
Chap 2: Random Variables

Chap 2.1 : Random Variables

Let Ω be sample space of a probability model, and X a function that maps every ξ ∈ Ω, to a
unique point x ∈ R, the set of real numbers. Since the outcome ξ is not certain, so is the
value X(ξ) = x. Thus if B is some subset of R, we may want to determine the probability of
“X(ξ) ∈ B”. To determine this probability, we can look at the set A = X−1(B) ⊂ Ω. A

contains all that maps into B under the function X .
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Obviously, if the set A = X−1(B) is an event, the probability of A is well defined; in this
case we can say

probability of the event “X(ξ) ∈ B” = P (X−1(B)) = P (A)

However, X−1(B) may not always belong to Ω for all B, thus creating difficulties. The
notion of random variable (RV) makes sure that the inverse mapping always results in an
event so that we are able to determine the probability for any B ⊂ R.

Random Variable (RV): A finite single valued function X(·) that maps the set of all
experimental outcomes Ω into the set of real numbers R is said to be a RV, if the set
{ξ|X(ξ) ≤ x} is an event for every x in R.

The random variable X by the function X(ξ) that maps the sample outcome ξ to the
corresponding value of the random variable X . That is

{X = x} = {ξ ∈ Ω|X(ξ) = x}
Since all events have well defined probability. Thus the probability of the event
{ξ|X(ξ) ≤ x} must depend on x. Denote

P{ξ|X(ξ) ≤ x} = FX(x) ≥ 0
(1)
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The role of the subscript X is only to identify the actual RV. FX(x) is said to be the
Cumulative Distribution Function (CDF) associated with the RV X .
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Properties of CDF

•
FX(+∞) = 1, FX(−∞) = 0

FX(+∞) = P{ξ|X(ξ) ≤ +∞} = P (Ω) = 1

FX(−∞) = P{ξ|X(ξ) ≤ −∞} = P (φ) = 0

•
If x1 < x2, then FX(x1) ≤ FX(x2)

If x1 < x2, then the subset (−∞, x1) ⊂ (−∞, x2). Consequently the event
{ξ|X(ξ) ≤ x1} ⊂ {ξ|X(ξ) ≤ x2}, since X(ξ) ≤ x1, implies X(ξ) ≤ x2. As a result

FX(x1) = P (X(ξ) ≤ x1) ≤ P (X(ξ) ≤ x2) = FX(x2)

implying that the probability distribution function is nonnegative and monotone
nondecreasing.

•
For all b > a, FX(b) − FX(a) = P (a < X ≤ b)

.

To prove this theorem, express the event Eab = {a < X ≤ b} as a part of union of
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disjoint events. Starting with the event Eb = {X ≤ b} . Note that Eb can be written as
the union

Eb = {X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} = Ea ∪ Eab

Note also that Ea and Eab are disjoint so that P (Eb) = P (Ea) + P (Eab). Since
P (Eb) = FX(b) and P (Ea) = FX(a), we can write FX(b) = FX(a) + P (a < X ≤ b),
which completes the proof.
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Additional Properties of a CDF

• If FX(x0) = 0 for some x0, then FX(x) = 0, x ≤ x0.

This follows, since FX(x0) = P (X(ξ) ≤ x0) = 0 implies {X(ξ) ≤ x0} is the null set,
and for any x ≤ x0, {X(ξ) ≤ x} will be a subset of the null set.

• P{X(ξ) > x} = 1 − FX(x)

We have {X(ξ) ≤ x} ∪ {X(ξ) > x} = Ω, and since the two events are mutually
exclusive, the above equation follows.

• P{x1 < X(ξ) ≤ x2} = FX(x2) − FX(x1), x2 > x1

The events {X(ξ) ≤ x1} and {x1 < X(ξ) ≤ x2} are mutually exclusive and their union
represents the event {X(ξ) ≤ x2}.

• P{X(ξ) = x} = FX(x) − FX(x−)

Let x1 = x − ε, ε > 0, and x2 = x,

lim
ε→0

P{x − ε < X(ξ) ≤ x} = FX(x) − lim
ε→0

FX(x − ε)

or
P{X(ξ) = x} = FX(x) − FX(x−)
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FX(x+
0 ), the limit of FX(x) as x → x0 from the right always exists and equals FX(x0).

However the left limit value FX(x−
0 ) need not equal FX(x0). Thus FX(x) need not be

continuous from the left. At a discontinuity point of the distribution, the left and right
limits are different, and

P{X(ξ) = x0} = FX(x0) − FX(x−
0 )

Thus the only discontinuities of a distribution function are of the jump type. The CDF is
continuous from the right. Keep in mind that the CDF always takes on the upper value at
every jump in staircase.
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Example 1
: X is a RV such that X(ξ) = c, ξ ∈ Ω. Find FX(x).

Solution: For x < c, {X(ξ) ≤ x} = φ, so that FX(x) = 0 and for x > c, {X(ξ) ≤ x} = Ω,
so that FX(x) = 1. (see figure below)

Figure 1: CDF for example 1.

Example 2
: Toss a coin. Ω = {H,T}. Suppose the RV X is such that P (T ) = q,

P (H) = 1 − q. Find FX(x).

Solution:

• For x < 0, {X(ξ) ≤ x} = φ, so that FX(x) = 0.

8
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• For 0 ≤ x < 1, {X(ξ) ≤ x} = {T}, so that FX(x) = P (T ) = q.

