EES8205: Embedded Computer Systems

Electrical, Computer & Biomedical Engineering, Ryerson University

Introduction to Keil uVision and ARM Cortex M3

1. Objectives

The purpose of this lab is to introduce students with the installation of uVision on their home computers. They will
also be made known to the Keil uVision IDE along with the ARM Cortex M3 architecture and some of its features.
Specifically, the basic steps of coding and execution with the ARM Cortex M3 (NXP LPC1768) embedded
processor. Students will learn to execute simple Cortex M3 programs using uVision. The lab will allow students to
become familiar with the uVision environment, its simulating capabilities, and the tools needed to assess various
Cortex M3-CPU performance features and factors. As majority of embedded systems use ARM processors for low-
power consumption and competitive performance, students will find the skills obtained from this lab very useful.

2. KEIL uVision 5 Installation

The first step is to download the MDK531.EXE or the latest version available. Follow the link below
https://www.keil.com/demo/eval/arm.htm fill the form and you will see the download screen of Figure 1.
Download the MDK531.EXE file to your machine.

Products Download Events Support Videos Q Search Keil .

Product Information Home | Product Downloads

Software & Hardware Products

Arm Development Tools
C166 Development Tools
C51 Development Tools
C251 Development Tools
Debug Adapters
Evaluation Boards
Product Brochures

Newsletters

Device Database®

Device List

Compliance Testing
ISO/ANSI Compliance

Validation and Verification

Distributors

Overview

MDK-ARM

MDK-ARM Version 5.31
Version 5.31

= Review the hardware reguirementis before installing this software
= MNote the limitations of the evaluation tools.

= Further installation instructions for MDKS
(MD5:679eb0b5d83574b4eb071th5C73e7287)

To install the MDK-ARM Software...

= Right-click on MDKS31.EXE and save it to your computer.
= PDF files may be opened with Acrobat Reader

= ZIP files may be opened with PKZIP or WINZIP.

MDK531.EXE (295,983K)
Thursday, July 2, 2020

= [fyou are evaluating the tools, be sure to request a quote for the full version of the tools.

Figure 1: KIEL uVision 5 Downalod page

EE8205: Embedded Computer System -- uVision Tutorial Page 1/19

Once the file is downloaded, double click and run the setup file (MDK531.EXE). Accept the license agreement,
select installation folder, enter your information, and complete MDK setup as depicted in Figures 2 to 7.

Setup MDK-ARM V5.31

i ArmekEiL

[This SETUF program installs:
MDE-ARM ¥5.31

Thiz SETUP peogram may be used o update a previous product installation,
However, pou should make a backup copy before proceedng

It iz recommended that pou e=st all Windows programs before conltirung with SETUP.
Fallow the mzhichons to complete the product nstallation.

Figure 2: Setup Options

Setup MDK-ARM V5.31 B3
F“::aju-zra&h-d'ﬁe‘SETUPdmldlEln G rm KEIL

Prasz Nt 1o nalafll MDE-ARM 1o theie loder. Prers Bromwie" 1o select difeent Foiden lo nsislstion

¥ Chosnation Foldor
Coro: [C\Kel VS Browrin
Pack: |CAL sers\Diev\ApoDat s\l oc oo\ Packs Browese . |

< Back I Moxl ¥ > [Cancal

Figure 3: Program Directory

EE8205: Embedded Computer System -- uVision Tutorial Page 2/19

Setup MDK-ARM V5.31
e AT ArmekeiL

Fleaze enter your name, the name of the company for whom you work. and wour E-mail addeezs.

First Mame: dohn

Last Mame: |Don

Compary Narme: {wm

E-mail liohn.don@ryerson.ca.

<< Back Mest > Cancel

Figure 4: Your Information

Setup MDK-ARM V5.31 | x|

Setup Status q r m KE ”_

MDK-ARM Setup iz performing the requested operations.

Inztall Files ...

Inztalling fromelf. exe.

— K&l MOk -&FEM Setup

<< Back I et =3 I Cancel

Figure 5: Setup Running

EE8205: Embedded Computer System -- uVision Tutorial Page 3/19

All the Cortex M3 based labs are remote and online only and we cannot use the Cortex M3 hardware
boards in Lab ENG408. Therefore, we do not need the ULINK driver. However, if any student wants to
obtain/buy Cortex M3 (or M4) processor development board, he/she should install the driver also.

Setup MDK-ARM V5.31
= Windows Security X 3
EIL

Would you like to install this device software?

Name: KEIL - Tools By ARM Universal Serial Bus...
M > 4 Publisher: ARM Ltd

Always trust software from "ARM Ltd". Install Don't Install ‘

@ You should only install driver software from publishers you trust. How can
| decide which device software is safe to install?

<<Back I| Me Cancel

Figure 6: Device Driver

Setup MDK-ARM V5.31

Keill MDK-ARM Setup completed r m KE] L
MDK-ARM W53 q

MDK-ARM Core Setup has perfformed all requested operations successfully.

W Show Release Motes.

| Finish |

i

Figure 7: MDK Installation Completed

EE8205: Embedded Computer System -- uVision Tutorial Page 4/19

3. Package Installation:

Select NXP LPC1768 processor from the Devices tab (See Figure 8) as this is the processor used in the Cortex
M3 based MCB1700 boards available in our ENG408 lab. Install all the packages as mentioned in Figure 9.

