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Introduction

• Real word exhibits randomness

– Today’s temperature;

– Flip a coin, head or tail?

– Walk to a bus station, how long do you wait for the arrival of a bus?

– Transmit a waveform through a channel, which one arrives at the receiver?

– Which one does the receiver identify as the transmitted signal?

• We create models to analyze since real experiment are generally too complicated, for
example, waiting time depends on the following factors:

– The time of a day (is it rush hour?);

– The speed of each car that passed by while you waited;

– The weight, horsepower, and gear ratio of the bus;

– The psychological profile and work schedule of drivers;

– The status of all road construction within 100 miles of the bus stop.

• It would be apparent that it would be too difficult to analyze the effects of all the factors
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on the likelihood that you will wait less than 5 minutes for a bus. Therefore, it is
necessary to study and create a model to capture the critical part of the actual physical
experiment.

• Probability theory deals with the study of random phenomena, which under repeated
experiments yield different outcomes that have certain underlying patterns about them.
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Review of Set Operation

• Event space Ω: sets of outcomes

• Sets constructions for events E ⊂ Ω and F ⊂ Ω

– Union: E ∪ F = {s ∈ Ω : s ∈ E or s ∈ F};

– Intersection: E ∩ F = {s ∈ Ω : s ∈ E and s ∈ F};

– Complement: Ec = Ē = {s ∈ Ω : s /∈ E};

– Empty set: Φ = Ωc = {}.

• Only complement needs the knowledge of Ω.
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Several Definitions

• Disjoint: if A ∩ B = φ, the empty set, then A and B are said to be mutually exclusive
(M.E), or disjoint.

• Exhaustive: the collection of events has
∞∑

j=1

Aj = Ω

• A partition of Ω is a collection of mutually exclusive subsets of Ω such that their union
is Ω (Partition is a stronger condition than Exhaustive.):

Ai ∩ Aj = φ and ∪n
i=1 Ai = Ω
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De-Morgan’s Law

A ∪ B = A ∩ B A ∩ B = A ∪ B
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Sample Space, Events and Probabilities

• Outcome: an outcome of an experiment is any possible observations of that experiment.

• Sample space: is the finest-grain, mutually exclusive, collectively exhaustive set of all
possible outcomes.

• Event: is a set of outcomes of an experiment.

• Event Space: is a collectively exhaustive, mutually exclusive set of events.

Sample Space and Event Space

• Sample space: contains all the details of an experiment. It is a set of all outcomes, each
outcome s ∈ S. Some example:

– coin toss: S = {H, T}
– two coin toss: S = {HH, HT, TH, TT}
– roll pair of dice: S = {(1, 1), · · · , (6, 6)}
– component life time: S = {t ∈ [0,∞)} e.g.lifespan of a light bulb

– noise: S = {n(t); t : real}
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• Event Space: is a set of events.

•
Example 1

: coin toss 4 times:

The sample space consists of 16 four-letter words, with each letter either h (head) or t

(tail).

Let Bi=outcomes with i heads for i = 0, 1, 2, 3, 4. Each Bi is an event containing one or
more outcomes, say, B1 = {ttth, ttht, thtt, httt} contains four outcomes. The set
B = {B0, B1, B2, B3, B4} is an event space. It is not a sample space because it lacks
the finest-grain property.

•
Example 2

: Toss two dices, there are 36 elements in the sample space. If we define the
event as the sum of two dice,

Ω = {B2, B3, · · · , B12}

there are 11 elements.

• Practical example, binary data transmit through a noisy channel, we are more interested
in the event space.
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Probability Defined on Events

Often it is meaningful to talk about at least some of the subsets of S as events, for which we
must have mechanism to compute their probabilities.

Example 3
: Consider the experiment where two coins are simultaneously tossed. The

sample space is S = {ξ1, ξ2, ξ3, ξ4} where

ξ1 = [H, H], ξ2 = [H,T ], ξ3 = [T, H], ξ4 = [T, T ]

If we define
A = {ξ1, ξ2, ξ3}

The event of A is the same as “Head has occurred at least once” and qualifies as an event.

Probability measure: each event has a probability, P (E)
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Definitions, Axioms and Theorems

• Definitions: establish the logic of probability theory

• Axioms: are facts that we have to accept without proof.