• For x ≥ 1, {X(ξ) ≤ x} = {H, T} = Ω, so that FX(x) = 1.

Figure 2: CDF for example 2.

• X is said to be a continuous-type RV if its distribution function FX(x) is continuous. In
that case FX(x−) = FX(x) for all x, therefore, P{X = x} = 0.

• If FX(x) is constant except for a finite number of jump discontinuities(piece-wise
constant; step-type), then X is said to be a discrete-type RV. If xi is such a discontinuity
point, then

pi = P{X = xi} = FX(xi) − FX(x−
i )
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For above two examples, at a point of discontinuity we get

P{X = c} = FX(c) − FX(c−) = 1 − 0 = 1

and
P{X = 0} = FX(0) − FX(0−) = q − 0 = q

Example 3
: A fair coin is tossed twice, and let the RV X represent the number of heads.

Find FX(x).

Solution: In this case Ω = {HH, HT, TH, TT}, and

X(HH) = 2, X(HT ) = 1, X(TH) = 1, X(TT ) = 0

• x < 0, {X(ξ) ≤ x} = φ → FX(x) = 0

• 0 ≤ x < 1, {X(ξ) ≤ x} = {TT} → FX(x) = P{TT} = P (T )P (T ) = 1
4 .

• 1 ≤ x < 2, {X(ξ) ≤ x} = {TT, HT, TH} → FX(x) = P{TT, HT, TH} = 3
4 .

• x ≥ 2, {X(ξ) ≤ x} = Ω → FX(x) = 1

10
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Figure 3: CDF for example 3.

We can also have

P{X = 1} = FX(1) − FX(1−) =
3
4
− 1

4
=

1
2
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Probability Density Function (pdf)

The first derivative of the distribution function FX(x) is called the probability density
function fX(x) of the RV X . Thus

fX(x) =
dFX(x)

d x

and

fX(x) =
d FX(x)

d x
= lim

Δx→0

FX(x + Δx) − FX(x)
Δx

≥ 0

it follows that fX(x) ≥ 0 for all x.

• Discrete RV:if X is a discrete type RV, then its density function has the general form

fX(x) =
∑

i

piδ(x − xi)

where xi represent the jump-discontinuity points in FX(x). As Fig. 4 shows, fX(x)
represents a collection of positive discrete masses, and it is known as the probability
mass function (pmf) in the discrete case.
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Figure 4: Discrete pmf.

• If X is a continuous type RV, fX(x) will be a continuous function,

• We also obtain by integration

FX(x) =
∫ x

−∞ fX(u) du

Since FX(+∞) = 1, yields ∫ +∞

−∞
fX(u) du = 1

which justifies its name as the density function.
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• we also get (Fig. 5b)

P{x1 < X ≤ x2} = FX(x2) − FX(x1) =
∫ x2

x1
fX(x) dx

Thus the area under fX(x) in the interval (x1, x2) represents the probability in the above
equation.

Figure 5: Continuous pdf.

• Often, RVs are referred by their specific density functions - both in the continuous and
discrete cases - and in what follows we shall list a number of RVs in each category.
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Continuous-type Random Variables

• Normal (Gaussian): X is said to be normal or Gaussian RV, if

fX(x) = 1√
2πσ2 exp

[
− (x−μ)2

2σ2

]
(2)

This is a bell shaped curve, symmetric around the parameter μ, and its distribution
function is given by

FX(x) =
∫ x

−∞

1√
2πσ2

exp
[
− (y − μ)2

2σ2

]
dy = Φ

(
x − μ

σ

)

where Φ(x) =
∫ x

−∞
1√
2π

exp(−y2/2)dy is called standard normal CDF, and is often
tabulated.

P (a < X < b) = Φ
(

b − μ

σ

)
− Φ

(
a − μ

σ

)

Q(x) =
∫ ∞

x

1√
2π

exp
(
−y2

2

)
dy = 1 − Φ(x)

Q(x) is called Standard Normal complementary CDF, and Q(x) = 1 − Φ(x). Since
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Table of the Standard Normal Cumulative Distribution Function �(z)

15a

�(-z)=1 - �(z)
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fX(x) depends on two parameters μ and σ2, the notation X ∼ N(μ, σ2) is applied. If

Y = X−μ
σ ∼ N(0, 1)

(3)

Y is called normalized Gaussian RV. Furthermore,

aX + b ∼ N(aμ + b, a2σ2)

linear transform of a Gaussian RV is still Gaussian.

• Uniform: X ∼ U(a, b), a < b, if

fX(x) =

⎧⎨
⎩

1
b−a a ≤ x ≤ b

0 o.w.
(4)
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Figure 6: pdf of uniformly distributed and exponential distributed RVs.

• Exponential: X ∼ ε(λ) if

fX(x) =

⎧⎨
⎩

1
λ exp(−x

λ ) x ≥ 0

0 o.w.
(5)
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• Rayleigh X ∼ R(σ2)

fX(x) =

⎧⎨
⎩

x
σ2 e−x2/2σ2

x ≥ 0

0 o.w.

Let Y = X2
1 + X2

2 where X1 and X2 ∼ N(0, σ2) and independent. Then Y is
chi-square distributed with two degrees of freedom, hence pdf of Y is

fY (y) =
1

2σ2
exp

(
− y

2σ2

)
Now, suppose we define a new RV as R =

√
Y , then R is Rayleigh distributed.

