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Chap 3.1: Distribution Functions of Two RVs

In many experiments, the observations are expressible not as a single quantity, but as a family
of quantities. For example to record the height and weight of each person in a community or
the number of people and the total income in a family, we need two numbers.

Let X and Y denote two random variables based on a probability model (Ω, F, P ). Then

P (x1 < X(ξ) ≤ x2) = FX(x2) − FX(x1) =
∫ x2

x1

fX(x) dx

and

P (y1 < Y (ξ) ≤ y2) = FY (y2) − FY (y1) =
∫ y2

y1

fY (y) dy

What about the probability that the pair of RVs (X,Y ) belongs to an arbitrary region D? In
other words, how does one estimate, for example

P [(x1 < X(ξ) ≤ x2) ∩ (y1 < Y (ξ) ≤ y2)] =?

Towards this, we define the joint probability distribution function of X and Y to be

FXY (x, y) = P (X ≤ x, Y ≤ y) ≥ 0 (1)
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Chap 3: Two Random Variables

where x and y are arbitrary real numbers.

Properties

1.

FXY (−∞, y) = FXY (x,−∞) = 0, FXY (+∞, +∞) = 1 (2)

since (X(ξ) ≤ −∞, Y (ξ) ≤ y) ⊂ (X(ξ) ≤ −∞), we get

FXY (−∞, y) ≤ P (X(ξ) ≤ −∞) = 0

Similarly, (X(ξ) ≤ +∞, Y (ξ) ≤ +∞) = Ω, we get FXY (+∞, +∞) = P (Ω) = 1.

2.

P (x1 < X(ξ) ≤ x2, Y (ξ) ≤ y) = FXY (x2, y) − FXY (x1, y) (3)

P (X(ξ) ≤ x, y1 < Y (ξ) ≤ y2) = FXY (x, y2) − FXY (x, y1) (4)

To prove (3), we note that for x2 > x1

(X(ξ) ≤ x2, Y (ξ) ≤ y) = (X(ξ) ≤ x1, Y (ξ) ≤ y) ∪ (x1 < X(ξ) ≤ x2, Y (ξ) ≤ y)
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and the mutually exclusive property of the events on the right side gives

P (X(ξ) ≤ x2, Y (ξ) ≤ y) = P (X(ξ) ≤ x1, Y (ξ) ≤ y)+P (x1 < X(ξ) ≤ x2, Y (ξ) ≤ y)

which proves (3). Similarly (4) follows.

3.

P (x1 < X(ξ) ≤ x2, y1 < Y (ξ) ≤ y2) = FXY (x2, y2) − FXY (x2, y1) (5)

−FXY (x1, y2) + FXY (x1, y1)

This is the probability that (X, Y ) belongs to the rectangle in Fig. 3. To prove (5), we
can make use of the following identity involving mutually exclusive events on the right
side.

(x1 < X(ξ) ≤ x2, Y (ξ) ≤ y2) = (x1 < X(ξ) ≤ x2, Y (ξ) ≤ y1)

∪(x1 < X(ξ) ≤ x2, y1 < Y (ξ) ≤ y2)

This gives

P (x1 < X(ξ) ≤ x2, Y (ξ) ≤ y2) = P (x1 < X(ξ) ≤ x2, Y (ξ) ≤ y1)

+P (x1 < X(ξ) ≤ x2, y1 < Y (ξ) ≤ y2)

3



Chap 3: Two Random Variables

and the desired result in (5) follows by making use of (3) with y = y2 and y1

respectively.

Figure 1: Two dimensional RV.
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Joint Probability Density Function (Joint pdf)

By definition, the joint pdf of X and Y is given by

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
(6)

and hence we obtain the useful formula

FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (u, v) du dv (7)

Using (2), we also get ∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) = 1 (8)

P ((X, Y ) ∈ D) =
∫ ∫

(x,y)∈D

fXY (x, y) dx dy (9)
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Marginal Statistics

In the context of several RVs, the statistics of each individual ones are called marginal
statistics. Thus FX(x) is the marginal probability distribution function of X , and fX(x) is
the marginal pdf of X . It is interesting to note that all marginal can be obtained from the joint
pdf. In fact

FX(x) = FXY (x,+∞) FY (y) = FXY (+∞, y) (10)

Also

fX(x) =
∫ ∞

−∞
fXY (x, y)dy fY (y) =

∫ ∞

−∞
fXY (x, y)dx. (11)

To prove (10), we can make use of the identity

(X ≤ x) = (X ≤ x) ∩ (Y ≤ +∞)

so that

FX(x) = P (X ≤ x) = P (X ≤ x, Y ≤ ∞) = FXY (x,+∞) (12)
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To prove (11), we can make use of (7) and (10), which gives

FX(x) = FXY (x,+∞) =
∫ x

−∞

∫ +∞

−∞
fXY (u, y)dy du

and taking derivative with respect to x , we get

fX(x) =
∫ +∞
−∞ fXY (x, y)dy

(13)

If X and Y are discrete RVs, then pij = P (X = xi, Y = yj) represents their joint pmf, and
their respective marginal pmfs are given by

P (X = xi) =
∑

j P (X = xi, Y = yj) =
∑

j pij

(14)

and

P (Y = yj) =
∑

i P (X = xi, Y = yj) =
∑

i pij

(15)

Assuming that P (X = xi, Y = yj) is written out in the form of a rectangular array, to obtain
P (X = xi) from (14), one needs to add up all the entries in the i-th row.