@ Pack Installer - C: \Users\Dev\AppData\Local\Arm\Packs - O
File Packs Window Help
| Device:
| 4]~ Devices | Boards | 4] Packs | Examples | b
Search: - X Pack Action Description
Device /| summary Device Specific 0Packs [No device selected B
= % All Devices 7055 Devices 4 Generic 49 Packs [
@ @ ABOV Semiconductor |20 Devices ® Alibaba:AliOSThings | & Install | AliOS Things software pack
G- @ Active-Semi 17 Devices % Am-Packs:PKCST1 | Install | OASIS PKCS #11 Cyptographic Token Interface
@@ Ambiq Micro [0 Devices % Arm-Packs:Unity > Install Unit Testing for C (especially Embedded Software)
¢ Amiccom 5 Devices | Software forinter processor icati ic Mutti
@ Analog Devices 75 Devices Pack Installer | CMSIS (Cortex Microcontroller Software Interface Standard)
@ APEXMIC 14 Devices te_| CMSIS Drivers for extemal devices
;@ ARM 57 Devices Welcome to the Keil Pack Installer CMSIS-Driver Validation
G- " ; pack nstaers 3ty for managng Softvare Packs o th oal computer and | Bundle of FreeRTOS for Cortex-M and Cortex-A
¥ AutoChips |46 Devices el e R | oS
% ¢ Cypress 507 Devices _[‘ CMSIS-RTOS Validation
¥ Dialog Semiconductor |15 Devices || Devices : Listsupported devices. Select a devie to shor relsted Packs and examples, | 1~ mbed Client for c‘ﬂ“""‘ devices
- @ EtaCompute 3 Devices ARM mbed C hic libra =
-9 GigaDevice 160 Devices Boards : List supported boards. Select a board to show related Packs and examples. ARM mbed Cryplogmphl(and $SL/TLS library
¢ Goodix |18 Devices Packs : List and manage Software Packs. Install a Pack for access within Vision. || mbed 05 Schedulerfor Cotex-M devices
® @ HDSC 75 Divices | Trusted Firmware:M (TE-M) reference implementation of Arm's Platform Sec
@ Holtek 215 Devices Examples : List example projects. Copy profects and launch Vision for testing examples. Intuitive graphical FIR/IIR digital fiter designer
-9 Infineon 183 Devices Pack Installer comnects to s kel con/pack to obtain the publshed Software Packs. | FleibleSafety RTOS
@ @ Lapis Semiconductor |2 Devices To install a local Software Pack use File - Import... from the menu. te_| Keil ARM Compiler extensions for ARM Compiler 5 and ARM Compiler 6
&M | NXP LMX RT 1051/1052 MDK-Middleware exemples and CMSIS-Drivers

@ Maxim 16 Devices B
¥ @ MediaTek |2 Devices 7 show this dalog at startup II' Help | NXP i.MX RT 1061/1062 MDK-Middleware examples and CMSIS-Drivers
&9 Microchip 404 Devices | NXP i.MXRT 1064 MDK-Middleware examples and CMSIS-Drivers
&9 Microsemi & Devices @ KeikuJansson Install | Jansson s a C library for encoding, decoding and manipulating JSON data
® @ MindMotion 39 Devices - Keit:LPCSSSEX TFM-PF | Install. || NXP LPCS556x MCU Farnily TF-M Pltform Support
- @ Nordic Semiconductor 119 Devices) Keil:MDK-Mi @ Uptodste | for Keil MDK. ional and MDK-Plus
®- ¢ Nuvoton 691 Devices ® Keil:STM32LS0_TFM-... | & Install- | STMicroelectronics STM32L5 Series TF-M Platform Support =]
w9 NXP 11283 Devices gid | K1l |

Output

Refresh Pack descriptions

Action (1 left): Update Pack i download Keil. B-L475E-IOTO1A_BSP.pdsc [1% [oNuNE

Figure 8: Package Installation

[53] Pack Installer - C:\Users\Dev\AppData\Local\Arm\Packs
File Packs Window Help
i | Device: NXP-LPC1768 |
4|~ Devices | Boards | | 14| " Packs | Examples | b
Search: - X Pack | Action | Description
Device /| summary =1 Device Specific
=% Lpce3s |1 Device ¥ Keil:LPC1700_DFP
4 Lpcass 4 Devices = Generic
;%5 LPCads |2 Devices # Alibaba:AliOSThings | AliOS Things software pack
%5 LPC1100 Series 128 Devices - Arm-Packs:PKCS11 OASIS PKCS #11 Cryptographic Token Interface
% LPC1200 Series 12 Devices - Arm-Packs:Unity Unit Testing for C (especially Embedded Softuare)
%3 LPC1300 Series 24 Devices # ARM:AMP Software for inter processor i ic Multi Proce
%3 LPC1500 Series 113 Devices # ARM:CMSIS | CMSTSy(Cortex Microcontroller Software Interface Standard)
4% LPC1700 Series |21 Devices i Drivers for external devices
@4 LPCI75x 6 Devices ® Install CMSIS-Driver Validation |l
Lo b
=% LPC176x |7 Devices J - ARM::CMSIS @ Uptodate TBw FreeRTOS for Cortex-M and Cortex-A
@ Lpci763 ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM ARM::CMSISS P Uptodate || CM S Validation
@ pc1764 ARM Cortex-M3, 100 MHz, 32 kB RAM, 128 kB ROM lient Install ARM mbed Client for Cortex-M devices
@ Lpci765 | aRM Cortex-M3, 100 MHz 64 kB RAM, 256 kB ROM 3 rypte & Install ARM mbed Cryptographic library
@ Lpci766 [ARM Cortex-M3, 100 MHz 64 kB RAM, 256 kB ROM # ARM:mbedTLS Install ARM mbed Cryptographic and SSL/TLS library
@ Leci767 IARM Cortex-M3, 100 MHz 64 kB RAM, 512 kB ROM % ARM:minar & _Install | mbed OS Scheduler for Cortex-M devices
ARM Cortex-M3, 100 MHz 64 kB RAM, 512 kB ROM ® ARM:TFM > Install+ | Trusted Firmware-M (TF-M) reference implementation of Arm's Platform Security 2
ARM Cortex-M3, 120 MHz 64 kB RAM_ 512 kB ROM # ASN:Filter Designer | & _Install | Intuitive graphical FIR/IR digital filter designer
w% LPCITH 4 Devices # EmbeddedOffice:Flexi... $_Install Flexible Safety RTOS
AL —
w %% LPC178x ADvices @ Keil::ARM_Compiler <'j p_Up to date B}RM Compiler extensions for ARM Compiler 5 and ARM Compiler 6
45 LPC1800 Series 121 Devices # Keil:iIMXRT10S MWP | z Install+ NXP i.MX RT 1051/1052 MDK-Middleware examples and CMSIS-Drivers
$ LPCA000 Series 16 Devices % Keil:iIMXRTI060.MWP | € Install= | NXP i.MX RT 1061/1062 MDK-Middleware examples and CMSIS-Drivers
LPCA300 Series 25 Devices # Keil:iIMXRT1064 MWP | &5 _Installs NXP i.MX RT 1064 MDK-Middleware examples and CMSIS-Drivers
1PC5512 2 Devices || K
| Output 2 x
Refresh Pack descriptions
Update available for ARM::CMSIS-Driver (installed: 2.6.0, available: 2.6.1)
Update available for Keil::MDK-Middleware (installed: 7.11.1, available: 7.12.0)
Ready [[onuNE