19
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Discrete-type Random Variables

• Bernoulli: X takes the values of (0,1), and

P (X = 0) = q, P (X = 1) = p

• Binomial: X ∼ B(n, p)

P (X = k) =

⎛
⎝ n

k

⎞
⎠ pkqn−k, k = 0, 1, 2, · · · , n

• Poisson: X ∼ P (λ)

P (X = k) = e−λ λk

k!
, k = 0, 1, 2, · · · ,∞
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(b) Poisson(a) Binomial

Figure 7: pmf of Binomial and Poisson distributions.

• Uniform: X takes the values from [1, · · · , n], and

P (X = k) =
1
n

, k = 1, · · · , n

• Geometric: (number of coin toss till first head appear)

P (X = k) = (1 − p)k−1p, k = 1, · · · ,

where the parameter p ∈ (0, 1) (probability for head appear on each one toss).
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Example of Poisson RV

Example of Poisson Distribution: the probability model of Poisson RV describes phenomena
that occur randomly in time. While the time of each occurrence is completely random, there
is a known average number of occurrences per unit time. For example, the arrival of
information requests at a WWW server, the initiation of telephone call, etc.

For example, calls arrive at random times at a telephone switching office with an average of
λ = 0.25 calls/second. The pmf of the number of calls that arrive in a T = 2 second interval
is

PK(k) =

⎧⎨
⎩ (0.5)k · e−0.5

k! k = 0, 1, 2, · · ·
0 o.w.
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Example of Binomial RV

Example of using Binomial Distribution: To communicate one bit of information reliably, we
transmit the same binary symbol 5 times. Thus, “zero” is transmitted as 00000 and “one” is
transmitted as 11111. The receiver detects the correct information if three or more binary
symbols are received correctly. What is the information error probability P (E), if the binary
symbol error probability is q = 0.1?

In this case, we have five trials corresponding to five transmissions. On each trial, the
probability of a success is p = 1 − q = 0.9 (binary symmetric channel). The error event
occurs when the number of successes is strictly less than three:

P (E) = P (S0,5) + P (S1,5) + P (S2,5) = q5 + 5pq4 + 10p2q3 = 0.0081

By increasing the number of transmissions (5 times), the probability of error is reduced from
0.1 to 0.0081.

23
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Bernoulli Trial Revisited

Bernoulli trial consists of repeated independent and identical experiments each of which has
only two outcomes A or A with P (A) = p and P (A) = q. The probability of exactly k

occurrences of A in n such trials is given by Binomial distribution.

Let
Xk = “exact k occurances in n trials”

(6)

Since the number of occurrences of A in n trials must be an integer k = 0, 1, 2, · · · , n, either
X0 or X1 or X2 or · · · or Xn must occur in such an experiment. Thus

P (X0 ∪ X1 ∪ · · · ∪ Xn) = 1 (7)

But Xi, Xj are mutually exclusive. Thus

P (X0 ∪ X1 ∪ · · · ∪ Xn) =
n∑

k=0

P (Xk) =
n∑

k=0

⎛
⎝ n

k

⎞
⎠ pkqn−k (8)

24
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From the relation

(a + b)n =
n∑

k=0

⎛
⎝ n

k

⎞
⎠ akbn−k

(8) equals (p + q)n = 1, and it agrees with (7).

For a given n and p what is the most likely value of k? The most probable value of k is that
number which maximizes in Binomial distribution. To obtain this value, consider the ratio

Pn(k − 1)
Pn(k)

=
n!pk−1qn−k+1

(n − k + 1)!(k − 1)!
· (n − k)!k!

n!pkqn−k
=

k

n − k + 1
· q

p

Thus Pn(k) ≥ Pn(k − 1), if k(1 − p) ≤ (n − k + 1)p or k ≤ (n + 1)p. Thus, Pn(k) as a
function of k increases until

k = (n + 1)p

if it is an integer, or the largest integer kmax less than (n + 1)p and (n + 1)p represents the
most likely number of successes (or heads) in n trials.

25
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Example 4
: In a Bernoulli experiment with n trials, find the probability that the number of

occurrences of A is between k1 and k2.

Solution: with Xi, i = 0, 1, 2, · · · , n as defined in (6), clearly they are mutually exclusive
events. Thus

P = P (“Occurance of A is between k1 and k2”) (9)

= P (Xk1 ∪ Xk1+1 ∪ · · · ∪ Xk2) =
k2∑

k=k1

P (Xk) =
k2∑

k=k1

⎛
⎝ n

k

⎞
⎠ pkqn−k

Example 5
: Suppose 5,000 components are ordered. The probability that a part is

defective equals 0.1. What is the probability that the total number of defective parts does not
exceed 400?

Solution: Let
Yk = “k parts are detective among 5000 components”

26
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using (9), the desired probability is given by

P (Y0 ∪ Y1 ∪ · · · ∪ Y400) =
400∑
k=0

P (Yk) =
400∑
k=0

⎛
⎝ 5000

k

⎞
⎠ (0.1)k(0.9)n−k

The above equation has too many terms to compute. Clearly, we need a technique to compute
the above term in a more efficient manner.
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Binomial Random Variable Approximations

Let X represent a Binomial RV, then

P (k1 ≤ X ≤ k2) =
k2∑

k=k1

P (Xk) =
k2∑

k=k1

⎛
⎝ n

k

⎞
⎠ pkqn−k (10)

Since the binomial coefficient

⎛
⎝ n

k

⎞
⎠ = n!

