SystemC: Co-specification and
Embedded System Modeling

EES8205: Embedded Computer Systems
http://www.ecb.torontomu.ca/~courses/ee8205/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan
Electrlcal and Com?uter Engineering
Toronto Metrooolitan Uniyarsity

Overview:
= Hardware-Software Co-Specification
= SystemC and Co-specification
= Introduction to SystemC for Co-specification
= A SystemC Primer

Introductory Articles on Hardware-Software Codesign, part of SystemC: From the Ground Up
related documents available at the course webpage

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 1

Hardware-Software Codesign

Co-design of Embedded Systems consists of the
following parts:

= Co-Specification
Developing system specification that describes hardware,
software modules and relationship between the hardware
and software

= Co-Synthesis
Automatic and semi-automatic design of hardware and
software modules to meet the specification

= Co-Simulation and Co-verification
Simultaneous simulation of hardware and software

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 2

HW/SW Co-Specification

Model the Embedded system functionality from
an abstract level.

No concept of hardware or software yet.

Common environment

SystemC: based on C++.
Specification iIs analyzed to generate a task
graph representation of the system
functionality.

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page:

Co-Specification

« A system design language Is needed to describe the
functionality of both software and hardware.

« The system is first defined without making any
assumptions about the implementation.

« A number of ways to define new specification
standards grouped in three categories:

> SystemC An open source library in C** that provides a modeling
platform for systems with hardware and software components.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 4

SystemC for Co-specification

Open SystemC Initiative (OSCI) 1999 by EDA venders
Including Synopsys, ARM, CoWare, Fujitsu, etc.

o A C++ based modeling environment containing a
class library and a standard ANSI C++ compiler.

o SystemC provides a C++ based modeling platform for
|IP exchange and co-design of system-level
Intellectual property (SoC-IP) models.

= SystemC Is not an extension to C**
SystemC 1.0 and 2.1, 2.2 and 2.3 versions
It has a new C++ class library

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 5

SystemC Library Classes

SystemC classes enable the user to
« Define modules and processes

« Add inter-process/module communication through ports
and signals.

Modules/processes can handle a multitude of data types:
Ranging from bits to bit-vectors, standard C++ types to
user define types like structures

Modules and processes also introduce timing, concurrency
and reactive behavior.

» Using SystemC requires knowledge of C/C++

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 6

SystemC 2.0 Language Architecture

Standard Channels

for Various MOC's
Kahn Process Networks

Static Dataflow, etc.

Methodology-Specific
Channels
Master/Slave Library, etc.

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc.

Core Language Data Types
Modules Logic Type (01XZ)
Ports Logic Vectors
Processes Bits and Bit Vectors
Interfaces Arbitrary Precision Integers
Channels Fixed Point Integers Integers
Events
C++ Language Standard
©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 7

SystemC 2.0 Language Architecture

* All of SystemC builds on C++
* Upper layers are cleanly built on top of the lower layers

* The SystemC core language provides a minimal set of
modeling constructs for structural description, concurrency,
communication, and synchronization.

* Data types are separate from the core language and user-
defined data types are fully supported.

* Commonly used communication mechanisms such as
signals and FIFOs can be built on top of the core language.

The MOCs can also be built on top of the core language.

* |f desired, lower layers can be used without needing the
upper layers.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 8

SystemC Benefits

SystemC 2.x allows the following tasks to be

performed within a single language:

« Complex system specifications can be developed and simulated

« System specifications can be refined to mixed software and
hardware implementations

« Hardware implementations can be accurately modeled at all the
levels.

« Complex data types can be easily modeled, and a flexible fixed-
point numeric type Is supported

« The extensive knowledge, infrastructure and code base built
around C and C++ can be leveraged

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 9

SystemC for Co-Specification

Multiple abstraction levels:

= SystemC supports untimed models at different levels of
abstraction,
 ranging from high-level functional models to detailed clock
cycle accurate RTL models.

Communication protocols:

= SystemC provides multi-level communication semantics
that enable you to describe the system 1/O protocols at
different levels of abstraction.