7



Chap 3: Two Random Variables

Figure 2: Illustration of marginal pmf.

It used to be a practice for insurance companies routinely to scribble out these sum values in
the left and top margins, thus suggesting the name marginal densities! (Fig 2).
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Examples

From (11) and (12), the joint CDF and/or the joint pdf represent complete information about
the RVs, and their marginal pdfs can be evaluated from the joint pdf. However, given
marginals, (most often) it will not be possible to compute the joint pdf.

Example 1
: Given

fXY (x, y) =

⎧⎨
⎩ constant 0 < x < y < 1

0 o.w.
(16)

Obtain the marginal pdfs fX(x) and fY (y).

Solution: It is given that the joint pdf fXY (x, y) is a constant in the shaded region in Fig. 3.
We can use (8) to determine that constant c. From (8)∫ +∞

−∞

∫ +∞

−∞
fXY (x, y)dx dy =

∫ 1

y=0

(∫ y

x=0

c · dx

)
dy =

∫ 1

y=0

cy dy =
cy2

2

∣∣∣10 =
c

2
= 1

9
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Figure 3: Diagram for the example.

Thus c = 2. Moreover

fX(x) =
∫ +∞

−∞
fXY (x, y)dy =

∫ 1

y=x

2dy = 2(1 − x) 0 < x < 1

and similarly,

fY (y) =
∫ +∞

−∞
fXY (x, y)dx =

∫ y

x=0

2 dx = 2y 0 < y < 1
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Clearly, in this case given fX(x) and fY (y) as above, it will not be possible to obtain the
original joint pdf in (16).

Example 2
: X and Y are said to be jointly normal (Gaussian) distributed, if their joint pdf

has the following form:

fXY (x, y) =
1

2πσXσY

√
1 − ρ2

(17)

exp
{
− 1

2(1 − ρ2)
·
[
(x − μX)2

σ2
X

− 2ρ(x − μx)(y − μY )
σXσY

+
(y − μY )2

σ2
Y

]}
−∞ < x < ∞,−∞ < y < ∞, |ρ| < 1

By direct integration, it can be shown that

fX(x) =
∫ ∞

−∞
fXY (x, y)dy =

1√
2πσ2

X

exp
[
− (x − μX)2

2σ2
X

]
∼ N(μX , σ2

X)

and similarly

fY (y) =
∫ ∞

−∞
fXY (x, y)dx =

1√
2πσ2

Y

exp
[
− (y − μY )2

2σ2
Y

]
∼ N(μY , σ2

Y )

Following the above notation, we will denote (17) as N(μX , μY , σ2
X , σ2

Y , ρ). Once again,
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knowing the marginals in above alone doesn’t tell us everything about the joint pdf in (17).
As we show below, the only situation where the marginal pdfs can be used to recover the
joint pdf is when the random variables are statistically independent.
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Independence of RVs

Definition: The random variables X and Y are said to be statistically independent if

P [(X(ξ) ≤ x) ∩ (Y (ξ) ≤ y)] = P (X(ξ) ≤ x) · P (Y (ξ) ≤ y)

• For continuous RVs,

FXY (x, y) = FX(x) · FY (y) (18)

or equivalently, if X and Y are independent, then we must have

fXY (x, y) = fX(x) · fY (y) (19)

• If X and Y are discrete-type RVs then their independence implies

P (X = xi, Y = yj) = P (X = xi) · P (Y = yj) for all i, j (20)

Equations (18)-(20) give us the procedure to test for independence. Given fXY (x, y), obtain
the marginal pdfs fX(x) and fY (y) and examine whether one of the equations in (18) or (20)
is valid. If so, the RVs are independent, otherwise they are dependent.

• Returning back to Example 1, we observe by direct verification that
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fXY (x, y) 
= fX(x) · fY (y). Hence X and Y are dependent RVs in that case.

• It is easy to see that such is the case in the case of Example 2 also, unless in other words,
two jointly Gaussian RVs as in (17) are independent if and only if the fifth parameter
ρ = 0.
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Expectation of Functions of RVs

If X and Y are random variables and g(·) is a function of two variables, then

E[g(X, Y )] =
∑

y

∑
x

g(x, y) p(x, y) discrete case

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy continuous case

If g(X, Y ) = aX + bY , then we can obtain

E[aX + bY ] = aE[X] + bE[Y ]

Example 3
At a party N men throw their hats into the center of a room. The hats are

mixed up and each man randomly selects one. Find the expected number of men who select
their own hats.

Solution: let X denote the number of men that select their own hats, we can compute E[X]
by noting that

X = X1 + X2 + · · · + XN
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where Xi is the indicator RV, given as

P [Xi = 1] = P{ith man selects his own hat} = 1/N

So
E[Xi] = 1P [Xi = 1] + 0P [Xi = 0] = 1/N

Therefore, E[X] = E[X1] + E[X2] + · · · + E[XN ] = 1. No matter how many people are at
the party, on the average, exactly one of the men will select his own hat.
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If X and Y are independent, then for any functions h(·) and g(·)

E[g(X)h(Y )] = E[g(X)] · E[h(Y )] (21)

And

V ar(X + Y ) = V ar(X) + V ar(Y ) (22)

Example 4
: Random variables X1 and X2 are independent and identically distributed with

probability density function

fX(x) =

⎧⎨
⎩ 1 − x/2 0 ≤ x ≤ 2

0 o.w.