(n−k)!k! grows quite rapidly with n, it is difficult to

compute (10) for large n. In this context, Normal approximation is extremely useful.

Normal Approximation: (Demoivre-Laplace Theorem) Suppose n → ∞ with p held fixed.
Then for k in the

√
npq neighborhood of np, we can approximate⎛

⎝ n

k

⎞
⎠ pkqn−k ≈ 1√

2πnpq
exp

(
− (k − np)2

2npq

)
(11)

Thus if k1 and k2 in (10) are within or around the neighborhood of the interval

28



Chap 2: Random Variables

(np −√
npq, np +

√
npq) we can approximate the summation in (10) by an integration as

P (k1 ≤ X ≤ k2) =
∫ k2

k1

1√
2πnpq

exp
(
− (x − np)2

2npq

)
dx (12)

=
∫ x2

x1

1√
2π

exp
(
−y2

2

)
dy

where

x1 =
k1 − np√

npq
x2 =

k2 − np√
npq

We can express (12) in terms of the normalized integral that has been tabulated extensively.

erf(x) =
1√
2π

∫ x

0

e−y2/2 dy = −erf(−x) (13)

For example, if x1 and x2 are both positive, we obtain

P (x1 ≤ X ≤ x2) = erf(x2) − erf(x1)
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Example 6
: A fair coin is tossed 5,000 times. Find the probability that the number of

heads is between 2,475 to 2,525.

Solution: We need P (2475 ≤ X ≤ 2525). Here n is large so that we can use the normal
approximation. In this case p = 1/2, so that np = 2500, and

√
npq ≈ 35. Since

np −√
npq ≈ 2465 and np +

√
npq ≈ 2535, the approximation is valid for k1 = 2475 and

k2 = 2525. Thus

P (k1 ≤ X ≤ k2) =
∫ x2

x1

1√
2π

exp
(
−y2

2

)
dy (14)

Here

x1 =
k1 − np√

npq
= −5

7
x2 =

k2 − np√
npq

=
5
7

Since x1 < 0, from Fig. 8, the above probability is given by

P (2475 ≤ X ≤ 2525) = erf(x2)− erf(x1) = erf(x2) + erf(|x1|) = 2erf

(
5
7

)
= 0.516

where we have used table (erf(0.7) = 0.258).
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Find P(x1 � X � x2) in Figure 8 using �(x) or  erf(x) where x is a non-negative number

(a).�P(x1 � X � x2) =erf(x2) – erf(x1) = �(x2) – �(x1)

(b).�P(x1 � X � x2) =erf(x2) – erf(x1) = erf(x2) + erf(|x1|)
= �(x2) – �(x1) = = �(x2) – (1 – � (|x1|) )= �(x2) + � (|x1|) – 1
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Chap 2.2 : Statistics of RVs

For a RV X , its pdf fX(x) represents complete information about it. Note that fX(x)
represents very detailed information, and quite often it is desirable to characterize the r.v in
terms of its average behavior. In this context, we will introduce two parameters - mean and
variance - that are universally used to represent the overall properties of the RV and its pdf.

Mean (Expected Value) of a RV X is defined as

X = E(X) =
∫ ∞
−∞ xfX(x) dx

(15)

If X is a discrete-type RV, then we get

X = E(X) =
∫

x
∑

i

piδ(x − xi) dx =
∑

i

xipi

∫
δ(x − xi) dx (16)

=
∑

i

xipi =
∑

i

xiP (X = xi)

Mean represents the average (mean) value of the RV in a very large number of trials. For
example
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• X ∼ U(a, b) (uniform distribution), then,

E(X) =
∫ b

a

x

b − a
dx =

1
b − a

x2

2
|ba =

b2 − a2

2(b − a)
=

a + b

2

is the midpoint of the interval (a, b).

• X is exponential with parameter λ, then

E(X) =
∫ ∞

0

x

λ
e−x/λ dx = λ

∫ ∞

0

ye−y dy = λ (17)

implying that the parameter represents the mean value of the exponential RV.

• X is Poisson with parameter λ, we get

E(X) =
∞∑

k=0

kP (X = k) =
∞∑

k=0

ke−λ λk

k!
= e−λ

∞∑
k=1

k
λk

k!
(18)

= e−λ
∞∑

k=1

λk

(k − 1)!
= λe−λ

∞∑
i=0

λi

i!
= λe−λeλ = λ

Thus the parameter λ also represents the mean of the Poisson RV.
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• X is binomial, then its mean is given by

E(X) =
n∑

k=0

kP (X = k) =
n∑

k=0

k

⎛
⎝ n

k

⎞
⎠ pkqn−k (19)

=
n∑

k=1

k
n!

(n − k)!k!
pkqn−k =

n∑
k=1

n!
(n − k)!(k − 1)!

pkqn−k

= np
n−1∑
i=0

(n − 1)!
(n − i − 1)! i!

piqn−i−1 = np(p + q)n−1 = np

Thus np represents the mean of the binomial RV.