• Theorems are consequences that follow logically from definitions and axioms. Each
theorem has a proof that refers to definitions, axioms, and other theorems.

• There are only three axioms.
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Axioms of Probability

For any event A, we assign a number P (A), called the probability of the event A. This
number satisfies the following three conditions that act the axioms of probability.

1. probability is a nonnegative number

P (A) ≥ 0 (1)

2. probability of the whole set is unity

P (Ω) = 1 (2)

3. For any countable collection A1, A2, · · · of mutually exclusive events

P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · · (3)

Note that (3) states that if A and B are mutually exclusive (M.E.) events, the probability of
their union is the sum of their probabilities.

We will build our entire probability theory on these axioms.
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Some Results Derived from the Axioms

The following conclusions follow from these axioms:

• Since A ∪ A = Ω, using (2), we have

P (A ∪ A) = P (Ω) = 1

But A ∩ A = φ, and using (3),

P (A ∪ A) = P (A) + P (A) = 1 or P (A) = 1 − P (A)

• Similarly, for any A, A ∩ {φ} = {φ}. hence it follows that
P (A ∪ {φ}) = P (A) + P (φ). But A ∪ {φ} = A and thus

P{φ} = 0

• Suppose A and B are not mutually exclusive (M.E.)? How does one compute P (A∪B)?

To compute the above probability, we should re-express (A∪B) in terms of M.E. sets so
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that we can make use of the probability axioms. From figure below,

A ∪ B = A ∪ AB

where A and AB are clearly M.E. events. Thus using axiom (3)

P (A ∪ B) = P (A ∪ AB) = P (A) + P (AB)

To compute P (AB), we can express B as

B = B ∩ Ω = B ∩ (A ∪ A) = (B ∩ A) ∪ (B ∩ A) = BA ∪ BA

Thus
P (B) = P (BA) + P (BA)

since BA = AB and BA = AB are M.E. events, we have

P (AB) = P (B) − P (AB)
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Therefore
P (A ∪ B) = P (A) + P (B) − P (AB)

• Coin toss revisited:

ξ1 = [H, H], ξ2 = [H, T ], ξ3 = [T,H], ξ4 = [T, T ]

Let A = ξ1, ξ2 : the event that the first coin falls heads

Let B = ξ1, ξ3 : the event that the second coin falls head

P (A ∪ B) = P (A) + P (B) − P (AB) =
1
2

+
1
2
− 1

4
=

3
4

where A ∪ B denotes the event that at least one head appeared.
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Theorem

For an event space B = {B1, B2, · · · } and any event A in the event space, let Ci = A ∩ Bi.
For i �= j, the events Ci and Cj are mutually exclusive and

A = C1 ∪ C2 ∪ · · · P (A) =
∑

P (Ci)

15
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Example 4
: coin tossing, let A equal the set of outcomes with less than three heads, as

A = {tttt, httt, thtt, ttht, ttth, hhtt, htht, htth, tthh, thth, thht}
Let {B0, B1, · · · , B4} denote the event space in which Bi={outcomes with i heads }.

Let Ci = A ∩ Bi(i = 0, 1, 2, 3, 4), the above theorem states that

A = C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4

= (A ∩ B0) ∪ (A ∩ B1) ∪ (A ∩ B2) ∪ (A ∩ B3) ∪ (A ∩ B4)

In this example, Bi ⊂ A, for i = 0, 1, 2. Therefore, A ∩ Bi = Bi for i = 0, 1, 2. Also for
i = 3, 4, A ∩ Bi = φ, so that A = B0 ∪ B1 ∪ B2, a union of disjoint sets. In words, this
example states that the event less than three heads is the union of the events for “zero head”,
“one head”, and “two heads”.