Find

• The joint pdf fX1,X2(x1, x2)

• The cdf of Z = max(X1, X2).
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Solution: (a) since X1 and X2 are independent,

fX1,X2(x1, x2) = fX1(x1)·fX2(x2) =

⎧⎨
⎩

(
1 − x1

2

) (
1 − x2

2

)
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2

0 o.w.

(b) Let FX(x) denote the CDF of both X1 and X2. The CDF of Z = max(X1, X2) is
found by observing that Z ≤ z iff X1 ≤ z and X2 ≤ z. That is

P (Z ≤ z) = P (X1 ≤ z, X2 ≤ z) = P (X1 ≤ z)P (X2 ≤ z) = [FX(z)]2

FX(x) =
∫ x

−∞
fX(t) dt =

∫ x

0

(
1 − t

2

)
dt =

⎧⎪⎪⎨
⎪⎪⎩

0 x < 0

x − x2

4 0 ≤ x ≤ 2

1 x > 2

Thus, for 0 ≤ z ≤ 2,

FZ(z) =
(

z − z2

4

)2

18
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The complete CDF of Z is

FZ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 z < 0(
z − z2

4

)2

0 ≤ z ≤ 2

1 o.w.
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Example 5
: Given

fXY (x, y) =

⎧⎨
⎩ xy2e−y 0 < y < ∞, 0 < x < 1

0 o.w.

Determine whether X and Y are independent.

Solution:

fX(x) =
∫ +∞

0

fXY (x, y)dy = x

∫ +∞

0

y2e−ydy = x

∫ +∞

0

−y2 de−y

= x

(
−y2e−y

∣∣∣∣∞0 + 2
∫ +∞

0

ye−ydy

)
= 2x, 0 < x < 1

Similarly

fY (y) =
∫ 1

0

fXY (x, y)dx =
y2

2
e−y, 0 < y < ∞

In this case
fXY (x, y) = fX(x) · fY (y)

and hence X and Y are independent random variables.
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Chap 3.2 : Correlation, Covariance, Moments and CF

Correlation
: Given any two RVs X and Y , define

E[XmY n] m,nth joint moment

E[XY ] = Corr(X, Y ) = RXY correlation of X and Y

E[(X − μX)m(Y − μY )n] m,nth central joint moment

E[(X − μX)(Y − μY )] = Cov(X, Y ) = KXY covariance of X and Y

Covariance
: Given any two RVs X and Y , define

Cov(X, Y ) = E[(X − μX)(Y − μY )] (23)

By expanding and simplifying the right side of (23), we also get

Cov(X, Y ) = E(XY ) − μXμY = E(XY ) − E(X)E(Y ) (24)
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Correlation coefficient
between X and Y .

ρXY =
Cov(X, Y )√

V ar(X)V ar(Y )
=

Cov(X,Y )
σXσY

− 1 ≤ ρXY ≤ 1 (25)

Cov(X,Y ) = ρXY σXσY (26)

Uncorrelated RVs
: If ρXY = 0, then X and Y are said to be uncorrelated RVs. If X and Y

are uncorrelated, then
E(XY ) = E(X)E(Y ) (27)

Orthogonality
: X and Y are said to be orthogonal if

E(XY ) = 0 (28)

From above, if either X or Y has zero mean, then orthogonality implies uncorrelatedness and
vice-versa.

Suppose X and Y are independent RVs,

E(XY ) = E(X)E(Y ) (29)
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therefore from (27), we conclude that the random variables are uncorrelated. Thus
independence implies uncorrelatedness (ρXY = 0). But the inverse is generally not true.

Example 6
: Let Z = aX + bY . Determine the variance of Z in terms of σX , σY and ρXY .

Solution:
μZ = E(Z) = E(aX + bY ) = aμX + bμY

and

σ2
Z = V ar(Z) = E[(Z − μZ)2] = E{[a(X − μX) + b(Y − μY )]2}

= a2E[(X − μX)2] + 2abE[(X − μX)(Y − μY )] + b2E[(Y − μY )2]

= a2σ2
X + 2abρXY σXσY + b2σ2

Y

In particular if X and Y are independent, then ρXY = 0, and the above equation reduces to

σ2
Z = a2σ2

X + b2σ2
Y

Thus the variance of the sum of independent RVs is the sum of their variances (a = b = 1).
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Moments
:

E[XkY m] =
∫ ∞

−∞

∫ ∞

−∞
xkymfXY (x, y)dx dy (30)

represents the joint moment of order (k, m) for X and Y .