• For the normal RV,

E(X) =
1√

2πσ2

∫ ∞

−∞
xe−(x−μ)2/2σ2

dx =
1√

2πσ2

∫ ∞

−∞
(y + μ)e−y2/2σ2

dy

=
1√

2πσ2

∫ ∞

−∞
ye−y2/2σ2

dy + μ
1√

2πσ2

∫ ∞

−∞
e−y2/2σ2

dy = μ (20)

where the first integral in (20) is zero and the second is 1. Thus the first parameter in
X ∼ N(μ, σ2) is in fact the mean of the Gaussian RV X .
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Mean of a Function of a RV

Given X ∼ fX(x), suppose Y = g(X) defines a new RV with pdf fY (y). Then from the
previous discussion, the new RV Y has a mean μY given by

μY = E(Y ) =
∫ ∞

−∞
y fY (y) dy (21)

From above, it appears that to determine E(Y ), we need to determine fY (y). However this is
not the case if only E(Y ) is the quantity of interest. Instead, we can obtain E(Y ) as

E(Y ) = E(g(X)) =
∫ ∞

−∞
y fY (y) dy =

∫ ∞

−∞
g(x) fX(x) dx (22)

Discrete case

E(Y ) =
∑

i

g(xi)P (X = xi) (23)

Therefore, fY (y) is not required to evaluate E(Y ) for Y = g(X). As an example, we
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determine the mean of Y = X2, where X is a Poisson RV.

E(X2) =
∞∑

k=0

k2P (X = k) =
∞∑

k=0

k2e−λ λk

k!
= e−λ

∞∑
k=1

k2 λk

k!
(24)

= e−λ
∞∑

k=1

k
λk

(k − 1)!
= e−λ

∞∑
i=0

(i + 1)
λi+1

i!

= λe−λ

( ∞∑
i=0

i
λi

i!
+

∞∑
i=0

λi

i!

)
= λe−λ

( ∞∑
i=0

i
λi

i!
+ eλ

)

= λe−λ

( ∞∑
i=1

λi

(i − 1)!
+ eλ

)
= λe−λ

( ∞∑
m=0

λm+1

m!
+ eλ

)

= λe−λ(λeλ + eλ) = λ2 + λ

In general, E(Xk) is known as the kth moment of RV X . Thus if X ∼ P (λ), its second
moment is λ2 + λ.
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Variance of a RV

Mean alone cannot be able to truly represent the pdf of any RV. As an example to illustrate
this, considering two Gaussian RVs X1 ∼ N(0, 1) and X2 ∼ N(0, 10). Both of them have
the same mean. However, as Fig. 1 shows, their pdfs are quite different. One is more
concentrated around the mean, whereas the other one has a wider spread. Clearly, we need at
least an additional parameter to measure this spread around the mean!

Figure 9: Two Gaussian RV with different variance.
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For a RV X with mean μ, X − μ represents the deviation of the RV from its mean. Since this
deviation can be either positive or negative, consider the quantity (X − μ)2, and its average
value E[(X − μ)2] represents the average mean square deviation of X around its mean.
Define

σ2
X = E[(X − μ)2] > 0 (25)

With g(X) = (X − μ)2 and using (22) we get

σ2
X =

∫ ∞

−∞
(x − μ)2fX(x) dx > 0 (26)

σ2
X is known as the variance of the RV X , and its square root σX =

√
E(X − μ)2 is known

as the standard deviation of X . Note that the standard deviation represents the root mean
square spread of the RV X around its mean μ.
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Expanding variance definition, and using the linearity of the integrals, we get

V ar(X) = σ2
X =

∫ ∞

−∞
(x2 − 2xμ + μ2)fX(x) dx (27)

=
∫ ∞

−∞
x2fX(x)dx − 2μ

∫ ∞

−∞
xfX(x)dx + μ2

= E(X2) − μ2 = E(X2) − [E(X)]2 = X2 − X
2

• For a Poisson RV, we can obtain that

σ2
X = X2 − X

2
= (λ2 + λ) − λ2 = λ

Thus for a Poisson RV, mean and variance are both equal to its parameter λ.

• The variance of the normal RV N(μ, σ2) can be obtained as

V ar(X) = E[(X − μ)2] =
∫ ∞

−∞
(x − μ)2

1√
2πσ2

e−(x−μ)2/2σ2
dx (28)

To simplify the above integral, we can make use of the identity∫ ∞

−∞
fX(x) dx =

∫ ∞

−∞

1√
2πσ2

e−(x−μ)2/2σ2
dx = 1
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which gives ∫ ∞

−∞
e−(x−μ)2/2σ2

dx =
√

2πσ

Differentiating both sides of above with respect to σ, we get∫ ∞

−∞

(x − μ)2

σ3
e−(x−μ)2/2σ2

dx =
√

2π

or ∫ ∞

−∞
(x − μ)2

1√
2πσ2

e−(x−μ)2/2σ2
dx = σ2

which represents the V ar(X) in (28). Thus for a normal RV N (μ, σ2),

V ar(X) = σ2

therefore the second parameter in N (μ, σ2) in fact represents the variance. As Fig. 9
shows the larger the σ, the larger the spread of the pdf around its mean. Thus as the
variance of a RV tends to zero, it will begin to concentrate more and more around the
mean, ultimately behaving like a constant.
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Moments

As remarked earlier, in general

mn = Xn = E(Xn) n ≥ 1 (29)

are known as the moments of the RV X , and

μn = E[(X − μ)n]

are known as the central moments of X . Clearly, the mean μ = m1, and the variance
σ2 = μ2. It is easy to relate mn and μn. In fact

μn = E((X − μ)n) = E

⎛
⎝ n∑

k=0

⎛
⎝ n

k

⎞
⎠ Xk(−μ)n−k

⎞
⎠ (30)

=
n∑

k=0

⎛
⎝ n

k

⎞
⎠ E(Xk)(−μ)n−k =

n∑
k=0

⎛
⎝ n

k

⎞
⎠mk(−μ)n−k

Direct calculation is often a tedious procedure to compute the mean and variance, and in this
context, the notion of the characteristic function can be quite helpful.