Waveform tracing:

= SystemC supports tracing of waveforms in VCD, WIF, and
ISDB formats.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 10

SystemC Development Environment

your standard
C/C++ development
environment

DSP
header m"ls (compiler) Interface
o c "hm"i“’ (linker) ASIC
I lib (debugger) N
class library
and) source files for system
simulation kernel . and test benches
]
tlmﬂkeli
“E-IFBEU A nﬁ“
sHcall a.out
spec!

executable = simulator

= _.i

5
— ima g -

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 11

SystemC Features

Rich set of data types:

= to support multiple design domains and abstraction levels.
« The fixed precision data types allow for fast simulation,
« Arbitrary precision types can be used for computations with large numbers.
« the fixed-point data types can be used for DSP applications.

Variety of port and signal types:
= To support modeling at different levels of abstraction, from the
functional to the RTL.

Clocks:
= SystemC has the notion of clocks (as special signals).
= Multiple clocks, with arbitrary phase relationship, are supported.

Cycle-based simulation:
= SystemC includes an ultra light-weight cycle-based simulation
kernel that allows high-speed simulation.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 12

SystemC Data types

« SystemC supports:
= all C/C++ native types
= plus specific SystemC types

« SystemC types:

= Types for systems modeling

= 2 values (‘0°,’1’)

= 4 values (°0°,°1°,°2°,°X”)
Arbitrary size integer (Signed/Unsigned)
Fixed point types

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 13

SC_Logic, SC_Int types

SC_Logic: More general than bool, 4 values :
(‘0° (false), ‘1’ (true), ‘X’ (undefined) , ‘Z’(high-impedance))

Assignment like bool
my_logic = “0’;
my _logic = ‘Z’;

Operators like bool but Simulation time bigger than bool

Declaration
sc_logic my_logic;

Fixed precision Integer: Used when arithmetic operations
need fixed size arithmetic operands
« INT can be converted in UINT and vice-versa
e 1-64 bits integer in SystemC
sC_int<n> -- signed integer with n-bits
sC_uint<n> -- unsigned integer with n-bits

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 14

Other SystemC types

Bit Vector
sc_bv<n>
2-valued vector (0/1)
Not used in arithmetics operations
Faster simulation than sc_Iv
Logic Vector
sc_lv<n>
Vector of the 4-valued sc_logic type
Assignment operator (=)
my_vector = “XZ01”
Conversion between vector and integer (int or uint)
Assignment between sc_bv and sc_Iv
Additional Operators:

Reduction -- | and_reduction() |or_reduction()| xor_ reduction()

Conversion --| to_string() |

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 15

SystemC Data types

Type Description

sc_logic Simple bit with 4 values(0/1/X/Z)
sc_int Signed Integer from 1-64 bits
sc_uint Unsigned Integer from 1-64 bits
sc_bigint Arbitrary size signed integer
sC_biguint Arbitrary size unsigned integer
sc_bv Arbitrary size 2-values vector
sc_lv Arbitrary size 4-values vector
sc_fixed templated signed fixed point
sc_ufixed templated unsigned fixed point
sc_fix untemplated signed fixed point
sc_ufix untemplated unsigned fixed point

©G. Khan

EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 16

SystemC types

Operators of fixed precision types

Bitwise
Arithmetics
Assignement
Equality
Relational
Auto-Inc/Dec
Bit selection
Part select
Concatenation

~ & | 2 >> <<

+ - * %

= += -= *= /= %= &= |=
== I=

< <= > > =

++ --

[X] e.g. mybit = myint[7]

range() e.g. myrange = myint.range(7,4)

(/)

e.g. intc = (inta, intb);

©G. Khan

EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 17

Usage of SystemC types

sc bit y, sc bv<8> x;
y = x[6];

sc_bv<1l6> x, sc bv<8> y;
y = x.range(0,7);

sc_bv<64> databus, sc_logic result;
result = databus.or reduce();

sc_1lv<32> bus2;

cout << “bus = “ << bus2.to string();

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 18

SystemC Specific Features

Modules:
= A class called a module: A hierarchical entity that can
have other modules or processes contained in it.

Ports:
= Modules have ports through which they connect to other
modules.
= Single-direction and bidirectional ports.