Joint Characteristic Function
: following the one random variable case, we can define the

joint characteristic function between two random variables which will turn out to be useful
for moment calculations. The joint characteristic function between X and Y is defined as

ΦXY (ω1, ω2) = E
(
ej(Xω1+Y ω2)

)
=
∫ ∞

−∞

∫ ∞

−∞
ej(ω1x+ω2y)fXY (x, y)dx dy (31)

From this and the two-dimensional inversion formula for Fourier transforms, it follows that

fXY (x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
ΦXY (ω1, ω2)e−j(ω1x+ω2y)dω1 dω2 (32)

Note that
|ΦXY (ω1, ω2)| ≤ ΦXY (0, 0) = 1
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If X and Y are independent RVs, then from (31), we obtain

ΦXY (ω1, ω2) = E
(
ej(ω1X)

)
E
(
ej(ω2Y )

)
= ΦX(ω1) ΦY (ω2) (33)

Also
ΦX(ω) = ΦXY (ω, 0) ΦY (ω) = ΦXY (0, ω) (34)

Independence
If the RV X and Y are independent, then

E
[
ej(ω1X+ω2Y )

]
= E[ejω1X ] · E[ejω2Y ]

From this it follows that
Φ(ω1, ω2) = ΦX(ω1) · ΦY (ω2)

conversely, if above equation is true, then the random variables X and Y are independent.

Convolution
Characteristic functions are useful in determining the pdf of linear

combinations of RVs. If the RV X and Y are independent and Z = X + Y , then

E
[
ejωZ

]
= E

[
ejω(X+Y )

]
= E

[
ejωX

] · E [
ejωY

]

25
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Hence,
ΦZ(ω) = ΦX(ω) · ΦY (ω)

It is known that the density of Z equals the convolution of fX(x) and fY (y). From above,
the characteristic function of the convolution of two densities equals the product of their
characteristic functions.

Example 7
: X and Y are independent Poisson RVs with parameters λ1 and λ2

respectively, let
Z = X + Y

Then
ΦZ(ω) = ΦX(ω) ΦY (ω)

From earlier results

ΦX(ω) = eλ1(e
jω−1) ΦY (ω) = eλ2(e

jω−1)

so that
ΦZ(ω) = e(λ1+λ2)(e

jω−1) ∼ P (λ1 + λ2)

i.e., sum of independent Poisson RVs is also a Poisson random variable.

26
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Chap 3.3 : Gaussian RVs and Central Limit Theorem

From (17), X and Y are said to be jointly Gaussian if their joint pdf has the form in (17):

fXY (x, y) =
1

2πσXσY

√
1 − ρ2

exp
{
− 1

2(1 − ρ2)
·
[
(x − μX)2

σ2
X

− 2ρ(x − μx)(y − μY )
σXσY

+
(y − μY )2

σ2
Y

]}
−∞ < x < ∞,−∞ < y < ∞, |ρ| < 1

By direct substitution and simplification, we obtain the joint characteristic function of two
jointly Gaussian RVs to be

ΦXY (ω1, ω2) = E
(
ej(ω1X+ω2Y )

)
= ej(μXω1+μY ω2)− 1

2 (σ2
Xω2

1+2ρσXσY ω1ω2+σ2
Y ω2

2) (35)

Letting ω2 = 0 in (35), we get

ΦX(ω1) = ΦXY (ω1, 0) = ejμXω1− 1
2 σ2

Xω2
1 (36)

From (17) by direct computation, it is easy to show that for two jointly Gaussian random
variables

Cov(X, Y ) = ρσXσY
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Hence from definition of ρ, ρ in N(μX , μY , σ2
X , σ2

Y , ρ) represents the actual correlation
coefficient of the two jointly Gaussian RVs in (17). Notice that ρ = 0 implies

fXY (X,Y ) = fX(x) fY (y)

Thus if X and Y are jointly Gaussian, uncorrelatedness does imply independence between
the two random variables. Gaussian case is the only exception where the two concepts imply
each other.

Example 8
: Let X and Y be jointly Gaussian RVs with parameters

N(μX , μY , σ2
X , σ2

Y , ρ). Define Z = aX + bY , determine fZ(z).

Solution: In this case we can make use of characteristic function to solve this problem

ΦZ(ω) = E
(
ejZω

)
= E

(
ej(aX+bY )ω

)
= E

(
ejXaω+jY bω

)
= ΦXY (aω, bω) (37)

From (35) with ω1 and ω2 replaced by aω and bω respectively we get

ΦZ(ω) = ej(aμX+bμY )ω− 1
2 (a2σ2

X+2ρabσXσY +b2σ2
Y )2ω2

= ejμZω− 1
2 σ2

Zω2
(38)

where
μZ = aμX + bμY σ2

Z = a2σ2
X + 2ρabσXσY + b2σ2

Y

28
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Notice that (38) has the same form as (36), and hence we conclude that Z = aX + bY is also
Gaussian with mean and variance as above, which also agrees with previous example.

From the previous example, we conclude that any linear combination of jointly Gaussian RVs
generates a new Gaussian RV. In other words, linearity preserves Gaussianity.

Gaussian random variables are also interesting because of the following result.

29
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Central Limit Theorem

Suppose X1, X2, · · · , Xn are a sequence of independent, identically distributed (i.i.d)
random variables, each with mean μ and variance σ2. Then the distribution of

Y =
X1 + X2 + · · · + Xn − nμ

σ
√

n
(39)

Tends to be standard normal as n → ∞

Y → N(0, 1) (40)

The central limit theorem states that a large sum of independent random variables each with
finite variance tends to behave like a normal random variable. Thus the individual pdfs
become unimportant to analyze the collective sum behavior. If we model the noise
phenomenon as the sum of a large number of independent random variables (eg: electron
motion in resistor components), then this theorem allows us to conclude that noise behaves
like a Gaussian RV.