41



Chap 2: Random Variables

Characteristic Function (CF)

The characteristic function of a RV X is defined as

ΦX(ω) = E(ejXω) =
∫ ∞
−∞ ejxωfX(x) dx

(31)

Thus ΦX(0) = 1 and |ΦX(ω)| ≤ 1 for all ω. For discrete RVs the characteristic function
reduces to

ΦX(ω) =
∑

k ejkωP (X = k)
(32)

• if X ∼ P (λ) for poisson distribution, then its characteristic function is given by

ΦX(ω) =
∞∑

k=0

ejkωe−λ λk

k!
= e−λ

∞∑
k=0

(λejω)k

k!
= e−λeλ ejω

= eλ(ejω−1) (33)

• if X is a binomial RV, its characteristic function is given by

ΦX(ω) =
n∑

k=0

ejkω

⎛
⎝ n

k

⎞
⎠ pkqn−k =

n∑
k=0

⎛
⎝ n

k

⎞
⎠ (pejω)kqn−k = (pejω + q)n (34)
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CF and Moment

To illustrate the usefulness of the characteristic function of a RV in computing its moments,
first it is necessary to derive the relationship between them.

ΦX(ω) = E(ejXω) = E

[ ∞∑
k=0

(jωX)k

k!

]
=

∞∑
k=0

jk E(Xk)
k!

ωk (35)

= 1 + jE(X) ω + j2 E(X2)
2!

ω2 + · · · + jk E(Xk)
k!

ωk + · · ·

where we have used eλ =
∑∞

k=0 λk/k!. Taking the first derivative of (35) with respect to ω,
and letting it to be equal to zero, we get

∂ΦX(ω)
∂ω

|ω=0 = jE(X) or E(X) =
1
j

∂ΦX(ω)
∂ω

|ω=0 (36)

Similarly, the second derivative of (35) gives

E(X2) =
1
j2

∂2ΦX(ω)
∂ω2

|ω=0 (37)
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and repeating this procedure k times, we obtain the kth moment of X to be

E(Xk) =
1
jk

∂kΦX(ω)
∂ωk

|ω=0 k ≥ 1 (38)

We can use (35)-(37) to compute the mean, variance and other higher order moments of any
RV X .

• if X ∼ P (λ), then from (33),

∂ΦX(ω)
∂ω

= e−λeλejω

λ jejw (39)

so that from (36)
E(X) = λ

which agrees with our earlier derivation in (18). Differentiating (39) one more time, we
get

∂2ΦX(ω)
∂ω2

= e−λ
(
eλejω

(λj ejω)2 + eλejω

λj2 ejω
)

(40)

so that from (37),
E(X2) = λ2 + λ

which again agrees with results in (24). Notice that compared to the tedious calculations
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in (18) and (24), the efforts involved by using CF are very minimal.

• We can use the characteristic function of the binomial RV B(n, p) in (34) to obtain its
variance. Direct differentiation gives

∂ΦX(ω)
∂ω

= jnp ejω (pejω + q)n−1 (41)

so that from (36), E(X) = np, which is the same as previous calculation.

One more differentiation of (41) yields

∂2ΦX(ω)
∂ω2

= j2np [ejω (pejω + q)n−1 + (n − 1)p ej2ω (p ejω + q)n−2] (42)

and using (37), we obtain the second moment of the binomial r.v to be

E(X2) = np (1 + (n − 1) p) = n2p2 + n p q

Therefore, we obtain the variance of the binomial r.v to be

σ2
X = E(x2) − [E(X)]2 = n2p2 + n p q − n2p2 = n p q

• To obtain the characteristic function of the Gaussian r.v, we can make use of the
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definition. Thus if X ∼ N(μ, σ2) then

ΦX(ω) =
∫ ∞

−∞
ejωx 1√

2πσ2
e−(x−μ)2/2σ2

dx (let x − μ = y) (43)

= ejμω 1√
2πσ2

∫ ∞

−∞
ejωy e−y2/2σ2

dy = ejμω 1√
2πσ2

∫ ∞

−∞
e−y/2σ2(y−j2σ2ω) dy

(Let y − jσ2ω = u so that y = u + jσ2ω)

= ejμω 1√
2πσ2

∫ ∞

−∞
e−(μ+jσ2ω)(μ−jσ2ω)/2σ2

du

= ejμω e−σ2ω2/2 1√
2πσ2

∫ ∞

−∞
e−u2/2σ2

du = e(jμω−σ2ω2/2)

Notice that the characteristic function of a Gaussian r.v itself has the “Gaussian” bell
shape. Thus if X ∼ N(0, σ2), then

fX(x) =
1√

2πσ2
e−x2/2σ2

ΦX(ω) = e−σ2ω2/2
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pdf CF

Figure 10: Gaussian pdf and CF.

From Fig. 10, the reverse roles of σ2 in fX(x) and ΦX(ω) are noteworthy (σ2, vs.1/σ2).
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Chebychev Inequality

We conclude this section with a bound that estimates the dispersion of the r.v beyond a
certain interval centered around its mean. Since σ2 measures the dispersion of the RV X

around its mean μ, we expect this bound to depend on σ2 as well.