Example 5
: A company has a model of telephone usage. It classifies all calls as L (long),

B (brief). It also observes whether calls carry voice(V ), fax (F ), or data(D). The sample
space has six outcomes S = {LV, BV, LD,BD, LF, BF}. The probability can be

16

Coin toss 4 times,



Chap 1: Experiments, Models, and Probabilities

represented in the table as

V F D

L 0.3 0.15 0.12

B 0.2 0.15 0.08

Note that {V, F,D} is an event space corresponding to {B1, B2, B3} in the previous theorem
(and L is equivalent as the event A). Thus, we can apply the theorem to find

P (L) = P (LV ) + P (LD) + P (LF ) = 0.57

17



Chap 1: Experiments, Models, and Probabilities

Conditional Probability and Independence

In N independent trials, suppose NA, NB , NAB denote the number of times events A, B and
AB occur respectively. According to the frequency interpretation of probability, for large N

P (A) =
NA

N
P (B) =

NB

N
P (AB) =

NAB

N

Among the NA occurrences of A, only NAB of them are also found among the NB

occurrences of B. Thus the ratio

NAB

NB
=

NAB/N

NB/N
=

P (AB)
P (B)

is a measure of the event A given that B has already occurred. We denote this conditional
probability by

P (A|B) = Probability of the event A given that B has occurred.

We define
P (A|B) = P (AB)

P (B)

(4)

provided P (B) �= 0. As we show below, the above definition satisfies all probability axioms
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discussed earlier. We have

1. Non-negative

P (A|B) =
P (AB) ≥ 0
P (B) > 0

≥ 0

2.

P (Ω|B) =
P (ΩB)
P (B)

=
P (B)
P (B)

= 1 since ΩB = B

3. Suppose A ∩ C = φ, then

P (A ∪ C|B) =
P ((A ∪ C) ∩ B)

P (B)
=

P (AB ∪ CB)
P (B)

But AB ∩ CB = φ, hence P (AB ∪ CB) = P (AB) + P (CB),

P (A ∪ C|B) =
P (AB)
P (B)

+
P (CB)
P (B)

= P (A|B) + P (C|B)

satisfying all probability axioms. Thus P (A|B) defines a legitimate probability measure.
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Properties of Conditional Probability

1. If B ⊂ A, AB = B, and

P (A|B) =
P (AB)
P (B)

=
P (B)
P (B)

= 1

since if B ⊂ A, then occurrence of B implies automatic occurrence of the event A. As
an example, let

A = {outcome is even}, B = {outcome is 2}
in a dice tossing experiment. Then B ⊂ A and P (A|B) = 1.

2. If A ⊂ B, AB = A, and

P (A|B) =
P (AB)
P (B)

=
P (A)
P (B)

> P (A)

In a dice experiment, A = {outcome is 2}, B = {outcome is even}, so that A ⊂ B. The
statement that B has occurred (outcome is even) makes the probability for “outcome is
2” greater than that without that information.

3. We can use the conditional probability to express the probability of a complicated event
in terms of simpler related events - Law of Total Probability.

20



Chap 1: Experiments, Models, and Probabilities

Let A1, A2, · · · , An are pair wise disjoint and their union is Ω. Thus Ai ∩ Aj = φ, and

∪n
i=1Ai = Ω

thus
B = BΩ = B(A1 ∪ A2 ∪ · · · ∪ An) = BA1 ∪ BA2 ∪ · · · ∪ BAn

But Ai ∩ Aj = φ → BAi ∩ BAj = φ, so that

P (B) =
∑n

i=1 P (BAi) =
∑n

i=1 P (B|Ai)P (Ai)
(5)

Above equation is referred as the “law of total probability”. Next we introduce the
notion of “independence” of events.

Independence: A and B are said to be independent events, if

P (AB) = P (A)P (B)

Notice that the above definition is a probabilistic statement, NOT a set theoretic notion
such as mutually exclusiveness, (independent and disjoint are not synonyms).
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More on Independence

• Disjoint events have no common outcomes and therefore P (AB) = 0. Independent does
not mean (cannot be) disjoint, except P (A) = 0 or P (B) = 0. If P (A) > 0, P (B) > 0,
and A,B independent implies P (AB) > 0, thus the event AB cannot be the null set.

• Disjoint leads to probability sum, while independence leads to probability multiplication.

• Suppose A and B are independent, then

P (A|B) =
P (AB)
P (B)

=
P (A)P (B)

P (B)
= P (A)

Thus if A and B are independent, the event that B has occurred does not shed any more
light into the event A. It makes no difference to A whether B has occurred or not.
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Example 6
: A box contains 6 white and 4 black balls. Remove two balls at random without

replacement. What is the probability that the first one is white and the second one is black?

Let W1 = “first ball removed is white” and B2 = “second ball removed is black”. We need
to find P (W1 ∩ B2) =?

