Chap 2: Random Variables

Chap 2.1 : Random Variables

Let €2 be sample space of a probability model, and X a function that maps every £ € €2, to a
unique point x € R, the set of real numbers. Since the outcome £ is not certain, so is the
value X (£) = x. Thus if B is some subset of R, we may want to determine the probability of
“X (€) € B”. To determine this probability, we can look at the set A = X~ 1(B) Cc 2. A
contains all that maps into B under the function X.
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Chap 2: Random Variables

Obviously, if the set A = X ~1(B) is an event, the probability of A is well defined; in this
case we can say

probability of the event “X (¢) € B” = P(X '(B)) = P(A)

Random Variable (RV): A finite single valued function X (-) that maps the set of all
experimental outcomes (2 into the set of real numbers R is said to be a RV.

It is important to identify
the random variable X by the function X (£) that maps the sample outcome & to the
corresponding value of the random variable X. That is

{X =2} ={§ € QX(§) = =}

Since all events have well defined probability. Thus the probability of the event
{£1X(€) < x} must depend on z. Denote

P{E|X(§) <a} = Fx(x) 20
(D)
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The role of the subscript X is only to identify the actual RV. F'x () is said to be the
Cumulative Distribution Function (CDF) associated with the RV X.
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Properties of CDF

FX(—l—oo) = 1,Fx(—OO) =0
Fx(4+00) = P{{[X (&) < +oo} =P(2) =1
Fx(—00) = P{¢|X(§) < —o0} = P(¢) =0

If x1 < 9, then Fix (x1) < Fx(x2)

IA

If 1 < x4, then the subset (—oo, x1) C (—00, z2). Consequently the event
{1 X (&) <z} C {EX(E) < a2}, since X (€) < xq, implies X (£) < xo. As aresult

Fx(x1) = P(X(§) < 21) < P(X(§) < 22) = Fx(22)

implying that the probability distribution function is nonnegative and monotone
nondecreasing.

Forallb > a, Fx(b) — Fx(a) = P(a < X <b)

To prove this theorem, express the event F,, = {a < X < b} as a part of union of
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disjoint events. Starting with the event F, = {X < b} . Note that F} can be written as

the union
Eb:{XSb}:{XSG}U{CL<X§b}:EaUEab

Note also that £/, and E,; are disjoint so that P(E}) = P(E,) + P(F.). Since
P(Ey) = Fx(b) and P(E,) = Fx(a), we can write F'x (b) = Fx(a) + P(a < X <b),
which completes the proof.
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Additional Properties of a CDF

o If F'x(xg) = 0 for some xq, then F'x (z)=0for x < x.
This follows, since F'x (zg) = P(X (&) < xp) = 0 implies { X (£) < z¢} is the null set,
and for any = < zq, { X () < x} will be a subset of the null set.

o P{X(§) >} =1- Fx(a)
We have { X (§) <z} U{X(§) > x} = (, and since the two events are mutually
exclusive, the above equation follows.

o Plr; < X(&) <uxo} = Fx(x2) — Fx(x1),x2 > 11
The events { X (§) < x1} and {z; < X (§) < x5} are mutually exclusive and their union
represents the event { X (§) < xo}.

o P{X(§) =x}=Fx(z)— Fx(z7)

Letzy =2 —¢€,¢>0,and x5 = z,
lirr(l)P{a:—e<X(§) §a:}:FX(az)—lirr(1)FX(a:—e)

P{X(§) =z} =Fx(x) - Fx(x27)
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Fx(zd), the limit of F'x (z) as x — x from the right always exists and equals Fx ().
However the left limit value F'x (z, ) need not equal F'x (z¢). Fx (x) need not be
continuous from the left. At a discontinuity point of the distribution, the left and right
limits are different, and

P{X(§) = xo} = Fx(x0) — Fx(2q)

Thus the only discontinuities of a distribution function are of the jump type. The CDF is
continuous from the right. Keep in mind that the CDF always takes on the upper value at

every jump in staircase.
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Example 1 I
: X is a RV such that X (§) = ¢, € € Q). Find Fx(z).
Solution: For x < ¢, {X(§) < x} = ¢, sothat Fix(z) = 0 and for z > ¢, { X (§) <z} =,

so that F'x (z) = 1. (see figure below)

t Fplx)

1 desnemass

4 3
C

Figure 1: CDF for example 1.