Consider an interval of width 2ε symmetrically centered around its mean μ shown as in Fig.
11. What is the probability that X falls outside this interval? We need

P (|X − μ| ≥ ε) =? (44)

To compute this probability, we can start with the definition of σ2

Figure 11: Chebyshev inequality.
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σ2 = E[(X − μ)2] =
∫ ∞

−∞
(x − μ)2fX(x) dx ≥

∫
|x−μ|≥ε

(x − μ)2fX(x) dx (45)

≥
∫
|x−μ|≥ε

ε2fX(x) dx = ε2
∫
|x−μ|≥ε

fX(x) dx = ε2P (|X − μ| ≥ ε)

From (45), we obtain the desired probability to be

P (|X − μ| ≥ ε) ≤ σ2

ε2

(46)

(46) is known as the chebychev inequality. Interestingly, to compute the above probability
bound, the knowledge of fX(x) is not necessary. We only need σ2, the variance of the RV. In
particular with ε = kσ in (46) we obtain

P (|X − μ| ≥ kσ) ≤ 1
k2

(47)

Thus with k = 3, we get the probability of X being outside the 3σ interval around its mean to
be 0.111 for any RV. Obviously this cannot be a tight bound as it includes all RVs. For
example, in the case of a Gaussian RV, from Table (μ = 0, σ = 1):

P (|X − μ| ≥ 3σ) = 0.0027
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which is much tighter than that given by (47). Chebychev inequality always underestimates
the exact probability.

Example 7:
If the height X of a randomly chosen adult has expected value E[X] = 5.5

feet and standard deviation σX = 1 foot, use the Chebyshev inequality to find an upper
bound on P (X ≥ 11)

Solution: Since X is nonnegative, the probability that X ≥ 11 can be written as

P [X ≥ 11] = P [X − μX ≥ 11 − μX ] = P [|X − μX | ≥ 5.5]

Now we use the Chebyshev inequality to obtain

P [X ≥ 11] = P [|X − μX | ≥ 5.5] ≤ V ar[X]
5.52

= 0.033 ≈ 1/30

We can see that the Chebyshev inequality is a loose bound. In fact, P [X ≥ 11] is orders of
magnitude lower than 1/30. Otherwise, we would expect often to see a person over 11 feet
tall in a group of 30 or more people!
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Example 8:
If X is uniformly distributed over the interval (0, 10), then, as E[X] = 5,

Var(X)=25/3, it follows from Chebyshev’s inequality that

P (|X − 5| > 4) ≤ σ2

ε2
=

25
3

1
16

≈ 0.52

whereas the exact result is
P (|X − 5| > 4) = 0.20

Thus, although Chebyshev’s inequality is correct, the upper bound that it provides is not
particularly close to the actual probability.

Similarly, if X is a normal random variable with mean μ and variance σ2, Chebyshev’s
inequlity states that

P (|X − μ| > 2σ) ≤ 1
4

whereas the actual probability is given by

P (|X − μ| > 2σ) = P

(
|X − μ

σ
| > 2

)
= 2[1 − Φ(2)] ≈ 0.0456

Chebyshev’s inequality is often used as a theoretical tool in providing results.
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Functions of a Random Variable

Let X be a RV defined on the model (Ω, F, P ) and suppose g(x) is a function of the variable
x. Define

Y = g(X)

Is Y necessarily a RV? If so what is its CDF FY (y), pdf fY (y)?

Example 9
: Y = aX + b

Solution: Suppose a > 0

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P

(
X ≤ y − b

a

)
= FX

(
y − b

a

)

and

fY (y) =
1
a
fX

(
y − b

a

)
On the other hand if a < 0, then

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P

(
X >

y − b

a

)
= 1 − FX

(
y − b

a

)

52

,

Y is a derived random variable.



Chap 2: Random Variables

and hence

fY (y) = −1
a
fX

(
y − b

a

)
Therefore, we obtain (for all a)

fY (y) =
1
|a|fX

(
y − b

a

)

Example 10
: Y = X2

FY (y) = P (Y ≤ y) = P (X2 ≤ y) (48)

If y < 0, then the event {X2 ≤ y} = φ, and hence

FY (y) = 0 y < 0

For y > 0, from Fig. 12, the event {Y ≤ y} = {X2 ≤ y} is equivalent to {x1 < X ≤ x2}.
Hence,

FY (y) = P (x1 < X ≤ x2) = FX(x2) − FX(x1) (49)

= FX(
√

y) − FX(−√
y) y > 0
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By direct differentiation, we get

fY (y) =

⎧⎨
⎩

1
2
√

y [fX(
√

y) + fX(−√
y)] y > 0

0 o.w.
(50)

If fX(x) represents an even function, then (50) reduces to

fY (y) =
1√
y

fX(
√

y) U(y) (51)

Figure 12: Example Y = X2.
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In particular if X ∼ N(0, 1), so that

fX(x) =
1√
2π

e−x2/2 (52)

and substituting this into (50) or (51), we obtain the pdf of Y = X2 to be

fY (y) =
1√
2πy

e−y/2 U(y) (53)

we notice that (53) represents a Chi-square r.v with n = 1, since Γ(1/2) = π. Thus, if X is a
Gaussian r.v with μ = 0, then Y = X2 represents a Chi-square r.v with one degree of
freedom (n = 1).