This theorem holds for any distribution of the Xi’s; herein lies its power.
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Review Gaussian approximation to sum of binomial RVs

The Normal Approximation: Suppose n → ∞ with p held fixed. Then for k in the
neighborhood of np, we can approximate⎛

⎝ n

k

⎞
⎠ pkqn−k ≈ 1√

2πnpq
e−(k−np)2/2npq

Now, thinking that Y = X1 + X2 + · · · + Xn, each Xi is a Bernoulli RV with parameter p.
Then Y follows binomial distribution. From central limit theorem,

Y − E[Y ]√
V ar(Y )

=
Y − np√
np(1 − p)

approaches the standard normal distribution as n approaches ∞. The normal approximation
will be generally quite good for values of n satisfying np(1 − p) ≥ 10.
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Example 9
: The lifetime of a special type of battery is a random variable with mean 40

hours and standard deviation 20 hours. A battery is used until it fails, at which point it is
replaced by a new one. Assuming a stockpile of 25 such batteries, the lifetimes of which are
independent, approximate the probability that over 1100 hours of use can be obtained.

Solution: if we let Xi denote the lifetime of the ith battery to be put in use, and
Y = X1 + X2 + · · · + X25. Then we want to find P (Y > 1100).
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Chap 3.4 : Conditional Probability Density Functions

For any two events A and B, we have defined the conditional probability of A given B as

P (A|B) =
P (A ∩ B)

P (B)
, P (B) 
= 0 (41)

Noting that the probability distribution function FX(x) is given by FX(x) = P{X(ξ) ≤ x},
we may define the conditional distribution of the RV X given the event B as

FX(x|B) = P{X(ξ) ≤ x|B} =
P{(X(ξ) ≤ x) ∩ B}

P (B)
(42)

In general, event B describes some property of X . Thus the definition of the conditional
distribution depends on conditional probability, and since it obeys all probability axioms, it
follows that the conditional distribution has the same properties as any distribution function.
In particular

FX(+∞|B) =
P{(X(ξ) ≤ +∞) ∩ B}

P (B)
=

P (B)
P (B)

= 1 (43)

FX(−∞|B) =
P{(X(ξ) ≤ −∞) ∩ B}

P (B)
=

P (φ)
P (B)

= 0
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Furthermore, since for x2 ≥ x1

(X(ξ) ≤ x2) = (X(ξ) ≤ x1) ∪ (x1 < X(ξ) ≤ x2)

P (x1 < X(ξ) ≤ x2|B) =
P{(x1 < X(ξ) ≤ x2) ∩ B}

P (B)
= FX(x2|B) − FX(x1|B). (44)

The conditional density function is the derivative of the conditional distribution function.
Thus

fX(x|B) =
d

dx
FX(x|B)

we obtain

FX(x|B) =
∫ x

−∞ fX(u|B) du
(45)

Using above equation, we can also have

P (x1 < X(ξ) ≤ x2|B) =
∫ x2

x1
fX(x|B) dx

(46)

34



Chap 3: Two Random Variables

Example 10
: Toss a coin and X(T ) = 0, X(H) = 1. Suppose B = {H}. Determine

FX(x|B). (Suppose q is the probability of landing a tail)

Solution: From earlier example, FX(x) has the following form shown in Fig. 4(a). We need
FX(x|B) for all x.

• For x < 0, {X(ξ) ≤ x} = φ, so that {(X(ξ) ≤ x) ∩ B} = φ and FX(x|B) = 0.

• For 0 ≤ x < 1, {X(ξ) ≤ x} = {T}, so that

{(X(ξ) ≤ x) ∩ B} = {T} ∩ {H} = φ

and FX(x|B) = 0.

• For x ≥ 1, {X(ξ) ≤ x} = Ω, and

{(X(ξ) ≤ x) ∩ B} = Ω ∩ {B} = {B}
and

FX(x|B) =
P (B)
P (B)

= 1

The conditional CDF is shown in Fig. 4(b).
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Figure 4: Condition CDF for Example 10.

Figure 5: Condition CDF and pdf for Example 11.
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Example 11
: Given FX(x), suppose B = {X(ξ) ≤ a}. Find fX(x|B).

Solution: We will first determine FX(x|B) as,

FX(x|B) =
P{(X ≤ x) ∩ (X ≤ a)}

P (X ≤ a)

• For x < a,

FX(x|B) =
P (X ≤ x)
P (X ≤ a)

=
FX(x)
FX(a)

• For x ≥ a, (X ≤ x) ∩ (X ≤ a) = (X ≤ a), so that FX(x|B) = 1.

Thus, the conditional CDF and pdf are given as below (shown in Fig. 5)

FX(x|B) =

⎧⎨
⎩

FX(x)
FX(a) x < a

1 x ≥ a

and hence

fX(x|B) =
d

dx
FX(x|B) =

⎧⎨
⎩

fX(x)
FX(a) x < a

0 o.w.
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Example 12
: Let B represent the event {a < X(ξ) ≤ b} with b > a. For a given FX(x),

determine FX(x|B) and fX(x|B).