Example 2 I
: Toss a coin. Q2 = {H, T'}. Suppose the RV X is such that X(T)=0, X(H)=1.
We know P(T)=q. Find Fx(x).

Solution:

e Forz < 0,{X(§) <z} = ¢, sothat Fx(z) = 0.
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e For0 <z < 1,{X(¢) <z} ={T},sothat Fx(x) = P(T) =q.
e Forz > 1, {X(&) <z} ={H, T} =Q,sothat Fx(x) = 1.

T x)

Figure 2: CDF for example 2.

e X is said to be a continuous-type RV if its distribution function F'x (x) is continuous. In
that case Fix (™) = Fx(x) for all z, therefore, P{X = x} = 0.

e If F'x(x) is constant except for a finite number of jump discontinuities(piece-wise
constant; step-type), then X is said to be a discrete-type RV. If x; is such a discontinuity

point, then
pi = P{X ==} = Fx(%;) — Fx ()
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For above two examples, at a point of discontinuity we get
P{X =c}=Fx(c)—Fx(c)=1-0=1

and
P{X=0}=Fx(0)—Fx(07)=¢—-0=g¢q

Example 3 I
: A fair coin is tossed twice, and let the RV X represent the number of heads.
Find Fx (z).

Solution: In this case Q = {HH,HT,TH, TT}, and

X(HH)=2,X(HT)=1,X(TH)=1,X(TT) =0

< 0,{X({) <z}=0¢— Fx(z)=0
¢ 0<z<1,{X(6) <az)={TTY — Fx(z) = P{TT} = 1/4

e 1 <x<2{X() <z}={IT,HI,TH} — Fx(z) = P{TT,HT,TH} = 3.

x>24{X(¢) <zr}=Q— Fx(x)=1
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Figure 3: CDF for example 3.

We can also have P(X=0)=1/4
P{X=1}=Fx(1) - Fx(17) =
P(X=2)=1/4

A~
|

e e

DO |

X
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Probability Density Function (pdf)

The first derivative of the distribution function F'x (x) is called the probability density
function fx (x) of the RV X. Thus

fx(x) = dixle) ZXx(x)
and

it follows that fx (z) > 0 for all x.

e Discrete RV:if X is a discrete type RV, then its density function has the general form

fx(z) = sz’(s(m — ;)

where x; represent the jump-discontinuity points in Fx (). As Fig. 4 shows, fx ()
represents a collection of positive discrete masses, and it is known as the probability
mass function (pmf) in the discrete case.
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Figure 4: Discrete pmf.

e If X is a continuous type RV, fx (x) will be a continuous function,

Fx(e) = ["_ fx(u)du I

/+OO fx(u)du =1

— 00

e We also obtain by integration

Since F'x (+00) = 1, yields

which justifies its name as the density function.

13
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e we also get (Fig. 5b)

P{ri < X <xo} = Fx(x2) — Fx(x1) = f;f fx(x)dx

Thus the area under fx (x) in the interval (1, x2) represents the probability in the above

equation.
& )
// I
Xe
Y " B
(2) (b)

Figure 5: Continuous pdf.

e Often, RVs are referred by their specific density functions - both in the continuous and

discrete cases - and in what follows we shall list a number of RVs in each category.
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Continuous-type Random Variables

e Normal (Gaussian): X is said to be normal or Gaussian RV, if

2)

This is a bell shaped curve, symmetric around the parameter p, and its distribution
function is given by

R e L

where ®(z) = [*
tabulated.