Figure 9: Device and Supported Package Installation

EE8205: Embedded Computer System -- uVision Tutorial Page 5/19

4. Developing Software for Cortex with Keil uVision5

In this section, you will learn to create a uVision project, import necessary files, compile, and simulate an
application to assess the performance. In particular, the example will demonstrate a simple project called
blinky. The code will read the voltage provided by the microcontroller's ADC channel AIN2 (the
potentiometer available on the MCB1700 board). Based on the value set on the channel, the LEDs will flash
at a certain speed. If enabled, a bar graph and voltage reading will also appear on the LCD display.

4.1. Creating a new uVision Project

We will be working with the NXP LPC1768 (Cortex M3 produced by NXP) processor in these labs. This
processor chip is used in the Keil MCB1700 evaluation board. You will find a lot of online resources and
tutorials for assistance.

To run uVision IDE, double click uVision program on your desktop. Open the application.

Feil LVisions

Figure 10: uVision5 Icon

1. When uVision has launched and if a project already exists, then first close the project by selecting
Project >> Close Project.

2. Now from the top bar select Pack Installer option ' in the top bar as shown in Figure 11.

e S Wiow Irbibd bty Db, PO T SVE Wi
MSWd] b aB|9n| e renn|EsEis Jadl@-|e o a EEN
D 1 e | W i

Project L=
nstall or updste Software Packs that
«cantain Software Components

Figure 11: Select Pack installer

3. The Pack Installer Opens up Select the Blinky ULp Project. As shown in Figure 12.

4. Create New Directory for COE718 Labs and a subfolder for Labl. Copy to that folder as shown in
Figure 13.

5. Your workspace should now resemble Figure 14.

EE8205: Embedded Computer System -- uVision Tutorial Page 6/19

@ Pack Installer - C:\Users\Dev\AppData\Local\Arm\Packs - 0 IEd
File Packs Window Help
| Device: NXP-LPC1768 ————
4| Devices | Boards] Bl PackQ Examples |) »|
Search: + X [V Show exam\mmma Packs only
Device /| Summary Example ‘ Action Description
w % Lpcas 4 Devices a]||| 8D Cient (McB1700) |@ Copy | Example using BSD sockets to send commands to remote server 4|
®-% Lpcass 4 Devices BSD Server (MCB1700) ‘1 Copy. I Example using BSD sockets to accept commands from remote clie
w4 LPC1100 Series 128 Devices I | Blinky example
@ LPC1200 Series 12 Devices }inky ULINKpro example
@ LPC1300 Series 24 Devices I CAN example that sends and receives data messages
-4 LPC1500 Series 13 Devices Demo (MCB1700) | Copy | Demo example
=% LPC1700 Series 21 Devices FTP Server (MCB1700) ! Copy File Server using FTP protocol with SD/MMC Memory Card as stor:
w4 LPCIT5x 6 Devices File System Demo (MCB1700) ! 7&0& File manipulation example: create, read, copy, delete files on any e
=% LPC1T6¢ 7 Devices HTTP Server (MCB1700) ! éopx Compact Web Server with CGl interface
@ LpC1763 ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM J HTTP Upload (MCB1700) "1 Eou Web Server with CGl interface and SD/MMC Memory Card as stora
@ Lpci7ed ARM Cortex-M3, 100 MHz, 32 kB RAM, 128 kB ROM SMTP Client (MCB1700) ‘! Eou Example showing how to compose and send emails
@ Lpc1765 ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM SNMP Agent (MCB1700) |@ Copy | Example showing how to use a Simple Network Management Prot
@ pc1766 ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM Telnet Server (MCB1700) ! 7Com Command-line Host service example using Telnet protocol
@ pc1767 ARM Cortex-M3, 100 MHz, 64 kB RAM, 512 kB ROM USB Device Audio (MCB1700) ! Copy USB Audio Device demonstrating USB Speaker.
<] ARM Cortex-M3, 100 MHz 64 kB RAM, 512 kB ROM USB Device HID (MCB1700) | Copy USB Human Interface Device providing access from PC to board Lt
@ Lpci769 ARM Cortex-M3, 120 MHz, 64 kB RAM, 512 kB ROM USB Device Mass Storage (MCB1700) ! Copy USB Mass Storage Device using SD/MMC Memory Card as storage
®-% LPCITIx 4 Devices USB Device Virtual COM (MCB1700) ! Copy. | Virtual COM Port example: bridges UART port of the eval board to
@4 LpC1Tex 4 Devices USB Host Keyboard (MCB1700) :! Copy. | Measure example using USB HID Keyboard as input device
% LPC1800 Series 21 Devices USB Host Mass Storage (MCB1700) ! Copy. | USB Host file manipulation example: create, read, copy, delete files
% LPC4000 Series 16 Devices em\Win Example (MCB1700) | Copy | emWin Graphics simple example]
% 4 LPC4300 Series 25 Devices emWin GUI Demo (MCB1700) ! Copy. \ emWin Graphics Demo example
=% Lpessi2 2Devices _J;‘
w4 1pCssa 2 Devices || K | i
Output ax
‘Refresh Pack descriptions
Update available for ARM::CMSIS-Driver (installed: 2.6.0, available:
Update available for Keil:MDK-Middleware (installed: 7.11.1, available: 7.12.0)
Ready [loNLINE y

