Assignment 4 Solution — Part A

1. Solution for Q1:

For 0 < p < 1, we have
o) 1
PUp) = [ PWSuT=0): frtydt = [ PU<pT =t)-1dt
oo 0

" 1
_ /1~1dt+/ vt =+ ()i = (1 = In ) (1)
0 W

therefore, the complete CDF of U is

0 w<0
Fy(p) =4 p(l—Inp) 0<p<1
1 w>1

2. Solution for Q2:

(a) For x < 0, fx(z) = 0. For x > 0, we have
Ix(z) = /OO Ixy(z,y)dy = /OO Ne M dy = e N

We see that X is an exponential RV with E[X]| = 1/\. Given X = z, the conditional pdf
of Y is

frix(yle) = i@

To interpret this result, let U =Y — X denote the interarrival time, the time between the

Ifxy(x,y) Ae A=)y > g
0 0.W.

arrival of the first and second calls. Given X = x, then U has the same pdf as X.
(b) for y > 0,
o] Yy
fr(y) = / fxy(z,y)de = / Ne N dr =N ye
—0o0 0

and

(&w@w%Zbﬁﬁynz{y persy

0 0.W.

which implies that given Y = y, X is uniformly distributed in [0, y].
3. Solution for Q3:

(a) The joint characteristic function of X and Y is
Dxy(wi,wy) = B/ XHieY] = pleioiX]. el = Oy (w)) - Py (wy)
MEI-1) | ipws—o? w2
(b) The characteristic function of Z is

Oy(w) = Ele] = B[] = by y(w,w)
eA(ej“’fl)JrjuwfoQ w?/2
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Note: since Z = X +Y, and X and Y are independent, we have
Pz(w) = Px(w) - Py (w)
part (a) dealing with two-dimensional CF, while part (b) dealing with one-dimensional CF.

. Solution for Q4:

(a) From the given joint mass function, we can have marginal pmf as

1 1 1 5)
( ) 9+3+9 9
1 1 1
PY:2 - - —_— = =
( ) 9+O+18 6
1 1 5!
P(Y = = ==
( 3) 0+6 9 18
therefore, the conditional pmfs are:
P(1,1) 1/9 1
Pyy(X =1y =1) = ——"—=_ ==
xiv | ) = Bw=1"59 5
P(2,1) 1/3 3
Pyy(X=2lY=1) = =2~ _="2_7
i ( | ) Prly=1) 5/9 5
P3,1) 1/9 1
i ( | ) Prly=1) 5/9 5
and
BIX[Y = 1] = 1x 2+ 2x243x 29
-5 5 5
Similarly,
P(1,2) 1/9 2
Pyy(X =1y =2) = =2z
i ( | ) = Bw=9 16 3
P(3,2) 1/18 1
and ) L
EX|Y=2=1x-+2 - °
[X] J=1x3+2x04+3x 5=
For Y = 3,
Pay(X =1y =3) = T3 g p oy oy g MO 3
AL TR T T By =3) XS =2 = =8 T s
2
and 3 2 12
EIXIY =3=1x0+2x = +3x == —
[X| ] X0+2x 243X 2=~

(b) From the fact that EF[X|Y = 1] # E[X|Y = 2] # E[X|Y = 3], or from the fact that
Pxy(X = 1Y =1) # Pxy(X = 1Y = 2) # Px(X = 1), we conclude that X and Y are

not independent.



5. Solution for Q5:

The marginal density function of YV is

00 v ]
fr(y) = /_Oof(x,y)dw = /0 ;e‘ydx =e Y
therefore, the conditional density is
flxy)  Ge¥ 1
fxy (xly) = (&.9) =7 = - (0<z<y)

fr(y) eV y
and )
y
E[X2|Y:y]:f/ 2dy =L
y Jo 3

6. Solution for QG6:
(a) According to the definition of RVs, X, N and T}, we can have

(b) Clearly, N is a RV with Geometric distribution with a pmf given as
2\ 1
PN:k::() (): gt
[ =13 ) =Ppa

(c) Since T is the travel time correspondingly to the choice leading to freedom, it follows
that Ty = 2 and so

hence, E[N] = % = 3.

E[Ty] =2

(d) Given that N = n, the travel times T;,i = 1,2,---,n — 1 are each equally likely to be
either 3 or 5 (since we know that a door leading to the mine is selected), whereas T,, is equal

to 2 (since that choice leads to safety). Hence,

E Li:;Ti]N—n] = E rfTin—n] + E[T,|N = n)

=1

1
= (3+5) 5 (n—1)+2=4dn—2

o] ]

= 4. N =10



7. Solution for Q7:

(a) the state transition diagram is ignored. There are three classes: (i)state 0 is recurrent

state; (ii) state 1 and 2 are recurrent states; (iii) state 3 and 4 are transient states.