. \/%7 exp(—y?/2)dy is called standard normal CDF, and is often

Pla<x<n=e(22) e (22F)

O (—%) dy=1- ()

Q)(x) is called Standard Normal complementary CDF, and Q(z) = 1 — ®(«). Since
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Table of the Standard Normal Cumulative Distribution Function ®(z)

O(-z)=1 - O(z)

| 2 d(z) |z dz) | z iz} | =z dz)
| 000 DS000 | 05 06915 [ L0 D413 | LS 09332
i o OoS0se0 | 51 06950 | 100 OLB43R | LSL (W34S
|00 050D | BS52 (59RS | 102 DBdAl 132 09337
008 05120 | 051 079 | 103 0B85 | 153 09T
004 05160 | D54 07054 | 108 08508 | 154 09382
O0% 0A19% | 0S5 0T0ER | 105 0853 | LAF G9and
006  0L52% | DSE 07123 | 106 08554 [ 156 94D
007 05278 | 05T 07157 | 109 OESTT | AT adls
CO0E 053IW | 05RO 0T1%0 | 108 0ASST | 1SR (94
i 00 05358 | 05% 07224 | 109 086210 | 159 add)
000 05398 | Ded 07257 | 100 08642 [ 16D 09452
001 05438 | el 0UT291 | 111 OUEG63 | LG61 DoBdas
002 05478 | 062 07324 | 112 08636 | L6Z  D9474
003 05517 | 0ed 073ST | 113 OAT0E | LEF  DSdEd
0.04 05557 | D64 DU7380 | 1,04 08729 | L4 L9495
015 05506 I 065 W42 | 115 059 | L6S 08505
006 05636 | 066 (7454 1,16 (LE?IO | L&5 0551S
07 05673 | 06T DT4R6 1.17  LEM0 | 167 D325
k1B 05714 ' n6E  W7517 | 11 OERID | LB D8535
D09 0ATSI | 06R 07540 1.1%  0.ERI0 | 169 05345
R0 05T | 070 PER) | 12D 0ER4S | LTO 0BS54
021 05832 | 071 il 121 0ER69 | 1LT1 05564
022 05T | 0T 0762 | 122 0ERER | 172 0DUBSTI
023 080 | 073 LTI ) 123 08907 | 173 0G5R2
24 0548 | 074 D704 | 124 08925 | 174 DESYL
025 0587 | 078 7734 | 125 OEGdd | LTS SR
hEt 0,603 0,76 [ERrid 2 126 .22 1.76 [LRE =1
027 06064 | 077 DTTR4 | 127 O0E880 ) 177 0616
028 06103 | 078 7E2I | 128 08997 | LTE 023
0 06141 0 079 DTESZ | 125 08015 | 17O 08633
0% 06179 | 080 OTERL | 130 09032 | 180 05641
03l 06217 | 08 DRI | 131 09M9 | 181 0564%
032 06255 | 082 7eas | 1317 00065 | 182 0556
033 06203 § 083 07957 | 133 00042 | L83 00654
034 a531 | 0.4 07995 134 09090 | L5 059671
35 (L6368 | 0BS5S  DBOZ3 135 09115 | LAS 059678
036 06406 | 026 DEOSL | 136 09131 | LB6  059GE6
37 06443 | 0BT DLEOTE 137 09147 | LEY 05602
03E (LG40 | 0ES  OEIO6 | 13E 09062 | LER 05605
5% 0ASIT | 0.8 DEIE3 1.3% 09T | LES 05706
4D 06554 | 090 DBISY | 140 09192 | 1.9 05713
4l 06591 | 0.91 DRIEG | 147 09207 | 191 OETIR
42 (L5528 | 0.92 DBEZ1Z | 142 09223 | 192 08716
043 OAEEE | 055 08Z3E | 143 0923 | 193 05732
044 OATO0 | 054 08264 | 144 09251 1.94 05738
045 06736 | 005 08ZRS | 145 09265 | 195 05744
Das  OETTE | 096 08315 | 146 09279 | 196 05750
047 O6RCE | 067 08340 | 147 09282 | 197 05756
D48 O6R4d | 0598 08363 | 148 09305 | 198 0576l
049 06879 | 099 08389 | 149 09319 | 1.9 05767