We have W1 ∩ B2 = W1B2 = B2W1. Using the conditional probability rule,

P (W1B2) = P (B2W1) = P (B2|W1)P (W1)

But

P (W1) =
6

6 + 4
=

6
10

=
3
5

and

P (B2|W1) =
4

5 + 4
=

4
9

and hence

P (W1B2) =
3
5

4
9

=
20
81

= 0.27

23
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Are the events W1 and B2 independent? Our common sense says No. To verify this we need
to compute P (B2). Of course the fate of the second ball very much depends on that of the
first ball. The first ball has two options: W1 = “first ball is white” or
B1 = “first ball is black”. Note that W1 ∩ B1 = φ and W1 ∪ B1 = Ω. Hence W1 together
with B1 form a partition. Thus

P (B2) = P (B2|W1)P (W1) + P (B2|B1)P (B1)

=
4

5 + 4
· 3
5

+
3

6 + 3
· 4
10

=
4
9
· 3
5

+
1
3
· 5
5

=
4 + 2
15

=
2
5

and

P (B2)P (W1) =
2
5
· 3
5
�= P (B2W1) =

20
81

As expected, the events W1 and B2 are dependent.
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Bayes’ Theorem

Since
P (AB) = P (A|B)P (B)

similarly,

P (B|A) =
P (BA)
P (A)

=
P (AB)
P (A)

→ P (AB) = P (B|A)P (A)

We get
P (A|B)P (B) = P (B|A)P (A)

or

P (A|B) = P (B|A)
P (B) · P (A)

(6)

The above equation is known as Bayes theorem.

25
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Although simple enough, Bayes theorem has an interesting interpretation: P (A) represents
the a-priori probability of the event A. Suppose B has occurred, and assume that A and B are
not independent. How can this new information be used to update our knowledge about A?
Bayes rule takes into account the new information (“B has occurred”) and gives out the
a-posteriori probability of A given B.

We can also view the event B as new knowledge obtained from a fresh experiment. We know
something about A as P (A). The new information is available in terms of B. The new
information should be used to improve our knowledge/understanding of A. Bayes theorem
gives the exact mechanism for incorporating such new information.
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Bayes’ Theorem

A more general version of Bayes theorem involves partition of Ω as

P (Ai|B) = P (B|Ai)P (Ai)
P (B) = P (B|Ai)P (Ai)∑ n

j=1 P (B|Aj)P (Aj)

(7)

In above equation, Ai, i = [1, n] represent a set of mutually exclusive events with associated
a-priori probabilities P (Ai), i = [1, n]. With the new information “B has occurred”, the
information about Ai can be updated by the n conditional probabilities P (B|Aj), j = [1, n].

Example 7
: Two boxes B1 and B2 contain 100 and 200 light bulbs respectively. The first

box (B1) has 15 defective bulbs and the second 5. Suppose a box is selected at random and
one bulb is picked out.

(a) What is the probability that it is defective?

Solution: Note that box B1 has 85 good and 15 defective bulbs. Similarly box B2 has 195
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good and 5 defective bulbs. Let D = “Defective bulb is picked out”. Then,

P (D|B1) =
15
100

= 0.15, P (D|B2) =
5

200
= 0.025

Since a box is selected at random, they are equally likely.

P (B1) = P (B2) = 1/2

Thus B1 and B2 form a partition, and using Law of Total Probability, we obtain

P (D) = P (D|B1)P (B1) + P (D|B2)P (B2) = 0.15 · 1
2

+ 0.025 · 1
2

= 0.0875

Thus, there is about 9% probability that a bulb picked at random is defective.
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(b) Suppose we test the bulb and it is found to be defective. What is the probability that it
came from box 1? P (B1|D) =?

P (B1|D) =
P (D|B1)P (B1)

P (D)
=

0.15 · 0.5
0.0875

= 0.8571 (8)

Notice that initially P (B1) = 0.5; then we picked out a box at random and tested a bulb that
turned out to be defective. Can this information shed some light about the fact that we might
have picked up box 1?

From (8), P (B1|D) = 0.875 > 0.5, and indeed it is more likely at this point that we must
have chosen box 1 in favor of box 2. (Recall box1 has six times more defective bulbs
compared to box2).

29
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of that in Box 2).
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Example:�(textbook�Example�1.27)
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Solution:
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