Signals:
= SystemC supports resolved and unresolved signals.
Processes:

= used to describe functionality.
= contained inside modules.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 19

Modules

The basic building block In SystemC to partition a design.
e Modules are similar to, entity in VHDL

e Modules allow designers to hide internal data
representation and algorithms from other modules.

Declaration
= Using the macro SC_ MODULE
SC_MODULE(modulename) {
= Using typical C++ struct or class declaration:
struct modulename : sc_module {

Elements:

Ports, local signals, local data, other modules,
processes, and constructors

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 20

SystemC Constructor

Constructor: Each module should include a constructor that
Identifies processes as methods using the SC_ METHOD macro.

SC_METHOD (funct) ; Identifies the function or process funct
Methods are called similar to C++ as:

function_type module _name::function_name(data_type var name){ ... }

« SC_METHOD process is triggered by events and executes all the
statements in it before returning control to the SystemC kernel.

A Method needs to be made sensitive to some internal or external
signal. e.g., sensitive_pos << clock or sensitive neg << clock

 Process and threads get executed automatically in the constructor
even If an event in sensitivity list does not occur. To prevent this
un-intentional execution, dont_initialize() function is used.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 21

//

SystemC Module

SC MODULE(module_name) {

// Ports declaration
// Signals declaration
// Module constructor : SC_CTOR

// Process constructors and sensibility list

SC_METHOD

// Sub-Modules creation and port mappings

// Signals initialization

}

7\

A

\ 4

7y

\ 4

A

module
process
process
Y module =—1=Imodule &

©G. Khan

EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 22

Signals and Ports

Ports of a module are the external interfaces that pass information to
and from a module.

SC_inout<data_type> port_name;
 Create an Input-output port of ‘data type’ with name
‘port_name’.
e SC_In and sc_out create input and output ports respectively.
Signals are used to connect module ports allowing modules to
communicate.

sc_signal<data type> sig_name ;

» Create a signal of type ‘data_type’ and name it ‘sig_name’.

« hardware module has its own input and output ports to which
these signals are mapped or bound.

For example:
in_tmp = in.read();
out.write(out_temp);

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 23

2-t0-1 Mux Modules

Module constructor — SC_CTOR is Similar to an

“architecture“ in VHDL

SC_MODULE(Mux21) {
sC_in< sc_uint<8> > 1inl;
sC_in< sc_uint<8> > 1in2;
sc_in< bool > selection;
sc_out< sc_uint<8> > out;

void MuxImplement(void);
SC_CTOR(Mux21) {
SC_METHOD(MuxImplement);
sensitive << selection;
sensitive << inl;
sensitive << in2;

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 24

SystemC Counter Code

struct counter : sc_module { //the counter module

sc_inout<int> in; // the input/output port of int type

sc_in<bool> clk; // Boolean input port for clock

void counter_fn(); // counter module function

SC_CTOR(counter) {
SC_METHOD(counter_fn); // declare the counter_fn as a method
dont_initialize(); // don’t run it at first execution
sensitive_pos << clk; // make it sensitive to +ve clock edge

}
}

I/l software block that check/reset the counter value, part of sc_main
void check for_10(int *counted) {
if (*counted == 10) {
printf(“Max count (10) reached ... Reset count to Zero\n");
*counted = 0O;

}
}

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 25

BCD Counter Example Main Code

void check for _10(int *counted);
int sc_main(int argc, char *argv|[]) {
sc_signal<int> counting; // the signal for the counting variable
sc_clock clock("clock",20, 0.5); // clock period = 20 duty cycle = 50%
int counted; // internal variable, to store the value in counting signal
counting.write(0); // reset the counting signal to zero at start
counter COUNT ("counter"); // call counter module
COUNT.in(counting); // map the ports by name
COUNT.clk(clock); /[map the ports by name
for (unsigned chari=0; i< 21; i++){
counted = counting.read(); // copy the signal onto the variable
check for_10(&counted); // call the software block & check for 10
counting.write(counted); // copy the variable onto the signal
sc_start(20); /l run the clock for one period
} return O;