| Z

d@l: )|

DATT2S
09TTTE
0.5TR31
0.9TREZ
057932
057982
0.52030
0.58077
0.55124
0.5%169
0.58214
0.98257
0.98300
095341
(198382
(L9E4Z2
(L9E4&]
(LB
LA kT
098574
(98610
098045
0. 9867
(98713
(98745
(ARTTE
008209
(.98520
(OEETD
(98500
(.08%9248
(98956
(93083
D010
(95036
095061
[980RE
nasiil
0a%15d
0A%158
(85180
095202
098224
095245
095266
099286
0983035
095324
D.455343
000361

2,50

R T
0LGOE06
055413

0.55430

0.59446
0.594i1
0.99477
0.59452
0.59506
0.59520
0.59534
059547
0595060
059573
L59585
(09508
059460
099621
05652
[EAGTE]
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fx (x) depends on two parameters p and o2, the notation X ~ N (u, 0?) is applied. If

y =2 ~ N(0,1)

3)
Y is called normalized Gaussian RV. Furthermore,
aX +b~ N(ap+b,a’c?)
linear transform of a Gaussian RV is still Gaussian.
e Uniform: X ~ U(a,b),a < b, if
(4)

17
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437 xl¥

Figure 6: pdf of uniformly distributed and exponential distributed RVs.

e Exponential: X ~ ¢(\) if

)
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e Rayleigh X ~ R(0?)

%e—x2/202 T > 0
fx(z) =
0 0.W.

Let X=/X? + X2 where X7 and X5 ~ N(0,0?) and independent.

Then X is Rayleigh distributed.

19
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Discrete-type Random Variables

e Bernoulli: X takes the values of (0,1), and

P X=0)=¢q, P(X=1)=p

e Binomial: X ~ B(n,p)

e Poisson: X ~ P()\)

20
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+PLX = kK) s PLY =

|‘H||| I(‘HH“M,
= 2

(a) Binomial (b) Poisson

L

Figure 7: pmf of Binomial and Poisson distributions.

e Uniform: X takes the values from [1,--- ,n], and

e Geometric: (number of coin toss till first head appear)
PX=k=>0-p""'p, k=1,

where the parameter p € (0, 1) (probability for head appear on each one toss).
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Example of Poisson RV

Example of Poisson Distribution: the probability model of Poisson RV describes phenomena
that occur randomly in time. While the time of each occurrence is completely random, there
is a known average number of occurrences per unit time. For example, the arrival of
information requests at a WWW server, the initiation of telephone call, etc.

For example, calls arrive at random times at a telephone switching office with an average of
A = 0.25 calls/second. The pmf of the number of calls that arrive in a 7" = 2 second interval
s

—0.5

0.5)F. ¢~ k=0,1,2,---
P (k) = S

0 0.W.
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Example of Binomial RV

Example of using Binomial Distribution: To communicate one bit of information reliably, we
transmit the same binary symbol 5 times. Thus, “zero” is transmitted as 00000 and “one” is
transmitted as 11111. The receiver detects the correct information if three or more binary
symbols are received correctly. What is the information error probability P(F), if the binary
symbol error probability 1s ¢ = 0.1?

In this case, we have five trials corresponding to five transmissions. On each trial, the
probability of a success is p = 1 — ¢ = 0.9 (binary symmetric channel). The error event

occurs when the number of successes is strictly less than three:
Let X denote the number of successes out of 5 trials

P(E) = P(X=0) + P(X=1) 4+ P(X=2) = ¢° + 5pq* + 10p*¢> = 0.0081

By increasing the number of transmissions (5 times), the probability of error is reduced from
0.1 to 0.0081.
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Bernoulli Trial Revisited

Bernoulli trial consists of repeated independent and identical experiments each of which has
only two outcomes A or A with P(A) = p and P(A) = q. The probability of exactly k
occurrences of A in n such trials is given by Binomial distribution.

