
Chap6: Poisson Process

Exponential Distribution: Basic Facts

• Density

f(x) =

⎧⎨
⎩

λe−λx x ≥ 0

0 x < 0
λ > 0

• CDF

F (x) =

⎧⎨
⎩

1 − e−λx x ≥ 0

0 x < 0

• MFG

φ(t) = E[etX ] =
λ

λ − t

• Mean E[X] = 1/λ

• Variance V ar[X] = 1/λ2
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Key Property: Memorylessness

P{X > s + t|X > t} = P{X > s} for all s, t ≥ 0

• Reliability: Amount of time a component has been in service has no effect on the amount
of time until it fails

• Inter-event times: Amount of time since the last event contains no information about the
amount of time until the next event

• Service times: Amount of remaining service time is independent of the amount of
service time elapsed so far.

• An example of a memoryless RV, T

– Let T be the time of arrival of a memoryless event, E

– Choose any constant, D

– P (T > D) = P (T > x + D|T > x) for any x

– We “checked” to see if E occurred before x and found out that it didn’t.

– Given that it did not occur before time x, the likelihood that it now occurs by time
D + x is the same as if the timer just started and were only waiting for time D.

4

won't occur by time
that the timer is reset to 0 and it won't occur by time D.
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Other Useful Properties

Proof:  X1 and X2 are independent exponential random variables with �1 and �2.1 2 p p 1 2

4



Chap 6: Poisson Process

Define random variable Y=min{X1, X2, … , Xn}Proof:

Pr(Y  > x)

FY(y) = Pr(Y  � y) =1- Pr(Y  > y) = 1- e-�y
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Counting Process

A stochastic process {N(t), t ≥ 0} is a counting process if N(t) represents the total number
of events that have occurred in [0, t]. Then {N(t), t ≥ 0} must satisfy:

• N(t) ≥ 0.

• N(t) is an integer for all t.

• If s < t, then N(s) ≤ N(t)

• For s < t, N(t) − N(s) is the number of events that occur in the interval (s, t].

Stationary and Independent Increments

• A counting process has independent increments if, for any
0 ≤ s < t ≤ u < v, N(t) − N(s) is independent of N(v) − N(u). That is, the numbers
of events that occur in non-overlapping intervals are independent random variables.

• A counting process has stationary increments if the distribution if, for any s < t, the
distribution of N(t) − N(s) depends only on the length of the time interval, t − s.
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Poisson Process Definition

A counting process {N(t), t ≥ 0} is a Poisson process with rate λ, λ > 0, if

• N(0) = 0.

• The process has independent increments

• The number of events in any interval of length t follows a Poisson distribution with mean
λt (therefore, it has stationary increments), i.e.,

P{N(t + s) − N(s) = n} =
e−λt(λt)n

n!
n = 0, 1, · · ·
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P{“k arrivals occur in an interval of duration Δ”} = e−λ1
λk

1

k!
where

λ1 = λ · Δ
It follows that

P{“k arrivals occur in an interval of duration 2Δ”} = e−λ2
λk

2

k!

since in that case
λ2 = λ · 2Δ = 2λ1

Poisson arrivals over an interval form a Poisson random variable whose parameter depends
on the duration of that interval.
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Example
: Data packets transmitted by a modem over a phone line form a Poisson process

of rate 10 packet/sec. Using Mk to denote the number of packets transmitted in the kth hour,
find the joint pmf of M1 and M2.

The first and second hours are nonoverlapping intervals. Since one hour equals 3600 seconds
and the Poisson process has a rate of 10 packet/sec, the expected number of packets in each
hour is E[Mi] = λt = α = 36, 000. This implies M1 and M2 are independent Poisson
random variable each with pmf

pMi
(m) =

⎧⎨
⎩

αme−α

m! m = 0, 1, 2, · · ·
0 o.w.