}

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 26

Counter Main Code with Tracing

int sc_main(int argc, char *argv[]) {
sc_signal<int> counting; // the signal for the counting variable
sc_clock clock("clock", 20, 0.5); // clock; time period = 20 duty cycle = 50%
int counted,; // internal variable, to stores the value in counting signal
Il create the trace- file by the name of "counter_tracefile.ved”
sc_trace file *tf = sc_create vcd trace file("counter_tracefile");
/[trace the clock and the counting signals
sc_trace(tf, clock.signal(), "clock");
sc_trace(tf, counting, "counting");
counting.write(0); // reset the counting signal to zero at start
counter COUNT ("counter"); // call counter module. COUNT is just a temp var
COUNT.in(counting); // map the ports by name
COUNT.clk(clock); // map the ports by name
for (unsigned char i =0; i< 21; i++) {

}

sc_close vcd trace file(tf); // close the tracefile
return O;

}

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 27

SystemC Counter Module

#include "systemc.h"
#define COUNTER
struct counter : sc_module { //the counter module
sc_inout<int> in; // the input/output port of int type
sc_in<bool> clk; // Boolean input port for clock
void counter_fn(); // counter module function
SC_CTOR(counter) { // counter constructor
SC_METHOD(counter_fn); // declare the counter _fn as a method
dont_initialize(); // don’t run it at first execution
sensitive_pos << clk; // make it sensitive to +ve clock edge

}

};

void counter :: counter_fn() {
in.write(in.read() + 1);
printf("in=%d\n", in.read());

}

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 28

Module Instantiation

e Instantiate module
Module_type Inst_module (“label”);

e Instantiate module as a pointer
Module_type *pInst_module;

// Instantiate at the module constructor SC_CTOR
pInst_module = new module_type (“label”);

Inst_module.a(s);
Inst._module.b(c);
Inst._ module.q(0);

pInst_module -> a(s);
pInst_module -> b(c);
plnst_module -> q(q);

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 29

Sub-module Connections

Signals

sc _signalltype > q, s, c;
= Positional Connection

= Named Connection

Sample
: S
sl Mult
- q
q
Coeff ; b ml
out
cl C

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 30

Named and Positional Connections

SC_MODULE (filter) { Sample S
// Sub-modules: “components _pin dout
sample *sl; sl Mult
coeff *cl; — q a
mult *m]l ; Coeff b ml
sc_signal<sc_uint <32> > q,s,c;
// Constructor :“architecture” out
SC_CTOR (filter) { cl ¢

//Sub-modules instantiation/mapping
sl = new sample (“sl”);
sl->din(q) ; // named mapping
sl->dout (s) ;
cl = new coeff(“cl”);
cl->out(c) ; // named mapping
ml = new mult (“ml”);
(*ml) (s, ¢, q)//positional mapping

}

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 31

Communication and
Synchronization

« SystemC 2.0 and higher has general-purpose

 Channel

= A mechanism for communication and synchronization
» They implement one or more interfaces

e Interface

= Specify a set of access methods to the channel
But it does not implement those methods

e Event

= Flexible, low-level synchronization primitive
= Used to construct other forms of synchronization

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 32

Communication and

Synchronization
Interfaces

annel

Events

Ports to Interfaces

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 33

Channels

Channel implements an interface
It must implement all of its defined methods.

Channel are used for communication between processes inside
of modules and between modules.

Inside of a module a process may directly access a channel.
If a channel Is connected to a port of a module, the process
accesses the channel through the port.

System
process SO *.':::::::.: roces) ‘

cha ::mlslt Ehannel{s] lt cha rlnals
“l EEEEEER
Pﬂ!ﬂﬂlﬁ IIIIIIIIP P'I'HEII)

Module Module

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 34

Channels

Paorts

i H Module Module
i Channel @

Instance Instance [#

B

Module body
Process Process Module instances

concurrent processes

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 35

Channels

Two types of Channels: Primitive and Hierarchical

= Primitive Channels:
* They have no visible structure and no processes

« They cannot directly access other primitive channels.
o sc_signal
o sc_signal rv
o sc_fifo
o SC_mutex
o SC_semaphore
o sc_buffer

= Hierarchical Channels:
* These are modules themselves,
* may contain processes, other modules etc.
« may directly access other hierarchical channels.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 36

Channel Usage

Use Primitive Channels:
* when you need to use the request-update semantics.
« when channels are atomic and cannot reasonably be
chopped into smaller pieces.