Let
X, = “exact k occurrences 1n n trials” I
(6)
Since the number of occurrences of A in n trials must be an integer k = 0,1, 2, - - - , n, either

Xpor Xqor X, or--- or X,, must occur in such an experiment. Thus
P(XoUuX1U---UX,) =1 (7)

But X;, X; are mutually exclusive. Thus

S
S

P(XoUX U---UX,) =Y P(X})= prgnF (8)
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From the relation

n

(a+b)" = Z " aFprFk

k=0 k

(8) equals (p + q)™ = 1, and it agrees with (7).

For a given n and p what is the most likely value of £? The most probable value of £ is that
number which maximizes in Binomial distribution. To obtain this value, consider the ratio

P.(k—1) nlpk—tgn—k+1 (n—Fk)k! k q

P,k)  (n—k+DI(k—1)! nlpFg»*  n—k+1 p

Thus P, (k) > P,(k—1),iftk(1—p) < (n—k+1)pork < (n+ 1)p. Thus, P,(k) as a
function of k increases until k=k,, where

k=|(n+1)p|

25



Chap 2: Random Variables

Example 4 I
: In a Bernoulli experiment with n trials, find the probability that the number of
occurrences of A is between k; and k».

Solution: with X;,7 =0,1,2,--- ,n as defined in (6), clearly they are mutually exclusive
events. Thus

P = P(“Occurrences of Aarebetween k; and ko) )
]{22 k2 n
= P(Xk1UXk1_|_1U"-UXk2): Z P(Xk): Z I pkqn—k
k=Fk, k=Fk,

Example 5 I
: Suppose 5,000 components are ordered. The probability that a part is
defective equals 0.1. What is the probability that the total number of defective parts does not
exceed 4007

Solution: Let

Y, = “k parts are defective among 5000 components”

26
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using (9), the desired probability is given by

400 400 5000
P(YpUYiU - UYy) = > P(Yi)=) ) (0.1)%(0.9)"*
k=0 k=0

The above equation has too many terms to compute. Clearly, we need a technique to compute

the above term in a more efficient manner.
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Binomial Random Variable Approximations

Let X represent a Binomial RV, then

]{22 k:2
n
Pky <X <ky)= ) P(Xp)= ) prgnk (10)
k:kil k:kl k
n
Since the binomial coefficient = #k'),k, grows quite rapidly with n, it is difficult to

k
compute (10) for large n. In this context, Normal approximation is extremely useful.

Normal Approximation: (Demoivre-Laplace Theorem) Suppose n — oo with p held fixed.
Then for k in the ,/npg neighborhood of np, we can approximate

n k n—k 1 ( (k — np)2)
pqgt R ——exp | ——F—— (11)
k vV 2mnpq 2npq

Thus if k1 and k5 in (10) are within or around the neighborhood of the interval
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(np — \/npq,np + /npq) we can approximate the summation in (10) by an integration as

k 2
1 (z — np) )
Pk <X <k = —exp(—— dx (12)
(k1 2) K V2Tnpq 2npq

/'5122 1 . < y2) d
— X —_—
v A Gy

ki —np ko —np
Ir1 = To =

v 1pPq v pPq

We can express (12) in terms of the normalized integral that has been tabulated extensively.

where

erf(x eV /2 dy = —erf(—x) (13)

M

Py < X <ux) =erf(axs) —erf(xy)
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Example 6 I
: A fair coin is tossed 5,000 times. Find the probability that the number of
heads 1s between 2,475 to 2,525.

