid_size-1){

endX = s->x2 - 1;

endY = s->y2;

}

else if(s->y2==grid_size-1){

endX = s->x2;

endY = s->y2 - 1;

}

else { // Move connection based on which pin we're connecting

if(s->p2==0){

endX = s->x2;

endY = s->y2 + 1;

}

else if(s->p2==1){

endX = s->x2 - 1;

endY = s->y2;

}

else if(s->p2==2){

endX = s->x2;

endY = s->y2 - 1;

}

else if(s->p2==3){

endX = s->x2 + 1;

endY = s->y2;

}

else if(s->p2==1){

endX = s->x2 + 1;

endY = s->y2;

}

}

if(grid_tracks[startX][startY] > 0){

//grid_tracks[startX][startY]--;

//printf("Routable %d\n", grid_tracks[startX][startY]);

}

else {

// Can't route

printf("Can't route this signal - all tracks used up %d\n", grid_tracks[startX][startY]);

break;

}

//printf("CONN %d :: Connecting loc %d, %d to loc %d, %d\n", conn, startX, startY, endX, endY);

grid[startX][startY] = 0;
// Starting point

level=0;

found = 0;

while (found==0) {

for(k=0; k<(r+2)*2-1; k++){

for(j=0; j<(r+2)*2-1; j++){

//if(myid==1)

//printf("j %d, k %d\n", j, k);

if(grid[j][k]==level){

if(grid[j+1][k]==97){

grid[j+1][k]=level+1;

}

else if(grid[j+1][k]==96){

if(grid_tracks[j+1][k]>0){

grid[j+1][k]=level+1;

}

}

if(grid[j][k+1]==97){

grid[j][k+1]=level+1;

}

else if(grid[j][k+1]==96){

if(grid_tracks[j][k+1]>0){

grid[j][k+1]=level+1;

}

}

if(grid[j-1][k]==97){

grid[j-1][k]=level+1;

}

else if(grid[j-1][k]==96){

if(grid_tracks[j-1][k]>0){

grid[j-1][k]=level+1;

}

}

if(grid[j][k-1]==97){

grid[j][k-1]=level+1;

}

else if(grid[j][k-1]==96){

if(grid_tracks[j][k-1]>0){

grid[j][k-1]=level+1;

}

}

}

}

}

level++;

if(grid[endX][endY]!=96)

found = 1;

}

// Back-track trough connection

found = 0;

j=endX;

k=endY;

level = grid[endX][endY];

grid[endX][endY] = grid[endX][endY]+100;

grid_tracks[endX][endY]--;

tracks_used++;

while(found==0){

if(level==1){

found=1;

}

if(grid[j-1][k]==level-1){

j=j-1;

}

else if(grid[j][k-1]==level-1){

k=k-1;

}

else if(grid[j+1][k]==level-1){

j=j+1;

}

else if(grid[j][k+1]==level-1){

k=k+1;

}

grid[j][k] = grid[j][k]+100;

if(grid_tracks[j][k]!=97){

grid_tracks[j][k]--;

tracks_used++;

}

level--;

}

// Print out grid to make sure we're ok

#ifdef PRINT_GRIDS

for(k=(r+2)*2-2; k>=0; k--){

#ifdef TEXT_PRINT

for(z=0; z<=(r+2)*2-2; z++){

printf("-----");

}

printf("\n");

#endif

for(j=0; j<(r+2)*2-1; j++)

{

if(grid[j][k]>=100){

#ifdef TEXT_PRINT

printf("|*%2d ", grid[j][k]-100);

#endif

sprintf(my_string, "%2d", grid[j][k]-100);

#ifdef SHOW_TRACKS

setcolor(YELLOW);

if(k%2==0){

my_setcolor (grid_tracks[j][k]%8);

fillrect (10+(float)j*CELL_SIZE + 10*(grid_tracks[j][k]),10+(float)k*CELL_SIZE,10+(float)(j)*CELL_SIZE + 10*(grid_tracks[j][k])+4,10+(float)(k+1)*CELL_SIZE);

}

else if(j%2==0){

my_setcolor (grid_tracks[j][k]%8);

fillrect (10+(float)j*CELL_SIZE,10+(float)k*CELL_SIZE + 10*(grid_tracks[j][k]),10+(float)(j+1)*CELL_SIZE,10+(float)(k)*CELL_SIZE + 10*(grid_tracks[j][k])+4);