Solution:

FX(x|B) = P{X(ξ) ≤ x|B} =
P{(X(ξ) ≤ x) ∩ (a < X(ξ) ≤ b)}

P (a < X(ξ) ≤ b)

=
P{(X(ξ) ≤ x) ∩ (a < X(ξ) ≤ b)}

FX(b) − FX(a)

• For x < a, we have {(X(ξ) ≤ x) ∩ (a < X(ξ) ≤ b)} = φ and hence FX(x|B) = 0.

• For a ≤ x < b, we have {(X(ξ) ≤ x) ∩ (a < X(ξ) ≤ b)} = {a < X(ξ) ≤ x} and
hence

FX(x|B) =
P (a < X(ξ) ≤ x)
FX(b) − FX(a)

=
FX(x) − FX(a)
FX(b) − FX(a)

• For x ≥ b, we have {(X(ξ) ≤ x) ∩ (a < X(ξ) ≤ b)} = {a < X(ξ) ≤ b} so that
FX(x|B) = 1
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Therefore, the density function shown below and given as

fX(x|B) =

⎧⎨
⎩

fX(x)
FX(b)−FX(a) a < x ≤ b

0 o.w.

Figure 6: Condition pdf for Example 12.
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B is related to another RV

In Summary, conditional (on events) CDF is defined as

FX(x|B) = P (X(ξ) ≤ x|B) =
P [(X(ξ) ≤ x ∩ B]

P (B)

Suppose, we let B = {y1 < Y (ξ) ≤ y2}. We can get

FX(x|y1 < Y ≤ y2) =
P (X(ξ) ≤ x, y1 < Y (ξ) ≤ y2)

P (y1 < Y (ξ) ≤ y2)

=
FXY (x, y2) − FXY (x, y1)

FY (y2) − FY (y1)

The above equation can be rewrite as

FX(x|y1 < Y ≤ y2) =

∫ x

−∞
∫ y2

y1
fXY (u, v) dudv∫ y2

y1
fY (v) dv

Compare (P (A|B) = P (AB)/P (B)).
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We have examined how to condition a mass/density function by the occurrence of an event
B, where event B describes some property of X . Now we focus on the special case in which
the event B has the form of X = x or Y = y. Learning Y = y changes the likelihood that
X = x. For example, conditional PMF is defined as:

PX|Y (x|y) = P [X = x|Y = y]

To determine, the limiting case FX(x|Y = y), we can let y1 = y and y2 = y + Δy, then this
gives

FX(x|y < Y ≤ y + Δy) =

∫ x

−∞
∫ y+Δy

y
fXY (u, v) dudv∫ y+Δy

y
fY (v) dv

=

∫ x

−∞ fXY (u, v) duΔy

fY (y)Δy

and hence in the limit

FX(x|Y = y) = lim
Δy→0

FX(x|y < Y ≤ y + Δy) =

∫ x

−∞ fXY (u, v) du

fY (y)

To remind about the conditional nature on the left hand side, we shall use the subscript X|Y
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(instead of X) there. Thus

FX|Y (x|Y = y) =
∫ x
−∞ fXY (u,y) du

fY (y)

(47)

Differentiating above with respect to x, we get

fX|Y (x|Y = y) = fXY (x,y)
fY (y)

(48)

It is easy to see that the conditional density represents a valid probability density function. In
fact

fX|Y (x|Y = y) =
fXY (x, y)

fY (y)
≥ 0

and ∫ ∞

−∞
fX|Y (x|Y = y)dx =

∫∞
−∞ fXY (x, y)dx

fY (y)
=

fY (y)
fY (y)

= 1

Therefore, the conditional density indeed represents a valid pdf, and we shall refer to it as the
conditional pdf of the RV X given Y = y. We may also write

fX|Y (x|Y = y) = fX|Y (x|y)
(49)
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and

fX|Y (x|y) = fXY (x,y)
fY (y)

(50)

and similarly

fY |X(y|x) = fXY (x,y)
fX(x)

(51)

If the RVs X and Y are independent, then fXY (x, y) = fX(x)fY (y) and the conditional
density reduces to

fX|Y (x|y) = fX(x) fY |X(y|x) = fY (y) (52)

implying that the conditional pdfs coincide with their unconditional pdfs. This makes sense,
since if X and Y are independent RVs, information about Y shouldn’t be of any help in
updating our knowledge about X .

In the case of discrete-type RVs, conditional density reduces to

P (X = xi|Y = yj) = P (X=xi,Y =yj)
P (Y =yj)

(53)

43



Chap 3: Two Random Variables

Example 13
: Given

fXY (x, y) =

⎧⎨
⎩ k 0 < x < y < 1

0 o.w.

determine fX|Y (x|y) and fY |X(y|x)

Solution: The joint pdf is given to be a constant in the shadowed region. This gives∫ ∫
fXY (x, y) dx dy =

∫ 1

0

∫ y

0

k dx dy =
∫ 1

0

k y dy =
k

2
= 1 ⇒ k = 2

Similarly

fX(x) =
∫

fXY (x, y) dy =
∫ 1

x

k dy = k(1 − x), 0 < x < 1

and

fY (y) =
∫

fXY (x, y) dx =
∫ y

0

k dx = k y, 0 < y < 1

Therefore

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

1
y
, 0 < x < y < 1
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and

fY |X(y|x) =
fXY (x, y)

fX(x)
=

1
1 − x

, 0 < x < y < 1

Figure 7: Joint pdf of X and Y (Example 13).
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Example 14
: Let R be a uniform random variable with parameters 0 and 1. Given R = r,

X is a uniform random variable with parameters 0 and r. Find the conditional pdf of R given
X , fR|X(r|x)).

