Exponential Distribution: Basic Facts

• Density $f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases} \quad \lambda > 0$ • CDF $F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$ • CF

$$\phi(\boldsymbol{\omega}) = E[e^{j\boldsymbol{\omega}X}] = \frac{\lambda}{\lambda - j\boldsymbol{\omega}}$$

- Mean $E[X] = 1/\lambda$
- Variance $Var[X] = 1/\lambda^2$

Key Property: Memorylessness

 $P\{X > s + t | X > t\} = P\{X > s\}$ for all $s, t \ge 0$

- Reliability: Amount of time a component has been in service has no effect on the amount of time until it fails
- Inter-event times: Amount of time since the last event contains no information about the amount of time until the next event
- Service times: Amount of remaining service time is independent of the amount of service time elapsed so far.
- An example of a memoryless RV, T
 - Let T be the time of arrival of a memoryless event, E
 - Choose any constant, D
 - P(T > D) = P(T > x + D|T > x) for any x
 - We "checked" to see if E occurred before x and found out that it didn't.
 - Given that it did not occur before time x, the likelihood that it won't occur by time D + x is the same as that the timer is reset to 0 and it won't occur by time D.

Other Useful Properties

 Competing Exponentials: If X₁ and X₂ are independent exponential RVs with parameters λ₁ and λ₂, respectively, then

$$P\{X_1 < X_2\} = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

Proof: X_1 and X_2 are independent exponential random variables with λ_1 and λ_2 .

$$\begin{split} P(X_1 < X_2) &= \int_0^\infty P(X_1 < X_2 | X_2 = t) P(X_2 = t) dt \\ &= \int_0^\infty P(X_1 < t) P(X_2 = t) dt \\ &= \int_0^\infty (1 - e^{-\lambda_1 t}) \lambda_2 e^{-\lambda_2 t} dt = \frac{\lambda_1}{\lambda_1 + \lambda_2} \end{split}$$

Minimum of exponentials: If X₁, X₂, · · · , X_n are independent exponential RVs where X_i has parameter λ_i, then min(X₁, X₂, · · · , X_n) is exponential with parameter λ₁ + λ₂ + · · · + λ_n.

Proof: Define random variable $Y=\min\{X_1, X_2, ..., X_n\}$ X_1, \dots, X_n are independent exponential r.v.s with λ_i $Pr(Y > x) = Pr\{\min\{X_1, \dots, X_n\} > x\} = Pr\{X_1 > x, \dots, X_n > x\}$ $= Pr\{X_1 > x\} \dots Pr\{X_n > x\} = \int_{-\infty}^{\infty} \lambda_1 e^{-\lambda_1 z} dz \dots \int_{-\infty}^{\infty} \lambda_n e^{-\lambda_n z} dz$

$$= e^{-\lambda_1 x} \cdots e^{-\lambda_n x} = e^{-(\lambda_1 + \dots + \lambda_n)x}$$

it is equivalent to an exponential r.v. with $\lambda = \lambda_1 + \cdots + \lambda_n$.

$$F_{Y}(y) = Pr(Y \le y) = 1 - Pr(Y > y) = 1 - e^{-\lambda y}$$

Counting Process

A stochastic process $\{N(t), t \ge 0\}$ is a *counting process* if N(t) represents the total number of events that have occurred in (0, t]. Then $\{N(t), t \ge 0\}$ must satisfy:

- $N(t) \ge 0.$
- N(t) is an integer for all t.
- If s < t, then $N(s) \le N(t)$
- For s < t, N(t) N(s) is the number of events that occur in the interval (s, t].