}

else {

// Switchbox

setlinestyle (DASHED);

drawline (10+(float)(j+1)*CELL_SIZE,10+(float)(k)*CELL_SIZE,10+(float)(j)*CELL_SIZE,10+(float)(k)*CELL_SIZE + CELL_SIZE);

drawline (10+(float)j*CELL_SIZE,10+(float)k*CELL_SIZE,10+(float)(j)*CELL_SIZE + CELL_SIZE,10+(float)(k+1)*CELL_SIZE);

setlinestyle (SOLID);

}

setcolor (BLACK);

#endif

#ifdef SHOW_PATHS

my_setcolor (conn%8);

if(k%2==0){

drawline (10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k)*CELL_SIZE,10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k+1)*CELL_SIZE);

prevJ = j; // vertical line

prevK = k;

}

else if(j%2==0){

drawline (10+(float)(j)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10,10+(float)(j+1)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10);

prevJ = j; // horizontal line

prevK = k;

}

else {

// Switchbox

printf("\nPrevJ %d PrevK %d\nj: %d, k: %d\n", prevJ, prevK, j, k);

if(prevJ>j){
// previous block above

drawline (10+(float)(j)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10,10+(float)(j+1)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10);

}

else if(prevJ<j){
// previous block below

drawline (10+(float)(j)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10,10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k)*CELL_SIZE+10*conn+10);

drawline (10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k)*CELL_SIZE,10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k)*CELL_SIZE+10*conn+10);

}

else if(prevK<k){
// previous block to the left

drawline (10+(float)(j)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10,10+(float)(j+1)*CELL_SIZE,10+(float)(k)*CELL_SIZE+10*conn+10);

}

else if(prevK>k){
// previous block to the right

drawline (10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k)*CELL_SIZE,10+(float)(j)*CELL_SIZE+10*conn+10,10+(float)(k+1)*CELL_SIZE);

}

}

#endif

//drawtext (10+(float)j*CELL_SIZE+CELL_SIZE/2,10+(float)k*CELL_SIZE+CELL_SIZE/2,my_string,500.);

}

else{

#ifdef TEXT_PRINT

printf("| %2d ", grid[j][k]);

#endif

}

}

#ifdef TEXT_PRINT

printf("|\n");

#endif

}

#ifdef TEXT_PRINT

for(z=0; z<=(r+2)*2-2; z++){

printf("-----");

}

printf("\n");

#endif

// Tracks

#ifdef TEXT_PRINT

for(k=(r+2)*2-2; k>=0; k--){

for(z=0; z<=(r+2)*2-2; z++){

printf("+++++");

}

printf("\n");

for(j=0; j<(r+2)*2-1; j++)

{

if(grid_tracks[j][k]>=100){

printf("|*%2d ", grid_tracks[j][k]-100);

}

else{

printf("| %2d ", grid_tracks[j][k]);

}

}

printf("|\n");

}

for(z=0; z<=(r+2)*2-2; z++){

printf("+++++");

}

printf("\n");

#endif

#endif

}

}

MPI::COMM_WORLD.Reduce(&tracks_used, &total_tracks_used, 1, MPI_INT, MPI_SUM, 0);

if (myid == 0)

printf("Tracks Used: %d\n", total_tracks_used);

 n = 10000;

/* default # of rectangles */

 MPI::COMM_WORLD.Bcast(&n, 1, MPI_INT, 0);

 h = 1.0 / (double) n;

 sum = 0.0;

 MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0);

 if (myid == 0) {

// Get Runtime and put it in the logfile

endwtime = MPI::Wtime();

cout << "wall clock time = " << endwtime-startwtime << endl;

fprintf(logfile, "File: %s\tTime: %.8f\tNum Procs: %d\n", filename, endwtime-startwtime, numprocs);

fclose(logfile);

 }

endMe(myid, processor_name);

//
delete []grid;

 return 0;

} // main

void endMe (int myid, char* processor_name){

MPI::COMM_WORLD.Barrier();

cout << "EXITING Process #" << myid << " on " << processor_name << endl;

 MPI::Finalize();

}

connection* add_connection(connection *s, int x1, int y1, int p1, int x2, int y2, int p2)

{

s->x1 = x1;

s->y1 = y1;

s->p1 = p1;

s->x2 = x2;

s->y2 = y2;

s->p2 = p2;

return s;