» when speed is absolutely crucial.
» Using primitive channels can often reduce the number of delta
cycles.

« when it doesn't make any sense I.e. trying to build a
channel out of processes and other channels such as a
semaphore or a mutex.

Use Hierarchical Channels:
« when you would want to be able to explore the underlying
structure,
« when channels contain processes or ports,
« when channels contain other channels.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 37

A Communication Modeling
FIFO Example

Write Interface

IFO l
Read Intérface

Problem definition: FIFO communication channel with blocking read and write operation
Source available in SystemC installation, under “examples\systemc” subdirectory

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 38

Processes

Processes are functions identified to the SystemC kernel
and called if a signal of the sensitivity list changes.

 Processes implement the funcionality of modules.
 Similar to C++ functions or methods

Three types of Processes: Methods, Threads and Cthreads

= Methods : When activated, executes and returns
SC_METHOD(process _name)

= Threads: can be suspended and reactivated
- wait() -> suspends
- one sensitivity list event -> activates
SC_THREAD(process_name)

= Cthreads: are activated by the clock pulse
SC_CTHREAD(process_name, clock value);

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 39

Processes

Type SC_METHOD SC_THREAD SC_CTHREAD
Activates Event in sensit. list | Event in sensit. List Clock pulse
Exec.
Suspends NO YES YES
Exec.
Infinite Loop NO YES YES
suspended/ N.D. wait() wait()
reactivated wait_until()
by -
Constructor |SC_METHOD(call_back); |SC_THREAD(call_back);| SC_CTHREAD(
& sensitive(signals); sensitive(signals); call_back,
Sensibility sensitive_pos(signals); | sensitive_pos(signals); clock.pos());
definition sensitive_neg(signals); |sensitive_neg(signals); SC_CTHREAD(

call_back,
clock.neg());

©G. Khan

EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 40

Sensitivity List of a Process

* sensitive with the () operator

Takes a single port or signal as argument
sensitive (sl) ;sensitive(s2) ;sensitive (s3)

e sensitive with the stream notation

Takes an arbitrary number of arguments
sensitive << sl << s2 << s3;

* sensitive _pos with either () or << operator

Defines sensitivity to positive edge of Boolean signal or clock
sensitive pos << clk;

* sensitive_neg with either () or << operator

Defines sensitivity to negative edge of Boolean signal or clock
sensitive neg << clk;

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 41

Multiple Process Example

SC_MODULE (ram) {

sc_in<int> addr;
sc_in<int> datain;
sc_in<bool> rwb;
sc_out<int> dout;
int memdata[64];
// local memory storage
int 1i;
void ramread(); // process-1
void ramwrite();// process-2
SC_CTOR (ram) {
SC_METHOD (ramread) ;
sensitive << addr << rwb;
SC_METHOD (ramwrite) ;
sensitive << addr << datain << rwb;
for (i=0; i++; i<64) {
memdata[i] = O;
}o}
};

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 42

Thread Process and wait() function

= wait() may be used in both SC_ THREAD and SC_CTHREAD
processes but not in SC_METHOD process block

= wait() suspends execution of the process until the process is
Invoked again

= wait(<pos_int>) may be used to wait for a certain number of
cycles (SC_CTHREAD only)

In Synchronous process (SC_CTHREAD)
« Statements before the wait() are executed in one cycle
« Statements after the wait() executed in the next cycle

In Asynchronous process (SC_ THREAD)
« Statements before the wait() are executed in the last event
» Statements after the wait() are executed in the next event

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 43

Thread Process and wait() function

void do count() {
while (1) {
i1f (reset) {
value = 0;

}

else if (count) {

value++;
g.write (value) ;
}
wait () ; // waittill next event !

