Chap6: Poisson Process

Exponential Distribution: Basic Facts

e Density
Ae A x>0
f(x) = A >0
0 r <0
e CDF
l—e ™™ >0
F(z) = ‘ =
0 z <0
e CF \
w)= E[¢X] = 2
()= B = 2

Mean E[X] = 1/\
e Variance Var[X] = 1/\?
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Key Property: Memorylessness

P{X >s+t|X >t} =P{X >s} foralls,t>0

e Reliability: Amount of time a component has been in service has no effect on the amount
of time until it fails

e Inter-event times: Amount of time since the last event contains no information about the
amount of time until the next event

e Service times: Amount of remaining service time is independent of the amount of
service time elapsed so far.
e An example of a memoryless RV, T
— Let T be the time of arrival of a memoryless event, E/
— Choose any constant, D
- P(T>D)=P(T >x+ D|T > x) for any z
— We “checked” to see if F/ occurred before x and found out that it didn’t.

— Given that it did not occur before time x, the likelihood that it won't occur by time
D + x 1s the same as that the timer is reset to 0 and it won't occur by time D.
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Other Useful Properties

e Competing Exponentials: If X'; and X are independent exponential RVs with
parameters A; and As, respectively, then

A1

iy <X} =575,

Proof: X, and X, are independent exponential random variables with A, and 4,.
o

- fmpfxl = t) P(Xo = t)dt
]

Ay
A + Ag

= J‘ (11— E_'ﬂ‘—r?:[.f-'lrg e haft =
o
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e Minimum of exponentials: If X, X5, -- . X, are independent exponential RVs where

X, has parameter \;, then min( Xy, X5, --- , X,,) is exponential with parameter
A+ Ao+ -+ A,

Proof: Define random variable Y=min{X,, X,, ... , X, }

X1, -, X, are independent exponential r.v.s with };
Pr(Y >x) = Pr{imn{X,,--- . X,}>2}=Pr{X; >z - X, >z}

= Pri{X; >z} - -Pr{X, >z} = f Ae My f Ape 22 dz

— (_)\IT . {:_'_._)\H.T — (;._()\1++)\n}1r

it 1s equivalent to an exponential r.v. with A = Ay + -+ - + A,,.

Fyy)=Pr(Y <y)=1-Pr(Y >y)=1-e"
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Counting Process

A stochastic process { N (t),t > 0} is a counting process if N (t) represents the total number
of events that have occurred in (0, ¢]. Then { N (¢),¢ > 0} must satisfy:

e N(t) > 0.
e N(t) is an integer for all .
o If s <t then N(s) < N(t)

e Fors < t, N(t) — N(s) is the number of events that occur in the interval (s, t].

Stationary and Independent Increments I

e A counting process has independent increments if, for any
0<s<t<wu<w,N(t)— N(s)isindependent of N(v) — N(u). That is, the numbers
of events that occur in non-overlapping intervals are independent random variables.

e A counting process has stationary increments if the distribution if, for any s < ¢, the
distribution of (V (¢) — N (s))depends only on the length of the time interval,( — )
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Poisson Process Definition

A counting process { N (t),t > 0} is a Poisson process with rate A\, A > 0, if
e N(0)=0.
e The process has independent increments

e The number of events in any interval of length ¢ follows a Poisson distribution with mean

At (therefore, it has stationary increments), i.e.,

PN(+9)~N(s) = n = O g1
£ arrivals ﬁﬂf}ilﬂr

R RiY

|| N | | —2A |
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. . . . A\
P{“k arrivals occur in an interval of duration A” } = e~ M k—}
where
A =A-A
It follows that
)\k
P{“k arrivals occur in an interval of duration 2A” } = e A2 k_2'

since in that case

Ao =A-2A =2)\

Poisson arrivals over an interval form a Poisson random variable whose parameter depends

on the duration of that interval.
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: Data packets transmitted by a modem over a phone line form a Poisson process

of rate 10 packet/sec. Using M} to denote the number of packets transmitted in the £th hour,
find the joint pmf of M and Ms.

The first and second hours are nonoverlapping intervals. Since one hour equals 3600 seconds
and the Poisson process has a rate of 10 packet/sec, the expected number of packets in each
hour is F[M;] = A\t = a = 36, 000. This implies M; and M5 are independent Poisson
random variable each with pmf

oe 4y =0,1,2, -

0 0..