Stationary and Independent Increments

- A counting process has independent increments if, for any
 0 ≤ s < t ≤ u < v, N(t) − N(s) is independent of N(v) − N(u). That is, the numbers
 of events that occur in non-overlapping intervals are independent random variables.
- A counting process has *stationary increments* if the distribution if, for any s < t, the distribution of (N(t) N(s)) depends only on the length of the time interval, (t s)

Poisson Process Definition

A counting process $\{N(t), t \ge 0\}$ is a Poisson process with rate $\lambda, \lambda > 0$, if

- N(0) = 0.
- The process has independent increments
- The number of events in any interval of length t follows a Poisson distribution with mean λt (therefore, it has stationary increments), i.e.,

$$P\{N(t+s) - N(s) = n\} = \frac{e^{-\lambda t}(\lambda t)^n}{n!} \quad n = 0, 1, \cdots$$

$$P\{$$
 "k arrivals occur in an interval of duration Δ " $\} = e^{-\lambda_1} \frac{\lambda_1^k}{k!}$

where

 $\lambda_1 = \lambda \cdot \Delta$

It follows that

$$P\{$$
 "k arrivals occur in an interval of duration 2Δ " $\} = e^{-\lambda_2} \frac{\lambda_2^k}{k!}$

since in that case

$$\lambda_2 = \lambda \cdot 2\Delta = 2\lambda_1$$

Poisson arrivals over an interval form a Poisson random variable whose parameter depends on the duration of that interval.

Example

Example : Data packets transmitted by a modem over a phone line form a Poisson process of rate 10 packet/sec. Using M_k to denote the number of packets transmitted in the kth hour, find the joint pmf of M_1 and M_2 .

The first and second hours are nonoverlapping intervals. Since one hour equals 3600 seconds and the Poisson process has a rate of 10 packet/sec, the expected number of packets in each hour is $E[M_i] = \lambda t = \alpha = 36,000$. This implies M_1 and M_2 are independent Poisson random variable each with pmf

$$p_{M_i}(m) = \begin{cases} \frac{\alpha^m e^{-\alpha}}{m!} & m = 0, 1, 2, \cdots \\ 0 & o.w. \end{cases}$$

Since M_1 and M_2 are independent, the joint pmf is

$$p_{M_1,M_2}(m_1,m_2) = p_{M_1}(m_1)p_{M_2}(m_2) = \begin{cases} \frac{\alpha^{m_1+m_2}e^{-2\alpha}}{m_1!m_2!} & m_1 = 0, 1, 2, \cdots; m_2 = 0, 1, 2, \cdots \\ 0 & o.w. \end{cases}$$

Interarrival and Waiting Times

The times between arrivals T_1, T_2, \cdots are independent exponential r.v.s with mean $1/\lambda$:

$$P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}$$

The (total) waiting time until the nth event has a gamma distribution:

$$S_n = \sum_{i=1}^n T_i$$

Inter-arrival Distribution for Poisson Processes

Let T_1 denote the time interval (delay) to the first arrival from any fixed point t_0 . To determine the probability distribution of the random variable T_1 , we argue as follows: Observe that the event $T_1 > t$ is the same as " $N(t_0, t_0 + t) = 0$ ", or the complement event $T_1 \le t$ is the same as the event " $N(t_0, t_0 + t) > 0$ ". Hence the distribution function of T_1 is given by

$$F_{T_1}(t) = P(T_1 \le t) = P(N(t) > 0) = P[N(t_0, t_0 + t) > 0] = 1 - e^{-\lambda t}$$

Figure 1: Inter-arrival time.

and hence its derivative gives the density function for T_1 to be

$$f_{T_1}(t) = \lambda \, e^{-\lambda t}, \qquad t \ge 0 \tag{4}$$

i.e., T_1 is an exponential random variable with parameter λ so that $E(T_1) = 1/\lambda$. Similarly, let S_n represent the *n*th random arrival point for a Poisson process. Then

$$F_{S_n}(t) = P(S_n \le t) = P(N(t) \ge n) = 1 - P[N(t) < n] = 1 - \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
(5)

and hence

$$f_{S_n}(x) = -\sum_{k=1}^{n-1} \frac{\lambda(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x} + \sum_{k=0}^{n-1} \frac{\lambda(\lambda x)^k}{k!} e^{-\lambda x} = \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x}, \quad x \ge 0$$
(6)

which represents a gamma density function. i.e., the waiting time to the nth Poisson arrival instant has a gamma distribution. Moreover

$$S_n = \sum_{i=1}^n T_i$$

where T_i is the random inter-arrival duration between the (i - 1)th and *i*th events. Notice that T_i 's are independent, identically distributed (iid) exponential RVs with mean $1/\lambda$.