More examples refer textbook 3.7.
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General Approach

As a general approach, given Y = g(X), first sketch the graph y = g(x), and determine the
range space of y. Suppose a < y < b is the range space of y = g(x).

• for y < a, FY (y) = 0

• for y > b, FY (y) = 1

• FY (y) can be nonzero only in a < y < b.

• Next, determine whether there are discontinuities in the range space of y. If so evaluate
P (Y (ξ) = yi) at these discontinuities.

• In the continuous region of y, use the basic approach

FY (y) = P (g(X) ≤ y)

and determine appropriate events in terms of the RV X for every y. Finally, we must
have FY (y) for −∞ < y < +∞ and obtain

fY (y) =
dFY (y)

dy
in a < y < b

56



Chap 2: Random Variables

However, if Y = g(X) is a continuous function, it is easy to establish a direct procedure to
obtain fY (y). A continuous function g(x) with g(x) nonzero at all but a finite number of
points, has only a finite number of maxima and minima, and it eventually becomes
monotonic as |x| → ∞. Consider a specific y on the y-axis, and a positive increment Δy as
shown in Fig. 13.

Figure 13: Y = g(x).

fY (y) for Y = g(X), where g(·) is of continuous type. we can write

P{y < Y ≤ y + Δy} =
∫ y+Δy

y

fY (u) du = fY (y) · Δy (54)
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But the event P{y < Y ≤ y + Δy} can be expressed in terms of X(ξ) as well. To see this,
referring back to Fig. 13, we notice that the equation y = g(x) has three solutions x1, x2, x3

(for the specific y chosen there). As a result when {y < Y ≤ y + Δy}, the RV X could be in
any one of the three mutually exclusive intervals

{x1 < X ≤ x1 + Δx1} {x2 < X ≤ x2 + Δx2} {x3 < X ≤ x3 + Δx3}

Hence the probability of the event in (54) is the sum of the probability of the above three
events, i.e.,

P{y < Y ≤ y + Δy} = P{x1 < X ≤ x1 + Δx1} + P{x2 < X ≤ x2 + Δx2}
+P{x3 < X ≤ x3 + Δx3} (55)

For small Δy, Δxi, making use of the approximation in (54), we get

fY (y)Δy = fX(x1)Δx1 + fX(x2)(−Δx2) + fX(x3)Δx3 (56)

In this case, Δx1 > 0, Δx2 < 0 and Δx3 > 0 so that (56) can be rewritten as

fY (y) =
∑

i

fX(xi)
|Δxi|
Δy

(57)
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and as Δy → 0, (57) can be expressed as

fY (y) =
∑

i

1
|dy/dx|i fX(xi) =

∑
i

1
|g′(xi)|i fX(xi) (58)

The summation index i in (58) depends on y, and for every y the equation y = g(xi) must be
solved to obtain the total number of solutions at every y, and the actual solutions x1, x2, · · ·
all in terms of y.
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For example, if Y = X2, then for all y > 0, x1 = −√
y and x1 =

√
y represent the two

solutions for each y. Notice that the solutions xi are all in terms of y so that the right side of
(58) is only a function of y. Referring back to the example Y = X2 here for each y > 0, there
are two solutions given by x1 = −√

y and x2 = +
√

y (fY (y) = 0 for y < 0 ). Moreover

dy

dx
= 2x so that

∣∣∣∣dy

dx

∣∣∣∣
x=xi

= 2
√

y

and using (58) we get

fY (y) =

⎧⎨
⎩

1
2
√

y [fX(
√

y) + fX(−√
y)] y > 0

0 o.w.
(59)

which agrees with earlier result.

Figure 14: Y = X2.
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Example 11
: Let Y = 1/X , find fY (y).

Solution: Here for every y, x1 = 1/y is the only solution, and

dy

dx
= − 1

x2
so that

∣∣∣∣dy

dx

∣∣∣∣
x=x1

=
1

1/y2
= y2

and substituting this into (58), we obtain

fY (y) =
1
y2

fX

(
1
y

)
. (60)

In particular, suppose X is a Cauchy r.v with parameter α so that

fX(x) =
α/π

α2 + x2
−∞ < x < ∞

In that case from (60), Y = 1/X has the pdf

fY (y) =
1
y2

· α/π

α2 + (1/y)2
=

(1/α)/π

(1/α)2 + (y)2
−∞ < x < ∞
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Functions of A Discrete-type RV

Suppose X is a discrete-type RV with

P (X = xi) = pi, x = x1, x2, · · · , xi, · · · ,

and Y = g(X). Clearly Y is also of discrete-type, and when x = xi, yi = g(xi), and for
those yi,

P (Y = yi) = P (X = xi) = pi, y = y1, y2, · · · , yi, · · · (61)

Example 12
: Suppose X ∼ P (λ), so that

P (X = k) = e−λ λk

k!
k = 0, 1, 2, · · ·

Define Y = X2 + 1. Find the pmf of Y .

Solution: X takes the values 0, 1, 2, · · · , k, · · · , so that Y only takes the values
1, 2, 5, · · · , k2 + 1, · · · ,

P (Y = k2 + 1) = P (X = k)
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so that for j = k2 + 1

P (Y = j) = P (X =
√

j − 1) = e−λ λ
√

j−1

(
√

j − 1)!
, j = 1, 2, 5, · · · , k2 + 1, · · ·
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