Figure 12: Copy Blinky Project

2 E:\Ryerson MASc\(gkielS._prgjgct‘___l_aM\Boards}l{eil‘__M(

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NS dad| s am | ™ w IE I

] ME# @-le o &-

& . | $% | swoTrace [v] &% @ @
:rujfd 8 | d Abstract.txt |
=% Project: Blinky The 'Blinky' project is a simple program for the LPC1768
E5 SWO Trace microcontroller using Keil 'MCB17@@' Evaluation Board, compliant
2 55 Source Files to Cortex Microcontroller Software Interface Standard (CMSIS).
: '_l] S It demonstrates the use of ULINKpro Debugger.
1 Rac
=5 Documentation Example functionality:
|] Abstract.bt - Clock Settings:
: - XTAL = 12.88 MHz
¥ Board Support i _ 0.6 T
& cusis
E!Q Compiler - Sys Timer is used in interrupt mode
5% Device - B LEDs blink with speed depending on potentiometer position

- AD settings: 12 bit resolution
- AD value is output onto ITM debug port #8

The Blinky program is available in different targets:

- SWO Trace: cenfigured for on-chip Flash
shows use of System Analyzer, ITM ocutput

Figure 13: Copy Blinky to Lab1 folder

EE8205: Embedded Computer System -- uVision Tutorial Page 7/19

linky (MCB1700) ! Copy I Blinky example

linky ULp (MCB1700) [Copy |Blinky ULINKpro.

<B RAM, 512 kB ROM AN (MCB1700) Copy CAN example tha
‘-Demo (MCB17000 & Copy Demo example

copy Example & Copy F?Ie Ser\.r?r usin.g I

& Copy File manipulation

Destination Folder & Copy Compact Web Se

- & Copy Web Server with (

IE:\Ryerson MASC\COE718 TABlinky | |m| e e

[V Use Pack Folder Structure [V Launch pvision & Copy Example showing

& Copy Command-line -

x| Concel_ | & Copy USE Audio Device

& Copy USE Human Inter

SB Device Mass Storage (MCB1700) & Copy USE Mass Storage

5B Device Virtual COM (MCEB1700) & Copy Virtual COM Port

SB Host Keyboard (MCB1700) & Copy Measure example

5B Host Mass Storage (MCB1700) & Copy USE Host file mar

mWin Example (MCB1700) & Copy emWin Graphics

mWin GUI Demo (MCB1700) & Copy emWin Graphics

Figure 14: Workspace

6. Double click on startup LPCI7xx.s to open the editor. Click on the "Configuration Wizard" tab
at the bottom of the editor window as shown in Figure 15. The Wizard window converts the "Text
Editor" window so that the programmer may view the configuration options more easily. It is
possible to adjust the stack and heap sizes of the LCP1768 chip here if necessary.

|1 Abstracttt |] startup LPCiTaxs |] Biinkpe

E"rcjett

g |
=% Project: Blinky [

°7 apc mcBTTO0e

e Bpand Al | Collapse Al | Hep | I ShowGrd
=15 Source Files Option Value
L Blinky.c [=1-Stack Configuration
- ® L[] IRac . Stack Size (in Bytes) x0000 0200
|] Abstractbt -Heap Size (in Bytes) 00000 D000
¥ Board Support
& cmsis
o Cormpiler
=] 0 Device

*T GPIO_LPCTTxx.c (GPID)
-5 PIN_LPCT T (PIN)

-] RTE_Device.h (Startup)
] startup LPC17xx.s (Startup)
d systern_LPC1Twecc (Startup)

B

Heap Configuration

al
=] project | € Baoks | {} Fundtio..| (1,

Templa...

Figure 15: Project Files

EE8205: Embedded Computer System -- uVision Tutorial

7. Similarly by clicking on the "Books" tab at the bottom of the Project workspace window, the
"Complete User Guide Selection" opens up to provide you with FAQs and system help. Once you
have finished inspecting the user guide, switch back to the "Project" tab in the Project window.

8. During this lab, we will be simulating the blinky.c program. Thus we must define certain
preprocessor symbols for the compiler to interpret. In your main menu, select Project >> Options

for Target 'SWO Trace'. Click the tab entitled "C/C++".
9. In the box "Preprocessor Symbols", write "ADC_IRQ" in the textbox Define. Click OK.

Enabling printf: Project >> Options for Target 'SWO Trace. Select the Debug tab (see Figure 16), select
"Use" on the right side, and then click the Settings box. Under the Trace tab, click "Trace Enable".
Ensure that the Core Clock is set to 96 MHz, and that the SWO Clock has "Autodetect" enabled. In the
ITM Stimulus Ports, set Enable to OxXFFFFFFFF, and ensure that the lower port checkbox, Port 7..0 is
unchecked. Click OK. In the "Options..." window, select "Use Simulator" once again. Click OK. Also
notice the source code necessary in Blinky.c to support the printf function.

project by pressing F7. Make sure that the project compiles and links without any errors or
warnings. A newline at end of file warning may appear; this is fine.

Register Window

Debug Mode

:

VE | Q- e

o a-|[E] &

Disassembly
Step Logic Analyzer
Resef file Fdit liew Project | Fiash Debug Peripherals Tools S
A REL CIE |@=|m -
sledloovo o [DesEEEa-3-%-2- 8- -
Registe) 3 B Disassembly
Register Value o | 54 uint32_t AD avg = fr
RID 0x00000834 2400 MOVS 4, $0x00
55: uintlf © AD value = 0;
0x00000B36 2500 HOVS x5, #0x00
56: uintlé_t AD print = 0:
573
0x00000B38 2600 HovE ré, ¥0x00

R6

58

E LED Initialize():

0x00000B3A FTFFFBEL BL.W

58

: ADC_Initialize():

// LED Initialization

LED Initialize (0x00000300)

// BADC Initialization

R? 600000000 el v
RS (00000000 < & >
R% DD0D00000 s
R10 200000000] abstracttet | |] stantup tPCiTocs] Blinkyc | °] ADC MCB1700.c * X
R11 00000000 A
R12 R | Y e e e e e
R13(5F) 52 Finc main (void) {
;:;g > 53 int32_t res;
54 uint32_t AD avg = 0
i Lnk ERRERY 55 | winti6 t AD value = 0
& 56 ui T AD print = ©
[System =l 57 -
= Intemal 58 LED Initialize():
Pﬁ?: m;ﬁd 59 | ADC Initialize(): rion
v v | 7=
| ST - 60 Watch Window v
[l praject | B2 Registers < 2
Command o Bl Wateh1 l 1« |
Running with Code Size Limit: 32K MName Value IWE
Load "E:\\Ryerson MASe\\COE718 TA\\kiel5 projecti\labi\\Boar i 00000000 =
WS 1, "AD avg L avg uint
WS 1, 'AD value @ AD_value OxDFFF ushort
WS 1, 'AD print ¥ AD_print OxOFFF ushort
;‘i ?BD :}’:_dbq ¥ AD_dbg OKOFFF ushort
0a <Enter expression>
< >
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet ;—‘j.:! Stack - Locals ;g!_-;l 19 [printf) Viewer Watch 1
Simufation 11: 6.2430.