Solution: We need P(2475 < X < 2525). Here n is large so that we can use the normal
approximation. In this case p = 1/2, so that np = 2500, and ,/npq ~ 35. Since

np — /npq ~ 2465 and np + /npq ~ 2535, the approximation is valid for k1 = 2475 and
ko = 2525. Thus

x2 1 y2>
Plki < X <k = exp | —= | d 14
(l_ ~ 2) /ml \/% p( 9 Yy ( )
Here
kw5 ky—mp 5
L= \/npq 7 2 npq 7

Since x1 < 0, from Fig. 8, the above probability is given by
5
P(2475 < X < 2525) =erf(xg) —erf(z1) = erf(xs) +erf(|zy1|) = 2erf (?) = 0.516

where we have used table (er f(0.7) = 0.258).
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{ g 1 212
| eﬂ-’

g
1 N2 N2 T
_/ » X i
R4 A %
(al %20 x>0 (b) x¢<0, x>0

Figure 8: pdf of Gaussian approximation.

Find P(x; < X <x2) in Figure 8 using ®(x) or erf(x) where x is a non-negative number
(a). P(x: < X <x2) =erf(x2) — erfixi) = ®(x2) — D(x1)

(b). P(x: < X <x2) =erf(x2) — erf(xi) = erf(x2) + erf(|xi])
= O(x2) — O(x1) ==D(x2) — (1 = ® (|x1]) )= D(x2) + D (Jxz]) — 1
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Chap 2.2 : Statistics of RVs

For a RV X, its pdf fx (x) represents complete information about it. Note that fx ()

represents very detailed information, and quite often it is desirable to characterize the r.v in
terms of its average behavior. In this context, we will introduce two parameters - mean and
variance - that are universally used to represent the overall properties of the RV and its pdf.

Mean (Expected Value) of a RV X is defined as

X=FEX)=["_zfx(z)dx
(15)

If X is a discrete-type RV, then we get

X = E(X):/prié(az—xi)da: (16)
= Zﬂfzpz = Z%P(X = ;)

Mean represents the average (mean) value of the RV in a very large number of trials. For
example
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e X ~ U(a,b) (uniform distribution), then,

b 2 2 _ 2
x 1 =z b —a a—+b
E(X) = dr = e —
(X) /ab—a T a2l 2(b—a) 2

is the midpoint of the interval (a, b).

e X is exponential with parameter A, then

BE(X) :/ Temt/N gy = )\/ ye ™V dy = A (17)
0 A 0

implying that the parameter represents the mean value of the exponential RV.

e X is Poisson with parameter )\, we get

E(X) = ) kP(X=k) =) ke‘Ay =)y ko (18)
k=0 k=0 ) k=1 '
Y = A
e ;(k—l)!_)\e ;i!—)\e et =\

Thus the parameter \ also represents the mean of the Poisson RV.
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e X is binomial, then its mean is given by

E(X) = ) kP(X=k)=

Thus np represents the mean of the binomial RV.

e For the normal RV,

B(X) =

1
V2mo?

1 (0. @)
- / ye V27 dy +

V2mo?

re—(@=m)?/20% g, _

pFg" " (19)

y+ue v/29 gy

VQWJ

€—y2/20'2 ( )
dy = p 20
vV 27 0’2

where the first integral in (20) is zero and the second is 1. Thus the first parameter in
X ~ N(u,o?) is in fact the mean of the Gaussian RV X.
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Mean of a Function of a RV

Given X ~ fx(x), suppose Y = g(X) defines a new RV with pdf fy (y). Then from the
previous discussion, the new RV Y has a mean py given by

py = E(Y) =/ y fy(y)dy 21)

— OO

From above, it appears that to determine (Y ), we need to determine fy (y). However this is
not the case if only F/(Y") is the quantity of interest. Instead, we can obtain E'(Y) as

B(Y) = Blg(x)) = [ Ty () dy = / " o) fx (@) da 22)

— — OO

Discrete case

E(Y)= ng)P(X = ;) (23)

Therefore, fy (y) is not required to evaluate F(Y) for Y = g(X). As an example, we
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determine the mean of Y = X2, where X is a Poisson RV.