}
}

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 44

Thread Example

SC_MODULE (my module) {
sc_in<bool> id;
sc_in<bool> clock;
sc_in<sc_uint<3> > in a;

sc_in<sc_uint<3> > in b; Thread Implementation
sc_out<sc uint<3> >
out c;

void my thread() ; //my module.cpp

void my module::
SC_CTOR (my module) { my thread() {
SC_THREAD (my thread) ; while (true) {
sensitive << clock.pos(); if (id.read())
} out c.write(in a.read())

}; else

out c.write(in b.read());
wait () ;
}
}i

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 45

CThread

= Almost identical to SC_ THREAD, but implements
“clocked threads”™

= Sensitive only to one edge of one and only one
clock

= [tisnottriggered If inputs other than the clock
change

* Models the behavior of unregistered inputs and
registered outputs

* Useful for high level simulations, where the clock is
used as the only synchronization device

« Adds wait_until() and watching() semantics for easy
deployment.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 46

Another Example

SC_MODULE (countsub)

{ L’ sum
sc_in<double> inl; in2 adder
sc_in<double> in2; | subtractor | diff
sc_out<double> sum; clk
sc_out<double> diff;
sc_in<bool> clk;

void addsub () ;
// addsub method

// Constructor: void countsub: :addsub ()
SC_CTOR (countsub) {
{ double a;

// declare addsub as SC_METHOD double b:

SC_METHOD (addsub) ;

// make it sensitive to]

// positive clock b = 1n?.read();

sensitive pos << clk; sum.write (at+b) ;
} diff.write(a-b);

}; };

a = inl.read();

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 47

sc main ()

The top level is a special function called sc main.

e Itis in a file named main.cpp or main.c

« sc main () Iscalled by SystemC and is the entry point for
your code.

 The execution of sc main () untilthe sc start ()
function is called.

int sc_main (int argc, char *argv []) {
// body of function
sc_start (arg)
return 0 ;

}
* sc_start (arg) hasan optional argument:

It specifies the number of time units to simulate.
If it is a null argument the simulation will run forever.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 48

Clocks

Special object
How to create ?

sc_clock clock_name (“clock_label’, period,
duty_ratio, offset, initial _value);

Clock connection
fl.clk(clk_signal); //where f1 is a module
Clock example:

sc_clock clockl ("clock1l", 20, 0.5, 2, true);

| 4

2 12 22 32 42

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 49

sc time

SC_time data type to measure time. Time is expressed in two parts:
a numeric magnitude and a time unit e.g. SC_MS, SC_NS,
SC _PS, SC_SEC, etc.

sc_time t (20, SC _NS);
//var t of type sc time with value of 20ns

More Examples:
sc_time t PERIOD(5, SC NS);
sc_time t TIMEOUT (100, SC_MS) ;
sc_ time t MEASURE,t CURRENT,t LAST CLOCK;

t MEASURE = (t CURRENT-t_ LAST _CLOCK);
If (. MEASURE >t HOLD) { error ("Setup violated") }

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 50

Time representation in SystemC

Set Time Resolution:
sc_set time_resolution (10, SC_PS) ;
= Any time value smaller than this is rounded off
= default; 1 Peco-Second

sc_time t2(3.1416, SC_NS); // t2 gets 3140 PSEC
To Control Simulation:

sc_start() ;

sc_stop() ;

To Report Time Information:
sc_time_stamp() // returns the current simulation time

cout << sc_time_stamp() << endl ;
sc_simulation_time()

Returns a value of type double with the current simulation

time In the current default time unit

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 51

sc_event

Event
= Something that happens at a specific point in time.
= Has no value or duration

Sc_event:
= A class to model an event
 Can be triggered and caught.

Important

(the source of a few coding errors).
= Events have no duration = you must be watching to
catch it
« If an event occurs, and no processes are waiting to
catch it, the event goes unnoticed.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 52

s¢ event

You can perform only two actions with an
SC_event:
= walt for it
* wait(evl)
* SC_THREAD (my thread proc);
e sensitive <K ev 1; // or
. sensitive(ev_l)_
= cause It to occur
notify (evl)

Common misunderstanding:
" if (eventl) do something
« Events have no value

 You can test a Boolean that is set by the process that caused an

event;
« However, it is problematic to clear it properly.