Since M, and M5 are independent, the joint pmf is

aml +mo 6—204

Pty (M1, ma) = pas, (ma)pag, (ma) = T

0 0..

m12071727"' ;m2:071727"'
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Interarrival and Waiting Times

The times between arrivals 77,715, - - - are independent exponential r.v.s with mean 1/\:
P(T) >t)=P(N(t)=0) =e M

The (total) waiting time until the nth event has a gamma distribution:

Sn — zn: T;
=1

NI
e < e P
s -, & e S e
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Inter-arrival Distribution for Poisson Processes

Let T denote the time interval (delay) to the first arrival from any fixed point ¢y. To
determine the probability distribution of the random variable 77, we argue as follows:
Observe that the event 77 > ¢ is the same as “N (tg,tg + t) = 0”, or the complement event

Ty < tisthe same as the event “N (to,to +t) > 0” . Hence the distribution function of 77 is
given by

FTl(t) :P(Tl St) :P(N(t) >0) :P[N(t07t0_|_t> >O] — ] — e A

211!21 ﬂth
15t arriwal arrival
: N ) e Y
e R £ £

Figure 1: Inter-arrival time.
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and hence its derivative gives the density function for 7} to be
frot)=xe™™,  t>0 )

i.e., T7 is an exponential random variable with parameter A so that £'(77) = 1/\.

Similarly, let S, represent the nth random arrival point for a Poisson process. Then

Fs,(t) = P(S, <t)=P(N(t) >n)=1—-P[N(t) <n]=1- ©)
and hence
n—1 n—1
A x)F~1 Y NeYIL Y Al _
_ N S X T _ T >
]; k=1 ¢ +;§ Ho© ¢ o =0 ©

which represents a gamma density function. i.e., the waiting time to the nth Poisson arrival
instant has a gamma distribution. Moreover

Sn:in

where T is the random inter-arrival duration between the (i — 1)th and ith events. Notice that
T;’s are independent, identically distributed (11d) exponential RVs with mean 1/ A.
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Classified Poisson Process

{N(t);t > 0} is Poisson process with rate A

e Classified each arrival as type I or type II, according to P(type I)=p, P(type II)=1 — p

o Let
— N1 (t) = number of type I arrivals in (0, ¢]
— N5 (t) = number of type II arrivals in (0, ¢]
— and N(t) = Ny(t) + Na(t)

e Then

Pr{N\(t) = n, Nao(t) = m} = ¥ Pr{Ny(t) = n, No(t) = m|N(t) = k} - Pr{N(t) =
k=0

= Pr{Ni(t) =n,Na(t) =m|N({t) =n+m}Pr{N(t) =n+m}

n+m e M ()t
n (n +m)!

P p)"e MO AT e MPp)" e M (AL — p))”

n! m! n! m)!
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Therefore,

Pr{N:(t) =n} = Z Pr{Ny(t) = n, No(t) = m}

B —Atp )\tp n o G—At(l—p)()\t(l _p))m
B Z m!

m=0

~~

=1,sum over pmf

—Atp A\tp)™?
€ : :
= ( ' P) ~ Poisson r.v. with parameter \p
n!

e Similarly, Pr{ N2(¢) = m} ~ Poisson with parameter A(1 — p).
e Can be extended to K classes (by induction).

e Let green packets arrive as a Poisson process with rate )1, and red packets arrive as a
Poisson process with rate Ao, then green+red packets arrive as a Poisson process with
rate A1 + Ao, and

Pr{next packetis red} = Ao/(A1 + \2)
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Racing Poisson Process

e Two independent Poisson process, N4 and Np,
— {Na(t);t > 0} ~ Poisson withA 4, {Np(t);t > 0} ~ Poisson withAp
— 5" time in process N4, S time in process Np,

e Sl ~ exponential with rate A4, and S} ~ exponential with rate )\ g, independent with
each other.

A
PriSh<Sp} = o (8)

e then we have
Pr{S3 < Sg}
= Pr{S% < Sg|Sy < Sy} - Pr{S} < S} + Pr{S% < Sg|SY > S5} - Pr{S} > Sg}
= Pr{S4 < Sg}-Pr{Sy < Sgp}

a ()\A + )\B> )
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