E(X?) = i 2P(X = i ke A A e Z /<;2 (24)
k=0 k=0 !

)\H—l

= eAi_O:k(kA— _’\Zz+1
(S £

0 ) o )\m—l—l
_ _ —A A
- (Stmee) = (55 )

= de et +eM) =22+ )

In general, £/(X*) is known as the kth moment of RV X. Thus if X ~ P()), its second
moment is A% 4+ \.
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Variance of a RV

Mean alone cannot be able to truly represent the pdf of any RV. As an example to illustrate
this, considering two Gaussian RVs X; ~ N (0, 1) and X5 ~ N (0, 10). Both of them have
the same mean. However, as Fig. 1 shows, their pdfs are quite different. One is more
concentrated around the mean, whereas the other one has a wider spread. Clearly, we need at

least an additional parameter to measure this spread around the mean!

T700) Valx)

(@ & = () o =10

Figure 9: Two Gaussian RV with different variance.
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For a RV X with mean p, X — p represents the deviation of the RV from its mean. Since this
deviation can be either positive or negative, consider the quantity (X — ), and its average

value E[(X — u)?] represents the average mean square deviation of X around its mean.
Define

ox = E[(X = p)?] >0 (25)

With g(X) = (X — u)? and using (22) we get

0% = / (x — p)* fx(x)dx >0 (26)

— 0

0% is known as the variance of the RV X, and its square root ox = /E(X — p)? is known
as the standard deviation of X . Note that the standard deviation represents the root mean
square spread of the RV X around its mean .
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Expanding variance definition, and using the linearity of the integrals, we get

Var(X) = a?cz/ (2% — 2op + p?) fx (v) dx

— OO

- /OO 22 fx (z)dx — ZM/OO zfx(x)dr + pu?

— OO — OO

= E(X?) -2 =E(X?) - [EX)P=X2-X

e For a Poisson RV, we can obtain that
02 = X2 X = (A2 4N =N\ = )\
Thus for a Poisson RV, mean and variance are both equal to its parameter \.

e The variance of the normal RV N (u, 02) can be obtained as

. 1 (z—1)2 /252
Var(X) = E[(X — p)’] = / (@ 1oy e g

To simplify the above integral, we can make use of the identity

o0 o0 1
/ fx(x)dx = / e~ (@=)?/20% g 4

— oo V2102

27)

(28)
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which gives
/OO e~ (@=m*/20% g0 — /270

Differentiating both sides of above with respect to o, we get

oo 2
/ (z — ) o~ (@—w)?/20% 4. _ Vo

3
oo O

or

> 1 2 /6 2
(.CL’ . M)Q e—(:z:—,u) /20 dr — 0_2
s V2mo?

which represents the Var(X) in (28). Thus for a normal RV N (u, 0?),
Var(X) = o?

therefore the second parameter in N (y, 02) in fact represents the variance. As Fig. 9
shows the larger the o, the larger the spread of the pdf around its mean. Thus as the
variance of a RV tends to zero, it will begin to concentrate more and more around the
mean, ultimately behaving like a constant.

40



Chap 2: Random Variables

Moments

As remarked earlier, in general
m, =X"=EX") n>1 (29)
are known as the moments of the RV X, and
pn = E[(X = p)"]

are known as the central moments of X. Clearly, the mean ;» = m, and the variance

0% = po. Itis easy to relate m,, and p,,. In fact

n

b = BE(X—pm=E[S " | X nrt (30)
k=0 k
= Y| ) EEn e =) e
k=0 k k=0 k

Direct calculation is often a tedious procedure to compute the mean and variance, and in this
context, the notion of the characteristic function can be quite helpful.
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Characteristic Function (CF)