©G. Khan

EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 53

notify()

To Trigger an Event:
event name.notify (args);
event name.notify delayed(args);
notify(args, event name) ;

Immediate Notification:
causes processes which are sensitive to the event to be made
ready to run in the current evaluate phase of the current
delta-cycle.

Delayed Notification:

causes processes which are sensitive to the event to be made
ready to run in the evaluate phase of the next delta-cycle.

Timed Notification:

causes processes which are sensitive to the event to be made
ready to run at a specified time in the future.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 54

notify() Examples

sc_event my event ; // event
sc_time t_zero (0, SC_NS) ;//variable t zero of type sc_time
sc_time t(10, SC_MS) ; // variable t of type sc_time

Immediate
my event.notify();
notify (my event) ; // current delta cycle

Delayed
my event.notify delayed();
my event.notify(t zero);
notify(t zero, my event); // next deltacycle

Timed
my event.notify(t);
notify(t, my event);
my event.notify delayed(t); // 10 ms delay

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification

Page: 55

cancel ()

Cancels pending notifications for an event.
* |t is supported for delayed and timed notifications.
 not supported for immediate notifications.

Given:
sc_eventa, b, c; // events
sc_time t_zero (0,SC_NS); // variable t zero of type sc_time
sc_time t(10, SC_MS); // variable t of type sc_time

éll.lnotify(); // current delta cycle
notify(t_zero, b); // next delta cycle
notify(t, c); // 10 ms delay

Cancel of Event Notification:
a.cancel(); // Error! Can't cancel immediate notification
b.cancel(); // cancel notification on event b
c.cancel(); // cancel notification on event c

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 56

Time & Execution Interaction

Process A() { Process B() | Process C() { Frocess D() {
/7@t [/B8 T, VACI LACI o
stmt,, s Stmty, s stmty.y; stmty, 7
sStmty, 7 sStmtysi stmt.; Stmty, 7
wait (t) ; wait(t.); waiti(t,); wait(t,);
stmt,,; stmty,; stmt.y; stmt,/
stmt,,’ stmtg,s stmt.,; wait |
wait(t.);a wait(t.); wait(t,); SC_ZERO_TIME) ;
stmt,.; stmtyc; stmt.c; stmt,7
stmt,.; stmt,.; stmt ., wait(t.);
wait(t.); wait(t.); wait(t.); }

} ' }

; Process A m AL AZ; | AX AL IAS’ A6, L

Simulated

_ B1: B; B3:Bd: BS; B6;
Execution Process B K . o
AC“Vlty Process C W e m €3 C4 'Ci o -
DI1; D2; R
Process D [r D3; D4; ™
t t, t, ty -

©G. Khan

EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 57

wait() and watching()

Legacy SystemC code for Clocked Thread
wait(N); // delay N clock edges
wait_until (delay _expr); // until expr true @ clock

Same as
For (1=0; I'=N; 1++)
wait() ; [/[similar as wait(N)
do wait () while (lexpr) ; // same as
[/ wait_until(delay expr)

Previous versions of SystemC also included other
constructs to watch signals such as watching(),

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 58

Traffic Light Controller

Highway
= Normally has a green light.
Sensor:
= A car on the East-West side road triggers N
the sensor
* The highway light: green => yellow => red,
« Side road light: red => green.
SystemC Model: S

= Uses two different time delays:
 green to yellow delay >= yellow to red delay
(to represent the way that a real traffic light works).

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 59

Traffic Controller Example

// traff.h
#include "systemc.h“

SC_MODULE (traff) {

// input ports

sc_in<bool> roadsensor;
sc_in<bool> clock;

// output ports

sc_out<bool>
sc_out<bool>
sc_out<bool>
sc_out<bool>
sc_out<bool>
sc_out<bool>
void control

NSred;

NSyellow;
NSgreen;
EWred;

EWyellow;
EWgreen;
lights () ;

int i;

// Constructor
SC_CTOR (traff) ({

SC_THREAD (control lights);
// Thread

sensitive << roadsensor;

sensitive << clock.pos();