(b) From 7mP = 7, we obtain the equation set:

7T0+i71'3 = T
%7T1 +%7T2 = m
i’/Tg—F%’/M = T3
iﬂ3+%71’4 = Ty

Solving the equation set, we obtain:
3
=10 71'2:57?1 =0

when the state transits to state 0, stationary distribution m; = 7w = 0; when the state

3

transits to state 1 and 2, then from my = %m and m +m5 = 1, we obtain m = % and mp = 3.

(c) the transition probability matrix for transient state is

py_ [ 1/4 1/4]
1/2 1/2

therefore,

_ L[ s calt 20 10
s _{—1/2 1/2] _{2.0 3.0]

P = P(X;=21X3=1)=) P(Xs=2X4=k) P(Xy=k[X;=1)
k
= P(X5=2X4=1)-P(Xy=1X35=1)+P(X5;=2|Xy=2) - P(Xy =2|X53=1)
31 13 9
— P Pyt PPy 2L
12 11+ F2 - 12 1 4+2 17 16
8. Solution for Q8:
Let the state be 0 of the last two trials were both successes (SS) and be 1 if last trial a
success and the one before is a failure (FS), be 2 if the last trial was a failure. The transition

matrix of this Markov chain is

08 0 0.2
P=105 0 05
0 05 05
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Then we have equation set

0.877'0 + 0.57T1 = T

0.57'('2 = T

o + T + T2 =1
we can solve that

o + 0.47T0 + 0.871'0 =1
which implies

5 2 4

ﬂo:ﬁ ﬂ—l:ﬁ Wgzﬁ

Consequently, the proportion of trials that are successes is

7
0.8m9 + 0.5(1 — mg) = 1

10. Solution for Q10:

The transition probability matrix is

0 0 0 0
1 0 0 0
P=|1/2 1/2 0 0
1/3 1/3 1/3 0
L 1/4 174 1/4 1/4

The equation set is (7P = )

1/27T2+1/37T3—|—1/47T4 = T
1/37T3+1/47T4 = Ty

1/471'4 = T3
o = T4
o+ 7T+ 7o +7T3+7Ty = 1

solving the equation, we obtain

12 6 4 3 12
T = |25, 55, 551 50> =5

37737373737

9.Solution for Q9:
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Solutions for the questions from the textbook:

Problem 4.1.6 Solution

The given function is

mren={ 47 B2 »
First, we find the CDF Fyix) and Fy(y).
)= i 00w { :] -;ﬂir?\-‘ise 2)
Fr() = Fxr(00,y) = { {1) Iztlifwise (3)
Hence, foranyx = Oory > 0,
P[X>x]=0 P[Y >y]=0 (4)
Forx = Qand y = 0, this implies
PHX > x}U{¥Y >y 1= P[X > x]+ P[F>y]=0 (5)
However,
PUX>x}U{F >y l=1-PlXsx, VY £y]l=1—(1 - ") = g &+ (6)

Thus, we have the contradiction that e~ < ¢ for all x, y = 0. We can conclude that the given
function 1s not a valid CDF.
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Problem 4.3.5 Solution
Forn=0,1,.... the marginal PMF of N 15

/]

100710 100me-100
Py =) PyxmB =) ———r = —
k =0 d 1

Fork =0, 1, .... the marginal PMF of K 15

g

100710

Pe(k) = Z -
— (n+ 1)

1 ™ IDUH-I-].E—IGG

T |
100 = (n4+1)

1 0o
=i Z Py(n+1)
100 =

= P[N > k{100

(1)

2

(3)

)

(5)



Problem 4.4.2 Solution

Given the joint PDF
e eyt BExiy =1
f_ﬁ.,f {x.._}‘,:l = I 0 Dﬂlﬂ’f“’l.ﬁﬂ (l.}
(a) To find the constant ¢ integrate {7y yi{x. v) over the all possible values of X and ¥ to get
1 p1
1= f f exy” dx dv = ¢/6 (2)
o Jdo
Therefore ¢ = 6,
(b} The probability P[X = ¥]1s the integral of the joint FDF fx 5 (x. ¥) over the indicated shaded
TEgIon,
¥
ik i =
PIX=T]= f f 6x3” dy dx (3)
o Jo
1
= f ¥ dx (4]
]
o —2/5 (s)

Similarly, to find P[¥ = X°] we can mtegrate over the region
shown in the figure.

P[F = X} = [f 6x1° dvdr = 1/4 (6)
i 0

() Here we can choose to etther integrate vy (x, ) over the lighter shaded regon, which would
require the evaluation of two mtegrals. or we can perform one integral over the darker region



by recognizing

minX,¥) < %

min(X,¥) > %

!