Since M1 and M2 are independent, the joint pmf is

pM1,M2(m1,m2) = pM1(m1)pM2(m2) =

⎧⎨
⎩

αm1+m2 e−2α

m1!m2!
m1 = 0, 1, 2, · · · ;m2 = 0, 1, 2, · · ·

0 o.w.
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Interarrival and Waiting Times

The times between arrivals T1, T2, · · · are independent exponential r.v.s with mean 1/λ:

P (T1 > t) = P (N(t) = 0) = e−λt P (T2 > (t + s)|T1 = s) = e−λt

The (total) waiting time until the nth event has a gamma distribution:

Sn =
n∑

i=1

Ti

12
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Inter-arrival Distribution for Poisson Processes

Let T1 denote the time interval (delay) to the first arrival from any fixed point t0. To
determine the probability distribution of the random variable T1, we argue as follows:
Observe that the event T1 > t is the same as “N(t0, t0 + t) = 0”, or the complement event
T1 ≤ t is the same as the event “N(t0, t0 + t) > 0” . Hence the distribution function of T1 is
given by

FT1(t) = P (T1 ≤ t) = P (N(t) > 0) = P [N(t0, t0 + t) > 0] = 1 − e−λt

Figure 1: Inter-arrival time.
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and hence its derivative gives the density function for T1 to be

fT1(t) = λ e−λt, t ≥ 0 (4)

i.e., T1 is an exponential random variable with parameter λ so that E(T1) = 1/λ.

Similarly, let Sn represent the nth random arrival point for a Poisson process. Then

FSn
(t) = P (Sn ≤ t) = P (N(t) ≥ n) = 1 − P [N(t) < n] = 1 −

n−1∑
k=0

(λt)k

k!
e−λt (5)

and hence

fSn
(x) = −

n−1∑
k=1

λ(λx)k−1

(k − 1)!
e−λx +

n−1∑
k=0

λ(λx)k

k!
e−λx =

λnxn−1

(n − 1)!
e−λx, x ≥ 0 (6)

which represents a gamma density function. i.e., the waiting time to the nth Poisson arrival
instant has a gamma distribution. Moreover

Sn =
n∑

i=1

Ti

where Ti is the random inter-arrival duration between the (i− 1)th and ith events. Notice that
Ti’s are independent, identically distributed random variables. Hence using their

14

(iid) exponential RVs with mean 1/ λ.
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Classified Poisson Process

• {N(t); t ≥ 0} ≈ Poisson, with rate λ

• Classified each arrival as type I or type II, according to P(type I)=p, P(type II)=1 − p

• Let

– N1(t) = number of type I arrivals in [0, t)

– N2(t) = number of type II arrivals in [0, t)

– and N(t) = N1(t) + N2(t)

• Then

Pr{N1(t) = n,N2(t) = m} =
∞∑

k=0

Pr{N1(t) = n,N2(t) = m|N(t) = k} · Pr{N(t) =

= Pr{N1(t) = n,N2(t) = m|N(t) = n + m}Pr{N(t) = n + m}

=

⎛
⎝ n + m

n

⎞
⎠ pn(1 − p)m e−λt(λt)n+m

(n + m)!

=
pn(1 − p)me−λt(λt)n(λt)m

n! m!
=

e−λtp(λtp)n

n!
e−λt(1−p)(λt(1 − p))m

m!

16

λis Poisson process with rate
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Therefore,

Pr{N1(t) = n} =
∞∑

m=0

Pr{N1(t) = n,N2(t) = m}

=
e−λtp(λtp)n

n!

∞∑
m=0

e−λt(1−p)(λt(1 − p))m

m!︸ ︷︷ ︸
=1,sum over pmf

=
e−λtp(λtp)n

n!
∼ Poisson r.v. with parameterλp

• Similarly, Pr{N2(t) = m} ∼ Poisson with parameter λ(1 − p).

• Can be extended to K classes (by induction).

• Let green packets arrive as a Poisson process with rate λ1, and red packets arrive as a
Poisson process with rate λ2, then green+red packets arrive as a Poisson process with
rate λ1 + λ2, and

Pr{next packet is red} = λ2/(λ1 + λ2)
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Racing Poisson Process

• Two independent Poisson process, NA and NB ,

– {NA(t); t ≥ 0} ∼ Poisson withλA, {NB(t); t ≥ 0} ∼ Poisson withλB

– Sn
A time in process NA, Sn

B time in process NB ,

• S1
A ∼ exponential with rate λA, and S1

B ∼ exponential with rate λB , independent with
each other.

Pr{S1
A < S1

B} =
λA

λA + λB
(8)

• then we have

Pr{S2
A < S1

B}
= Pr{S2

A < S1
B |S1

A < S1
B} · Pr{S1

A < S1
B} + Pr{S2

A < S1
B |S1

A > S1
B} · Pr{S1

A > S1
B}

= Pr{S1
A < S1

B} · Pr{S1
A < S1

B}

=
(

λA

λA + λB

)2

(9)
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