Solution: conditional density of X given R is

fX|R(x|r) =

⎧⎨
⎩

1
r 0 ≤ x ≤ r

0 o.w.

since

fR(r) =

⎧⎨
⎩ 1 0 ≤ r ≤ 1

0 o.w.

it follows that the joint pdf of R and X is

fR,X(r, x) = fX|R(x|r) fR(r) =

⎧⎨
⎩

1
r 0 ≤ x < r < 1

0 o.w.
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Now, we can find the marginal pdf of X as

fX(x) =
∫ ∞

−∞
fR,X(r, x)dr =

∫ 1

x

1
r

dr = − lnx 0 < x < 1

From the definition of the condition pdf

fR|X(r|x) =
fR,X(r, x)

fX(x)
=

⎧⎨
⎩ − 1

r ln x x ≤ r < 1

0 o.w.
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Chap 3.5 : Conditional Mean

We can use the conditional pdfs to define the conditional mean. More generally, applying
definition of expectation to conditional pdfs we get

E[g(X)|B] =
∫ ∞

−∞
g(x)fX(x|B) dx

Using a limiting argument, we obtain

μX|Y = E(X|Y = y) =
∫∞
−∞ xfX|Y (x|y) dx

(54)

to be the conditional mean of X given Y = y. Notice that E(X|Y = y) will be a function of
y. Also

μY |X = E(Y |X = x) =
∫∞
−∞ yfY |X(y|x) dy

(55)

In a similar manner, the conditional variance of X given Y = y is given by

V ar(X|Y ) = σ2
X|Y = E(X2|Y = y) − [E(X|Y = y)]2 = E[(x − μX|Y )2|Y = y]

(56)
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Example 15
: Let

fXY (x, y) =

⎧⎨
⎩ 1 0 < |y| < x < 1

0 o.w.

Determine E(X|Y ) and E(Y |X).

Figure 8: Example for conditional expectation.

Solution: As Fig. 8 shows, fXY (x, y) = 1 in the shadowed area, and zero elsewhere. From
there

fX(x) =
∫ x

−x

fXY (x, y) dy = 2x 0 < x < 1
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and

fY (y) =
∫ 1

|y|
1 dx = 1 − |y| |y| < 1

This gives

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

1
1 − |y| 0 < |y| < x < 1

and

fY |X(y|x) =
fXY (x, y)

fX(x)
=

1
2x

0 < |y| < x < 1

Hence

E(X|Y ) =
∫

xfX|Y (x|y) dx =
∫ 1

|y|

x

1 − |y| dx =
1

1 − |y|
x2

2

∣∣∣∣
1

|y|

=
1 − |y|2

2(1 − |y|) =
1 + |y|

2
|y| < 1

E(Y |X) =
∫

y fY |X(y|x) dy =
∫ x

−x

y

2x
dy =

1
2x

y2

2

∣∣∣∣
x

−x

= 0 0 < x < 1
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It is possible to obtain an interesting generalization of the conditional mean formulas as

E[g(X)|Y = y)] =
∫ ∞

−∞
g(x)fX|Y (x|y) dx (57)
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Example 16
: Poisson sum of Bernoulli random variables: Let Xi, i = 1, 2, 3, · · · ,

represent independent, identically distributed Bernoulli random variables with

P (Xi = 1) = p P (Xi = 0) = 1 − p = q

and N a Poisson random variable with parameter λ that is independent of all Xi. Consider
the random variables

Y1 =
N∑

i=1

Xi, Y2 = N − Y1

Show that Y1 and Y2 are independent Poisson random variables.

Solution : the joint probability mass function of Y1 and Y2 can be solved as

P (Y1 = m,Y2 = n) = P (Y1 = m,N − Y1 = n) = P (Y1 = m,N = m + n)

= P (Y1 = m|N = m + n)P (N = m + n)

= P

(
N∑

i=1

Xi = m|N = m + n

)
P (N = m + n)

= P

(
m+n∑
i=1

Xi = m

)
P (N = m + n)
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Note that
∑m+n

i=1 Xi ∼ B(m + n, p) and Xi’s are independent of N

P (Y1 = m,Y2 = n) =
(

(m + n)!
m!n!

pm qn

)(
e−λ λm+n

(m + n)!

)

=
(

e−pλ (pλ)m

m!

)(
e−qλ (qλ)n

n!

)
= P (Y1 = m) · P (Y2 = n)

Thus,
Y1 ∼ P (pλ) Y2 ∼ P (qλ)

and Y1 and Y2 are independent random variables. Thus if a bird lays eggs that follow a
Poisson random variable with parameter λ, and if each egg survives with probability p, then
the number of baby birds that survive also forms a Poisson random variable with parameter
pλ.

Example 17
: Suppose that the number of people who visit a yoga academy each day is a

Poisson RV. with mean λ. Suppose further that each person who visits is, independently,
female with probability p or male with probability 1 − p. Find the joint probability that
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exactly n women and m men visit the academy today.