Figure 16: uVision Debug Window

EE8205: Embedded Computer System -- uVision Tutorial

Page 9/19

Side Note: Examining the Application

Before we continue to work with the Debug mode, it is important to understand what each part of the
Blinky.c application is responsible for. Take a minute to analyze the code provided to you. In particular,
examine blinky.c, IRQ.c. How do they work together? What are their functionalities?

4.2. Simulation with Debug Mode

Next, we will enter Debug mode. Debug mode is an environment that provides capabilities to assess
your application and its performance characteristics

Blinky.c - main file, initializes the LED, Serial and ADC functions
IRQ.c - Contains the timer interrupt handler routine needed by blinky.c. It is responsible for
keeping track of clock ms (10 ms timer flag) and the LED blinking rate.

Enter the Debug mode by clicking on the @1 icon. A window will pop up displaying: "EVALUATION
MODE Running with Code Size Limit:32K", Click OK and uVision will transform into new successive
multiple windows, including the disassembled version of your *.c code. If you have entered the Debug mode
correctly, you will see a number of windows pop up which will allow you to examine and control the
execution of your code. You should observe something similar to that of Figure 16 window. The Debug mode
will connect uVision to a simulation model of your program, downloading the project's image into the
microcontroller's simulated memory.

s
1. Reset the program using the RET icon.

2. Execute the program by clicking the =l RUN icon. STOP (or pause) the program by selecting
the @ icon.

Congratulations, you've executed your first program Cortex M3 program through uVision. Now, you know
what all these windows in Debug mode actually do and what does this all mean?

4.3. uVision Debug Features and Analysis

uVision possesses many features for assessing the status and performance of your application software
running in Cortex. The following is a list of useful features that can be used to view and control your
applications. Note that they can only be accessed when in Debug mode.

a) Watch Window

A watch window allows you to keep track and view local and global variables, as well as raw memory
values. These values can be observed by running or stepping through your program. It may be beneficial to
watch the window with the use of steps and/or breakpoints in your code for debugging. A note on steps and
breakpoints is given below.

o Steps - (See Figure 16) As opposed to running through the whole code, the step keys allow you to step
through your code line by line, step through a function, etc.

e Breakpoints - Move the mouse cursor into the grey area next to the line numbers in your .c code in the
debugger. Left click the line (with a dark grey area) that you would like to set a breakpoint. A red dot
will appear if you are successful. Click it again to remove the breakpoint.

= Note when the code is executed, the dark grey boxes will turn green indicating that the line has
been executed.
1. To open a watch window (in Debug mode), select View >> Watch Window >> Watch 1. Note, a
watch window may open up automatically when entering the Debug mode.
2. Find the column entitled "Name" in the Watch 1 window. The subsequent rows under this column

EE8205: Embedded Computer System -- uVision Tutorial Page 10/19

should read <Enter expression>. Highlight the field and press backspace. Enter "TADC_dbg" in the
first row.

e When you click the RUN icon to execute the program, the value of ADC dbg will change
depending on the ADC value entered on analog channel 2 (AIN2). (More on entering analog input
in the Peripheral section)

e To automatically input a variable in the watch window, go to the blinky.c code. Right-click on the
variable AD dbg. A pop-up menu will appear. Select "Add ADC dbg to..." >> Watch 1.

3. It is also possible to change the value of "ADC_dbg" during execution. If you enter a '0' in the
value field of the watch window, you may modify the variable's value without affecting the CPU
cycles during execution.

b) Register Window

The register window (see Figure 16) displays the contents of the CPU's register file (RO - R15), the
program status register (xXPSR), the main stack pointer (MSP) and the process stack pointer (PSP). This
window will automatically open when transitioning to Debug mode. These registers may be used for
debugging purposes, in conjunction with the watch window, steps, and breakpoints.

¢) Disassembly Window
The disassembly window displays the low-level assembly code, where its respective C code is appended
beside it as a comment. This window is useful for viewing compiler optimizations and the .c code's
assembly generation. The left margin of the disassembly window is also useful for keeping track of
execution (green blocks), possible executable blocks (grey), line numbers, and setting breakpoints.
d) Performance Analyzer
The Performance Analyzer (PA) tool is extremely useful for determining the time your program spends
executing a certain task. It presents itself as a horizontal bar graph dynamically changing with respect to the
total execution time of its respective tasks. Separate columns display the exact execution time and the
number of calls for each task. To use this feature (In Debug mode).

1. Select View >> Analysis Windows >> Performance Analyzer. Alternatively you can select the icon's

downward arrow and select Performance Analyzer. A new PA window should appear.

ﬂ Logic Analyzer
I E Performance Analyzer
¥ Code Coverage

Tt System Analyzer

1E Event Recorder

| gllg Event Statistics

2. Expand some of the tasks in the PA window by pressing the "+" sign located next to the heading.
There should be a list of functions present under this heading tree.

Odm
3. Press ﬂg:-EhReset icon to reset the program (ensure that the program has been stopped). Click RUN.

4. Watch the program execution and how the functions are called. You will see something similar to
that of Figure 17. The analyzer is able to gather various statistics dynamically from the program,
useful for both debugging and performance assessment. Stop the program when you have finished
analyzing with the PA tool.

EE8205: Embedded Computer System -- uVision Tutorial Page 11/19

.
el " doe [ees—

.