14

©G. Khan

EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 60

Traffic Controller Example

// traff.cpp
#include "traff.h"
void traff::control_ lights() {
NSred = false;
NSyellow = false;
NSgreen = true;
EWred = true;
EWyellow = false;
EWgreen = false;
while (true) {
while (roadsensor == false)
wait () ;
NSgreen = false;// road sensor triggered
NSyellow = true; // set NS to yellow
NSred = false;
for (i=0; i<5; i++)
wait () ;
// yellow interval over
NSred = true; // set NS to red
NSgreen = false;
NSyellow = false;
// set EW to green
EWgreen = true;
EWyellow = false;
EWred = false;
for (i= 0; i<50; i++)
wait () ;

NSgreen = false; // times up for EW green
NSyellow = false; // set EW to yellow
NSred = true;
EWgreen = false;
EWyellow = true;
EWred = false;
for (i=0; i<5; i++)
wait() ;
// times up for EW yellow
EWred = true; // set EW to red
NSgreen = true;
NSyellow = false; // set NS to green
NSred = false;
EWgreen = false;
EWyellow = false;
for (i=0; i<50; i++) // wait one more long
wait(); // interval before allowing
// a sensor again

©G. Khan EE8205: Embedded Computer Systems,

SystemC & HW/SW Co-Specification

Page: 61

References

« System Design with SystemC, by T. Grotker, S.
Liao, G. Martin and S. Swan, Kluwer Academic
2002.

* A SystemC Primer, by J. Bhasker Second Edition
2004, 2002 (PDF exists).

« SystemC: From the Ground Up, by D.C. Black, J.
Donovan, B. Bunton and A. Keist, 2"d edition 2010.

©G. Khan EE8205: Embedded Computer Systems, SystemC & HW/SW Co-Specification Page: 62

	Slide 1: SystemC: Co-specification and Embedded System Modeling
	Slide 2: Hardware-Software Codesign
	Slide 3: HW/SW Co-Specification
	Slide 4: Co-Specification
	Slide 5: SystemC for Co-specification
	Slide 6: SystemC Library Classes
	Slide 7: SystemC 2.0 Language Architecture
	Slide 8
	Slide 9: SystemC Benefits
	Slide 10: SystemC for Co-Specification
	Slide 11: SystemC Development Environment
	Slide 12: SystemC Features
	Slide 13: SystemC Data types
	Slide 14: SC_Logic, SC_int types
	Slide 15: Other SystemC types
	Slide 16: SystemC Data types
	Slide 17: SystemC types
	Slide 18: Usage of SystemC types
	Slide 19: SystemC Specific Features
	Slide 20: Modules
	Slide 21: SystemC Constructor
	Slide 22: SystemC Module
	Slide 23: Signals and Ports
	Slide 24: 2-to-1 Mux Modules
	Slide 25: SystemC Counter Code
	Slide 26: BCD Counter Example Main Code
	Slide 27: Counter Main Code with Tracing
	Slide 28: SystemC Counter Module
	Slide 29: Module Instantiation
	Slide 30: Sub-module Connections
	Slide 31: Named and Positional Connections
	Slide 32: Communication and Synchronization
	Slide 33: Communication and Synchronization
	Slide 34: Channels
	Slide 35: Channels
	Slide 36: Channels
	Slide 37: Channel Usage
	Slide 38: A Communication Modeling FIFO Example
	Slide 39: Processes
	Slide 40: Processes
	Slide 41: Sensitivity List of a Process
	Slide 42: Multiple Process Example
	Slide 43: Thread Process and wait() function
	Slide 44: Thread Process and wait() function
	Slide 45: Thread Example
	Slide 46: CThread
	Slide 47: Another Example
	Slide 48: sc_main()
	Slide 49: Clocks
	Slide 50: sc_time
	Slide 51: Time representation in SystemC
	Slide 52: sc_event
	Slide 53: sc_event
	Slide 54: notify()
	Slide 55: notify() Examples
	Slide 56: cancel ()
	Slide 57: Time & Execution Interaction
	Slide 58: wait() and watching()
	Slide 59: Traffic Light Controller
	Slide 60: Traffic Controller Example
	Slide 61: Traffic Controller Example
	Slide 62: References