Solution: Let N1 denote the number of women, and N2 the number of men, who visit the
academy today. Also, let N = N1 + N2 be the total number of people who visit.
Conditioning on N gives

P (N1 = n,N2 = m) =
∞∑

i=0

P [N1 = n,N2 = m|N = i]P (N = i)

Because P [N1 = n,N2 = m|N = i] = 0 when n + m 
= i, therefore

P (N1 = n,N2 = m) = P [N1 = n,N2 = m|N = n + m]e−λ λn+m

(n + m)!

=

⎛
⎝ n + m

n

⎞
⎠ pn(1 − p)me−λ λn+m

(n + m)!

= e−λp (λp)n

n!
× e−λ(1−p) [λ(1 − p)]m

m!
= P (N1 = n) × P (N2 = m) (58)

We can conclude that N1 and N2 are independent Poisson RVs with respectively means λp

and λ(1 − p). Therefore, example 16 and 17 showed an important result: when each of a
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Poisson number of events is independently classified either as being type 1 with probability p

or type 2 with probability 1 − p, then the number of type 1 and type 2 events are independent
Poisson random variables.
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Computing Expectation by Conditioning

• E[X] = E[E[X|Y ]]

E[X] =
∑

y

E[X|Y = y]P (Y = y) Y is discrete (59)

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y)dy Y is continuous (60)

Proof: (see textbook for X and Y discrete case)

E[X] =
∫ ∞

−∞
xfX(x)dx =

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y)dydx

=
∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x|y)fY (y)dxdy

=
∫ ∞

−∞
E(X|Y = y)fY (y)dy = E[E[X|Y ]]
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Computing Expectation by Conditioning – Examples

Example 18 (The expectation of the sum of a random number of random variables) Suppose
that the expected number of accidents per week at an industrial plant is four. Suppose also
that the number of workers injured in each accident are independent RVs with a common
mean of 2. Assume also that the number of workers injured in each accident is independent of
the number of accidents that occur. What is the expected number of injuries during a week?

Solution: Letting N denote the number of accidents and Xi the number of injured in the ith
accident, i = 1, 2, ..., then the total number of injuries can be expressed as

∑N
i=1 Xi. Now

E

[
N∑
1

Xi

]
= E

[
E

[
N∑
1

Xi|N
]]
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But

E

[
N∑
1

Xi|N = n

]
= E

[
n∑
1

Xi|N = n

]

= E

[
n∑
1

Xi

]
by independence of Xi and N

= nE[X]

which is

E

[
N∑
1

Xi|N
]

= NE[X]

and thus

E

[
N∑
1

Xi

]
= E[NE[X]] = E[N ]E[X]

Therefore, the expected number of injuries during a week equals 4 × 2 = 8.
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Example 19
(The mean of a geometric distribution) A coin, having probability p of

coming up head, is to be successively flipped until the first head appears. What is the
expected number of flips required?

Solution: Letting N be the number of flips required, and let

Y =

⎧⎨
⎩ 1, if the first flip results in a head

0. if the first flip results in a tail

Now

E[N ] = E[N |Y = 1]P [Y = 1] + E[N |Y = 0]P [Y = 0]

= pE[N |Y = 1] + (1 − p)E[N |Y = 0] = p + (1 − p)(1 + E[N ])

and thus
E[N ] = 1/p

compare with E[N ] =
∑∞

1 np(n) =
∑∞

1 n × p(1 − p)n−1
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Example 20
A miner is trapped in a mine containing three doors. The first door leads to a

tunnel that takes him to safety after two hours of travel. The second door leads to a tunnel
that returns him to the mine after three hours of travel. The third door leads to a tunnel that
returns him to his mine after five hours. Assuming that the miner is at all times equally likely
to choose any one of the doors, what is the expected length of time until the miner reaches
safety?

Solution: Letting X denote the time until the miner reaches safety, and let Y denote the door
he initially chooses. Now

E[X] = E[X|Y = 1]P [Y = 1] + E[X|Y = 2]P [Y = 2] + E[X|Y = 3]P [Y = 3]

=
1
3

(E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

However

E[X|Y = 1] = 2 E[X|Y = 2] = 3 + E[X]

E[X|Y = 3] = 5 + E[X]
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and thus

E[X] =
1
3
(2 + 3 + E[X] + 5 + E[X]) leads to E[X] = 10 hours.
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Computing Probability by Conditioning

Let E denote an arbitary event and define the indicator RV. X by

X =

⎧⎨
⎩ 1, if E occurs

0, if E does not occur

It follows that
E[X] = P [E] and E[X|Y = y] = P [E|Y = y]

for any RV Y . Therefore,

P [E] =
∑

y

P [E|Y = y]P (Y = y) if Y is discrete (61)

=
∫ ∞

−∞
P [E|Y = y]fY (y)dy if Y is continuous (62)
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Example 21
Suppose that X and Y are independent continuous random variables having

densities fX and fY , respectively. Compute P (X < Y )

Solution: Conditioning on the value of Y yields

P (X < Y ) =
∫ ∞

−∞
P [X < Y |Y = y]fY (y)dy

=
∫ ∞

−∞
P [X < y|Y = y]fY (y)dy

=
∫ ∞

−∞
P (X < y)fY (y)dy

=
∫ ∞

−∞
FX(y)fY (y)dy

where

FX(y) =
∫ y

−∞
fX(x)dx
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