Figure 17: Performance Analyzer Window

e) Execution Profiling

An alternative to the PA is the Execution Profiling (EP) tool. EP is useful for determining how many times
a function call has occurred and/or the total time spent executing a certain line of code and/or function.
Therefore, the PA tool would technically be the graphical representation of the EP tool. To use this feature:

1. From the menu select Debug >> Execution Profiling >> and either Show Times or Show Calls. A left
column will expand on your source code, indicating either the execution time per task, or the number
of calls respectively.

2. Regardless of the option , if you hover the mouse over a number in the left column, all the
information will be displayed as if you chose both options (i.e., execution time and the number of
calls).

P Logic Analyzer
The Logic analyzer in debug mode allows you to visualize a logic trace for a variable during its execution.
Thus we could use this as a visualization for the variables we place in the watch window. For this lab, we
will graphically follow the AD Dbg value in our code:
1. Press the arrow on the icon and select Logic analyzer. A window will appear (if not already
present).
2. In the blinky.c code, right-click on the variable AD dbg. A pop-up menu will appear. Select "Add
AD_dbg to..." >> Logic Analyzer. The variable will appear in the Logic analyzer window.
3. Ifyou click run, you will see the AD_dbg trace generate as a straight line on the zero mark. It should
correspond to the value you are seeing in the Watch 1 window.
4. Under the Zoom heading in the Logic analyzer, click "All". This will scale your window according to
the execution trace time (horizontally).
5. Under the Min/Max heading, select "Auto" to scale the trace's amplitude (vertically).

This AD dbg value will keep running with a zero value. Why? The AD dbg is representative of the value
which we place on the board's potentiometer (AD input channel 2). Since we are not inputting any values
on the channel, it will logically continue to trace at '0'. It is evident how we would go about turning the
potentiometer on the dev board, but how could we simulate the pot for testing in Debug mode?

g) Peripherals (A/D Converter, System Tick Timer, and GPIOs)
uVision debugger allows you to model the microcontroller's peripherals. With peripheral modeling, it is

possible to adjust input states of the peripherals and examine outputs generated from your program. In our
Blinky.c program, the peripherals of interest are the AD converter (since we are inputting AD values from
AIN2 - pot), the systick timer, and the GP1Os (the output to the LEDs). We will not model the LCD in this
lab as it possesses high CPU utilization times and is more for demo purposes. Therefore make sure that
#define USE LCD remains commented in the code during debugging.

EE8205: Embedded Computer System -- uVision Tutorial Page 12/19

1. To open the GPIO 2 analyzer (LED simulator), select Peripherals >> GPIO Fast Interface >> Port
2. A window will appear as shown in Figure 18. Also open Port 1, i.e. Peripherals >> GPIO Fast
Interface >> Port 1 (as the first 3 LEDs belong to Portl, last 5 belong to Port 2).

2. To open the System Tick Timer window, in the main menu select Peripherals >> Core Peripherals
>> System Tick Timer. A window will appear resembling Figure 19.

3. To open the AD Converter window, in the main menu select Peripherals >> A/D Converter. A
window will appear similar to that of Figure 20.

AJ/D Converter = 2 ' a —

HE | e ‘ e e) e

ADCR: [<01200404 SEL: (B4 ¥ FDN .

CLKDIV: [ze0a [~ BURST [~ EDGE 02 -

START:[Now =] A/D Clock: [5000000 FOSET [20000%8 G
A/D Global Data & Status FOCLR [50000000%

ADGDR: [:02000000 RESULT:[0000 [DONE [~ OVERUN FIO2PIN [O000CY S

ADSTAT: [(:00000404 CHN: [eZ ™ ADINT Pra [D000CT 22 ORES @ v
A/D Charnel Data

ADDRO: [(x00000000 RESULTO:[@0000 | I~ DOMEU I~ OVERUNO . . .
ADDR1: [Bx0000D000 RESULTI:[®d000. [DONE1 [~ OVERUNI Flgure 18 GPIO Perlphefal WlndOW
ADDRZ [mCO00000D RESULTZ:[B0000 W DONE2 [OVERUNZ
ADDR3: 00000000 RESULT3:[0000 [DONE3 [~ OVERUN3
ADDR4: [(:00000000 RESULT4:[G<0000 [DONE4 [~ OVERUN4 System Tick Timer
ADDRS: [00000000 RESULTS:[20000 [~ DONES I OVERUNS
ADDRG: [:00000000 RESULTE:[B0000 | ™ DOMES I~ OVERUNG T cTme. STAT- BB © ENABLE ¥ CUGSOURCE
ADDA7: [B00000000 RESULT?:[®d000 | ™ DONE? I OVERUN7 ST et ¥ TIOONT ¥ COUNTFUAG

A/D Intemupt Enable Raload § Cumert .:a‘ i
[ADINTENO I ADINTEN4 ST_RELOAD: [o000r 2 RELOAD. [ooFa2
ADINTEN: [3:00000100 [~ ADINTEN1 [ADINTENS - - .
[~ ADINTEN2 [ADINTENG ST_CURRENT. [50000C288 CURRENT: [DOCC288
P ADGINTEN -~ upiNTeNs I ADINTEN?
= Calbraton
Analog Inputs Reference

AIND:[0.0000 AIN1:[0.0000 AINZ:[D.0000 AINZ:[00000 | | vRer:

[SkEw [NOREF
AIN4:|0.0000 AINS: [D.00D0 AING: [D.ODDD AINT: |0.0000 3.3000 e

Figure 20:A/D converter Window Figure 19: System Tick Timer Window

4. To open the Debug window and view "printf" statements in the code, select View >> Serial
Windows >> Debug (printf) Viewer.

5. Reset the program and run the blinky application until it has simulated for one second. Watch how
the asserted "Pins" on the GPIO windows transition. This represents the LEDs on the dev board and
how they will transition when the program is executed. Note that in reality, these transitions are
occurring at a much faster speed than they are during this simulation. Why?

e Simulators require long computational runtimes to simulate a short period of hardware
runtime. This is a well-known problem in software.
Notice the System Tick Timer and its quick transitions within all the fields of the window.