;| maxXY) <%

P[min(X, ¥) < 1/2] = 1 — P[min(X, ¥) > 1/2]

1 g1
=1= f f 6xy* dx dy
1201
1 9}72

Plmax(X, ¥) < 3/4] = P[X < 3/4,Y < 3/4]

3 8
11

=[ f 6xy* dx dy
o Jo

=0

= (3/4)° = 0.237

(7)
®)

(10)
(11)

(12)
(13)



Problem 4.6.6 Solution

(a) The miinmum value of I 15 W = 0, which occurs when X = 0 and I = 0. The maximum
value of Wis W = |, which occurs when X = 1or ¥ = 1. The range of W 15 § =
(w0 <w <1}

(b) For® < w = 1, the CDF of W is
2

!
p—— Fr(w) = Plmax(X, F) = w] (1)
=PlX<w, ¥ <w] (2)
w w
| ¥ =f f fry(x, y)dydx (3
T o oJo

Substituting fy y(x, ¥) = x + y yields

LR LI w J;'z
Fﬁ’{u") =f f {x+}}d}»dx — f {_'(}:.'.T
0 1] i} 2

y=u

w
ydx = f (wx + w/2)dx = w’
1]

}'=ﬂ
4
The complete expression for the CDF 1s
0 w=0
Fruwy={ v’ 0=w=1 (3)
1 otherwise
The PDF of ¥ is found by differentiating the CDFE.
d Fy (w) 3w? 0<w=1
= dw |0 otherwise ©



Problem 4.8.6 Solution
Random variables X and ¥ have joint PDF

ey | BX+2/3 02x=1L,05y 1
= [ 0 otherwise (1)
(a) The probability that ¥ < 1/21s
PLl=PIT<1/2)= ([ frrteydyas 5
y=172
I oalf2 4.
2 4x 4 2y
o Jo 3
1 2 .1'=1_."1
4_ } P
= f el "
0 3 y=0
Favt 14 2 2
=dex=L+i _F .
o 3 3T 1Zfp 12

{(b) The conditional joint PDF of X and ¥ given A4 is

— y}_l Ly () e 4 _{ 82r+)/5 0<x<1,0<y<1/2
rr4le,y) = =

otherwise

0 otherwise 0 otherwise
(6)
For0 = x < 1. the PDF of X given 4 15
o g (12 8 2 [F2 e
fralx) = f Jrralx, yidy = - f (2x+y)dy = —(2xy +—) ol
e s Jo 5 27,20 5
(7)
The complete expression s
Bx+1)/5 0=x=1
= - 8
T4 (%) { 0 otherwise ®
For 0 < y < 1/2. the conditional margmal PDF of ¥ given A 1s
=) 2 1
Sraly) = [ Frralx, y)dx = ?f (2x + ¥)dx (9)
—oo 2o
x=l
8x? + 8xy "
x=0
sy +8

== a

The complete expression is
By+8/5 0<y=<1/2
fray =1 PO 0=yl (12)



Problem 4.9.4 Solution
Random variables X and ¥ have joint PDF

¥
l
2 0=y=x=1
Trrxy) = l 0 otherwise @
%
|
For0 =y <1,
oo 1
Jriy)= f Jrrlx, y)dx =f 2dx =2{1—y) 2}
—og 3
Also fory = Dory = 1, f+(¥) = 0. The complete expression for the marginal PDF 1=
s [o2E—3 D=p=1
fr @) = | " i ®
By Theorem 4.24, the conditional PDF of X given I 1z
¥ : 1
Jrrlx ¥ T JEaes 1
- = —— e 1 . 4
Far 1) friy) { otherwise )

That 15, since ¥ < X < 1_ X 1s umform over [v, 1] when ¥ = y. The conditional expectation of X
given ¥ = y can be calculated as

o 1

oo 1 - :

x X 1+
E_.- Y: = k. £ N — ! —. = - ::I
[X1Y =] j:x'cfxu{rl.b}nx [ T2~ ~ 2 (5)

In fact, since we know that the conditional PDF of X 15 uniform over [, 1] when ¥ = . 1t wasa't
really necessary to perform the calculation.

10



Problem 4.9.9 Solution
Random variables N and X have the jomt PMF

100210 k=0.1,....m
Pypmky=] @0 pn=01,... (1)
0 otherwise

We can find the marginal PMF for N by summing over all possible K. Forn = 0.

© 10010 1p0te-10

Py(m=) =— @)
o (n+ 1) n!

We see that N has a Poisson PMF with expected value 100. Forn = 0, the conditional PMF of K
pven N=n1s

Pygk) [ 1m+1) k=01,....n
Py (k) = — — S, 3
o (ki) Py (n) 0 otherwise 9
That s, given N = n, K has a discrete uniform PMF over {0, 1, ..., n}. Thus,
il
EIKIN=n]=Y kot 1)=n)2 (4)
=l
We can conclude that E[K|N] = N/2. Thus, by Theorem 4.25,
E[K]=E[E[KIN]|=E[N/2]=10. (3)

11