}

void print_connection(connection *s, int x1, int y1, int p1, int x2, int y2, int p2)

{

printf("X1: %d\n", s->x1);

printf("Y1: %d\n", s->y1);

printf("P1: %d\n", s->p1);

printf("X2: %d\n", s->x2);

printf("Y2: %d\n", s->y2);

printf("P2: %d\n", s->p2);

}

void print_grid (int grid[][100], int r){

int k, j;

for(k=0; k<(r+2)*2-1; k++)

{

for(j=0; j<(r+2)*2-1; j++)

{

printf("loc %d, %d, %d\n", j, k, grid[j][k]);

}

}

}

� EMBED Unknown ���

� EMBED Unknown ���

21

[image: image19.png]

[image: image20.png]234567

2[3]4]5]6[7

1

234567

1

1

2

765 &

4[3]2

OEE

5[ala|2[3]e[5]6]7
65 4[3[4]5]8
765458

[image: image21.png]234567

2[3]4]5]6[7

1

234567
34567

1

1

3

2

0

765 &

4[3]2

OEE

765458

[image: image22.png]

[image: image23.png]AEE

AR

1

AEE

1

1

2

2

4[3]2]3

[image: image24.png]

[image: image25.png]2

2
1
2

2
1

1
2

1

1
2

1
2

1
2

1
2

1

567 [8]9]0

234 [s[e|7|8[a]0

olafo

234 [s[e|7|8[a]0

1

234 [s[e|7]8]a]0

oaa e[

1

1

1

ofafe|7[e]e]0

1
2

2

2

ofala|7[e|7]e]a]0

1
2

1
2

6

8

0

2

2

7[6]s]a]3]2]3]4[s[e[7[8]8]0

[image: image26.png]

[image: image27.wmf]Start

Read input

file

Grid size

,

Connections

Create empty

grid based on

input

Fill grid with

blockages

/

routing blocks

(

known

)

Wave

expansion

Found

connection

Store new grid

Go to next start

/

end pair

Finished

routing

.

Print

Grid

[image: image28.wmf]Start

Read input

file

Grid size

,

Connections

Create empty

grid based on

input

Fill grid with

blockages

/

routing blocks

(

known

)

Finished

routing

.

Print

Grid

Go to next start

/

end pair

Go to next start

/

end pair

Go to next start

/

end pair

Process

0

Process

0

[image: image29.png]‘examples - Microsoft Visual Studio (Administrator)

File Edit View Project Build Debug Team Data Tools Architecture Test Anabze Window Help
ke in32 -] 2 (5000 Bl

Zp=AE I IR - - b [Release -
3 ol B R -

9 E

] Solution ‘examples’ (1 project)

(Global Scope)
E/* Main program for implementing Lee's algorithm
*/

o
l External Dependencies

€] MPIEXEC wrapper

@ Applicaion [C:rog

Number of processes.

[ek

ShowCommord o

B C\Windows\System32\cmd.exe

[Process 40 of 3 is on htpe
[Process #2 of 3 is on DragoAMD
[Process i1 of 3 is on Dina-Nethook

EXITING Process fiL on Dina-Nethook
EXITING Process #i8 on htpc

™ more options

EXITING Process fi2 on DragoAMD
[Press any key to continue . - . -

[image: image30.png]® 3 —-

1.2

0.8

0.6

0.4

0.2

Trial 1

—fcct4

feet3
———fcct2
feet1

2 3
Number of CPUs

[image: image31.png]® 3 —-

600

500

400

300

200

100

Trial 1

Number of CPUs

fects

[image: image32.png]® 3 —-

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Trial 2

2

Number of CPUs

—fcct4

feet3
———fcct2
———fect1

[image: image33.png]® 3 —-

500

450

400

350

300

250

200

150

100

50

Trial 2

2
Number of CPUs

——fects

[image: image34.emf]fcct4

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

Number of Processors

Time (Sec)

fcct4

_1331917743.vsd
Start

Read input file

Grid size,
Connections

Create empty grid based on input

Fill grid with blockages/routing blocks (known)

Wave expansion

Found connection

Store new grid

Go to next start/end pair

Finished routing. Print Grid

_1331917788.vsd
Start

Read input file

Grid size,
Connections

Create empty grid based on input

Fill grid with blockages/routing blocks (known)

Go to next start/end pair

Finished routing. Print Grid

Go to next start/end pair

Go to next start/end pair

Process 0

Process 0