7. Once, the one second of simulation time has been reached, there are two possible ways to change the
value of the simulated pot.

e Locate the A/D converter window and type 3.3000 in the AIN2 textbox under "Analog Inputs".
This will simulate the value transition for your pot from 0V to 3.3V (notice the Vref voltage of
3.3V, which cannot be exceeded).

e Alternatively in the "Command window" found in the debugger, type "AIN2 = 3.3". This will
execute the same result as the A/D converter window.

8. Now interrupt enable must be asserted to simulate the value inputted on the AIN2 channel. To enable
the interrupt, locate the A/D Interrupt Enable box in the A/D Converter window. Check off the
ADINTEN2 box. Wait for a moment. Uncheck the box.

9. Wait for approximately 0.1sec (simulated time) or so. Your logic analyzer and watch windows will
update the inputted A/D information accordingly (Note this transition may take slightly longer. To
speed up the process, you may also click and unclick the "BURST" checkbox at the top of the A/D
Interrupt window).

10. Note the GPIO windows and how the speed of the LED flashes has also changed (will transition at a
slower pace).

o

EE8205: Embedded Computer System -- uVision Tutorial Page 13/19

11. Keep transitioning to different values using this simulated potentiometer method. Your simulation
should then resemble and close to Figure 21.

u us

Gt | Ll e T Mg T T Tin MW, Uit o Togoaian b 18 g e b=]
hivE | 11480 Tls o PO AR | B | Pl | Sop § D | Py (ke | Dot | Traew | ' Shasir Cpchini Lowm
L=
| h
i
il R
S i | 1
(AT Fiv g T oENRE s I [E v
([2pr-1r) TS FETGT [glapr]
1
Y E [“rep—

Figure 21: Simulating the Port and A/D Conversion using Logic Analyzer

12. While your program continues to execute, watch the application using the Performance Analyzer,
Watch window, execution times in the Disassembly window, and the Execution Profiler. This will
help you analyze the application. Where does your program spend most of its time executing?

13. Once éou have finished executing your simulated blinky application, exit Debug mode by clicking

the 4 icon onceagain.
4. Optional Tutorial Assignment

With the code used in this tutorial, and the joystick files and peripheral notes found in the Appendix of this
lab, edit the Blinky.c program which will read the direction that the joystick is pressed on the MCB1700 dev
board. Based on the direction of the joystick, the following peripherals should function as following.

e Demonstrate how will you add joystick to the project from the % Manage Run-time Environment.

e Printf- the direction of joystick. (use-- joystick initialization() joystick stats() and printf) **
**Due to remote learning we cannot physically check it but printing the initial position of the joystick
would be enough for the demo.

Hint: Joystick files can be added by clicking il button and choosing the Board Support>Joystick (API).
Once the file is added explore the joystick MCB1700.c and call its functions in Blinky to perform the

assignment task.

Create a pdf file of the source code for your lab, including the main files, and any .h or .c files provided to
you during the tutorial that you may have altered for your application. Add relevant screen shots where
required. submit the pdf file through D2L assignment submission system.

References

1. "The Keil RTX Real Time Operating System and pVision" www.keil.com. Keil an ARM Company.
2. "Keil pVision and Microsemi SmartFusion" - Cortex-M3 Lab by Robert Boys www.keil.com.

Acknowledgement

This tutorial has been adapted from introductory notes by Robert Boys "Cortex-M3 Lab" and
"The Keil RTX Real Time Operating System and uVision" available at www.keil.com.
Keil is an ARM Company

EE8205: Embedded Computer System -- uVision Tutorial Page 14/19

Appendix

Peripheral Programming with the LPC1768

Peripheral pins on the LPC1768 are divided into 5 ports ranging from 0 to 4. Thus during the course of this
lab you may have noticed that pin naming conventions (for GPIOs, etc.) were in the format Pi.j, where i is the
port number and j is the pin number. For instance, if we take a look at the first LED on the MCB1700 dev
board, we will see the label P1.28, signifying that the LED can be found on Port 1, Pin 28. A pin may also
take on any one of four operating modes: GPIO (default), first alternate function, second alternate function,
and third alternate function. It is important to note that only pins on Ports 0 - 2 can generate interrupts.

https://www.keil.com/support/man/docs/mcb1700/meb1700 to joystick.htm

The 5-position joystick control on the MCB1700 board grounds one of 5 possible port pins depending on how the
joystick control handle is positioned. The control may be positioned left, right, up, down or pushed toward the
board (select).

e The Left joystick position connects pin C to port pin P1.26 of the LPC17xx device to ground.

e The Right joystick position connects pin B to port pin P1.24 of the LPC17xx device to ground.

e The Up joystick position connects pin A to port pin P1.23 of the LPC17xx device to ground.

e The Down joystick position connects pin D to port pin P1.25 of the LPC17xx device to ground.

e The Select joystick position connects the Cntr pin to port pin P1.20 of the LPC17xx device to ground.

To use the peripherals provided to you on the dev board, ensure that you abide by the following steps. Let us
take joystick. MCB_1700.c as an example which can be found at the end of this Appendix. Note: masking
register bits with |= (...) will turn the specified port pins high, while &= ~(...) will alternatively place them as
low.

1) Power up the Peripheral

Looking at the NXP LPC17XX User Manual provided to you in the course directory, refer to Chapter 4:
Clocking and Power Control (in particular pp. 63). The PCONP register is responsible for powering up
various peripherals on the board, represented as a total of 32 bits.

The joystick is considered as a GPIO and therefore we are concerned with bit 15 for powering up. Note that
the default value is '1' when the chip is reset. Thus GPIOs are powered up by default on reset. When coding
for joystick, Inititialize() we must then include the following code to power up the GPIO:

LPC_SC->PCONP = (1 << 15);

2) Specify the operating mode

The pins that need to be used by the peripherals must be connected to a Pin Connect Block (LPC_PINCON
macro in LPC17xx.h). The registers which connect the peripheral pins to the LPC_PINCON are referred to
as PINSEL, containing 11 registers in total.