Classified Poisson Process

- $\{N(t); t \ge 0\}$ is Poisson process with rate λ
- Classified each arrival as type I or type II, according to P(type I)=p, P(type II)=1-p
- Let
 - $N_1(t)$ = number of type I arrivals in (0, t]
 - $N_2(t)$ = number of type II arrivals in (0, t]

- and
$$N(t) = N_1(t) + N_2(t)$$

• Then

$$Pr\{N_{1}(t) = n, N_{2}(t) = m\} = \sum_{k=0}^{\infty} Pr\{N_{1}(t) = n, N_{2}(t) = m | N(t) = k\} \cdot Pr\{N(t) = n + m\}$$
$$= Pr\{N_{1}(t) = n, N_{2}(t) = m | N(t) = n + m\} Pr\{N(t) = n + m\}$$
$$= \binom{n+m}{n} p^{n}(1-p)^{m} \frac{e^{-\lambda t}(\lambda t)^{n+m}}{(n+m)!}$$
$$= \frac{p^{n}(1-p)^{m}e^{-\lambda t}(\lambda t)^{n}(\lambda t)^{m}}{n! m!} = \frac{e^{-\lambda t p}(\lambda t p)^{n}}{n!} \frac{e^{-\lambda t(1-p)}(\lambda t(1-p))^{m}}{m!}$$

Therefore,

$$Pr\{N_{1}(t) = n\} = \sum_{m=0}^{\infty} Pr\{N_{1}(t) = n, N_{2}(t) = m\}$$
$$= \frac{e^{-\lambda t p} (\lambda t p)^{n}}{n!} \sum_{m=0}^{\infty} \frac{e^{-\lambda t (1-p)} (\lambda t (1-p))^{m}}{m!}$$
$$= \frac{e^{-\lambda t p} (\lambda t p)^{n}}{n!} \sim \text{Poisson r.v. with parameter} \lambda p$$

- Similarly, $\Pr\{N_2(t) = m\} \sim \text{Poisson with parameter } \lambda(1-p)$.
- Can be extended to K classes (by induction).
- Let green packets arrive as a Poisson process with rate λ₁, and red packets arrive as a Poisson process with rate λ₂, then green+red packets arrive as a Poisson process with rate λ₁ + λ₂, and

 $Pr\{\text{next packet is red}\} = \lambda_2/(\lambda_1 + \lambda_2)$

Racing Poisson Process

- Two independent Poisson process, N_A and N_B ,
 - $\{N_A(t); t \ge 0\}$ ~ Poisson with λ_A , $\{N_B(t); t \ge 0\}$ ~ Poisson with λ_B
 - S_A^n time in process N_A , S_B^n time in process N_B ,
- $S_A^1 \sim$ exponential with rate λ_A , and $S_B^1 \sim$ exponential with rate λ_B , independent with each other.

$$Pr\{S_A^1 < S_B^1\} = \frac{\lambda_A}{\lambda_A + \lambda_B} \tag{8}$$

• then we have

$$Pr\{S_{A}^{2} < S_{B}^{1}\} = Pr\{S_{A}^{2} < S_{B}^{1}|S_{A}^{1} < S_{B}^{1}\} \cdot Pr\{S_{A}^{1} < S_{B}^{1}\} + Pr\{S_{A}^{2} < S_{B}^{1}|S_{A}^{1} > S_{B}^{1}\} \cdot Pr\{S_{A}^{1} < S_{B}^{1}\}$$

$$= Pr\{S_{A}^{1} < S_{B}^{1}\} \cdot Pr\{S_{A}^{1} < S_{B}^{1}\}$$

$$= \left(\frac{\lambda_{A}}{\lambda_{A} + \lambda_{B}}\right)^{2}$$
(9)