The joystick pins are located on Port 1, pins 20, 23, 24, 25, and 26 (verify on the dev board). Referring to
the manual (i.e. Table 82 on pp. 109) we observe that PINSEL3 is responsible for configuring these pin
functions. Thus we include the following in joystick-MCB1700.c:

/* P1.20, P1.23..26 is GPIO (Joystick) */
LPC_PINCON->PINSEL3 &= ~((3<< 8) | (3<<14) | (3<<16) | (3<<18) | (3<<20));

These pins are automatically selected as GPIOs upon reset according to Table 82. Thus we keep the "00"
value assigned to them (re-declare these values as good practice).

EE8205: Embedded Computer System -- uVision Tutorial Page 15/19

3) Specify the direction of the pin

The I/O direction of the peripheral pins must also be specified (input/output). The FIODIR registers are
used to set pin directions accordingly, where '0' represents input, and '1' is output. By default all registers
are assigned as input. As the joystick is on port 1 in the LPC1768, we can configure specific pins as input
as follows (pins on the LPC_GPIO1 macro):

/* P1.20, P1.23..26 is input */
LPC GPIO1->FIODIR &= ~((1<<20) | (1<<23) | (1<<24) | (1<<25) | (1k<206));

Copyright (c) 2013 - 2019 Arm Limited (or its affiliates). All
rights reserved.

SPDX-License-Identifier: BSD-3-Clause

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1.Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2.Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3.Neither the name of Arm nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LTIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

LR R SR I S R I S e N S S e S S I

* Name: Joystick MCB1700.c
* Purpose: Joystick interface for MCB1700 evaluation board
* Rev.: 1.01

#include "LPCl7xx.h"

#include "PIN LPC17xx.h"
#include "GPIO LPCl7xx.h"

#include "Board Joystick.h"
#define JOYSTICK COUNT (50)

/* Joystick pins:
- center: P1 20 = GPIO1[20]

- up: P1 23 = GPIO1[23]
- down: P1 25 = GPIO1[25]
- left: P1 26 = GPIO1[26]

- right: Pl 24 = GPIOLl[24] */

/* Joystick pin definitions */

EE8205: Embedded Computer System -- uVision Tutorial Page 16/19

static const PIN JOYSTICK PIN[] = {
{ 1U, 20U},

10, 23U},

10, 25U},

10, 26U},

1U, 24U}

e TN

/**
\fn int32 t Joystick Initialize (void)
\brief Initialize joystick
\returns
- \b 0: function succeeded
- \b -1: function failed
*/
int32 t Joystick Initialize (void) {
uint32 t n;

/* Enable GPIO clock */
GPIO_ PortClock (10) ;

/* Configure pins */

for (n = 0U; n < JOYSTICK COUNT; n++) {
PIN Configure (JOYSTICK PIN[n].Portnum, JOYSTICK PIN[n].Pinnum, PIN FUNC 0, 0U, 0U);
GPIO_SetDir (JOYSTICK PIN[n].Portnum, JOYSTICK_PIN[n].Pinnum, GPIO DIR INPUT) ;

}

return 0;

}

Jxx
\fn int32 t Joystick Uninitialize (void)
\brief De-initialize joystick
\returns

- \b 0: function succeeded
- \b -1: function failed
*/

int32 t Joystick Uninitialize (void) {
uint32 t n;

/* Unconfigure pins */
for (n = 0U; n < JOYSTICK COUNT; n++) {
PIN Configure (JOYSTICK PIN[n].Portnum, JOYSTICK PIN[n].Pinnum, 0U, 0U, 0U);
}
return 0;

}

Jxx
\fn uint32 t Joystick GetState (void)
\brief Get joystick state
\returns Joystick state

*/

uint32 t Joystick GetState (void) {
uint32 t val;

val = 0U;

if (!(GPIO_PinRead (JOYSTICK_PIN[O].Portnum, JOYSTICK_PIN[O].Pinnum))) val | =
JOYSTICK CENTER;

if (! (GPIO_PinRead (JOYSTICK PIN[1].Portnum, JOYSTICK PIN[1].Pinnum))) val |=
JOYSTICK UP;

if (!(GPIO_PinRead (JOYSTICK_PIN[Z].Portnum, JOYSTICK_PIN[Z].Pinnum))) val | =
JOYSTICK DOWN;

if (! (GPIO_PinRead (JOYSTICK PIN[3].Portnum, JOYSTICK PIN[3].Pinnum))) val |=

JOYSTICK LEFT;

EE8205: Embedded Computer System -- uVision Tutorial Page 17/19

if (! (GPIO_PinRead (JOYSTICK PIN[4].Portnum, JOYSTICK PIN[4].Pinnum))) val |=
JOYSTICK RIGHT;

return val;

* Copyright (c) 2013 - 2019 Arm Limited (or its affiliates). All

* rights reserved.

* SPDX-License-Identifier: BSD-3-Clause

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

* 1.Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2.Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.
* 3.Neither the name of Arm nor the names of its contributors may be used
* to endorse or promote products derived from this software without

* specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

*

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

*

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

*

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

*

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.

* Name: Board Joystick.h

* Purpose: Joystick interface header file

* Rev.: 1.0.0

#ifndef BOARD JOYSTICK H

#define _ BOARD JOYSTICK H

#include <stdint.h>

#define JOYSTICK LEFT (1 << 0) /// Defines the Left-button

EE8205: Embedded Computer System -- uVision Tutorial Page 18/19

#define JOYSTICK RIGHT (1 << 1) /// Defines the Right-button

#define JOYSTICK CENTER (1 << 2) /// Defines the Center-button
#define JOYSTICK UP (1 << 3) /// Defines the Up-button
#define JOYSTICK DOWN (1 << 4) /// Defines the Down-button
/‘k*

\fn int32 t Joystick Initialize (void)

\brief Initialize joystick

\returns

- \b 0: function succeeded

- \b -1: function failed

*/
/*x*
\fn int32 t Joystick Uninitialize (void)
\brief De-initialize joystick
\returns
- \b 0: function succeeded
- \b -1: function failed
*/
J*x*
\fn uint32 t Joystick GetState (void)
\brief Get joystick state
\returns Joystick state
*/
extern int32 t Joystick Initialize (void) ;
extern int32 t Joystick Uninitialize (void) ;
extern uint32 t Joystick GetState (void) ;

#endif /* _ BOARD JOYSTICK H */

EE8205: Embedded Computer System -- uVision Tutorial Page 19/19