The characteristic function of a RV X is defined as

Dx(w) = B(8Y) = [ /™ fx(x) da

€
— 00

€19

Thus ®x(0) = 1 and |®x (w)| < 1 for all w. For discrete RVs the characteristic function is:

Py(w)=>, "™ P(X =k)
(32)

e if X ~ P(\) for poisson distribution, then its characteristic function is given by

= . \F =, (el jo jo
Px(w) = Z elkwe=A i e ( ek' " e et = ML) (33)
k=0 ' k=0 )

e if X is a binomial RV, its characteristic function is given by

Px(w) =) et . DY . (pe’)fq" " = (pe” +q)" (34)
k=0 k=0
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CF and Moment

To illustrate the usefulness of the characteristic function of a RV in computing its moments,
first it is necessary to derive the relationship between them.

: wX >
o) — B -£ |y Y ] >t 35)
k=0 k=0
E(X? E(Xk
= 1+jE(X)w—|—j2%w2—|—---+jk (k' )wk—i----

where we have used e* = > o A /k!. Taking the first derivative of (35) with respect to w,
and letting it to be equal to zero, we get

6(13)((&)) ) 1 8<I>X(w)
—— |w=0 = JE(X EFX)=-——|,= 36
S om0 =JB(X) or B(X) = 5 T2 (36)
Similarly, the second derivative of (35) gives
1 82<I>X(w)
2\
E(X )—j—2 52 lw=0 (37)
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and repeating this procedure k times, we obtain the kth moment of X to be

1 8k P X (w )
jk: Owk
We can use (35)-(37) to compute the mean, variance and other higher order moments of any
RV X.

o if X ~ P()), then from (33),

BE(XF) = |w=0 k>1 (38)

a@ Jw .

X(w) _ 6_)\€>\€ )\jejw (39)

ow
so that from (36)

E(X)=\
which agrees with our earlier derivation in (18). Differentiating (39) one more time, we
get
82(D Jw . jw .
X2(W) _ 6—)\ <€>\e ()\] ejw)Z 4+ €>\e )\]2 €]w> (40)
ow

so that from (37),
B(X?) =X+ )

which again agrees with results in (24). Notice that compared to the tedious calculations
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in (18) and (24), the efforts involved by using CF are very minimal.

e We can use the characteristic function of the binomial RV B(n, p) in (34) to obtain its
variance. Direct differentiation gives

8<I>§< W) jnp e’ (pe? +q)" (41)
w

so that from (36), F/(X) = np, which is the same as previous calculation.
One more differentiation of (41) yields

82(13 X (w) .

o2 7

and using (37), we obtain the second moment of the binomial r.v to be

np [’ (pe? + )"+ (n = 1)pe* (pe’ + q)" 7] (42)
E(X*)=np(1+(n—1)p) =n"p’ +npgq
Therefore, we obtain the variance of the binomial r.v to be

ox = E(2®) — [E(X)]* = n®*p* + npq —n*p” =npg

e To obtain the characteristic function of the Gaussian r.v, we can make use of the
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definition. Thus if X ~ N (u,c?) then

oC . ]. 2 2
Ox(w) = eJW?e_(w—“) 1297 de (letz — p=y) (43)
—00 o
— pihw eIwy o—y*/20” dy = eI ~ o /20 y—j20%w) dy

V2mo?

(Lety — jazw —z sothaty =z + jo*w)

V2mo?

_ 6j,uw —(z4+jo?w)(z—jo3w) /207 dz

\V2mo?

_ 72792 2
_ e],uwe o2w e /20 dz — e(j,uw o2w?/2)

2/2 /
V2mo? J

Notice that the characteristic function of a Gaussian r.v itself has the “Gaussian’ bell
shape. Thus if X ~ N(0,0?), then

1 2 /5 2 2 2
fX(x) _ e~ /20 (I)X(CU) — 0w /2

V2mo?

46



Chap 2: Random Variables

" o ke P & —siwrn

(a) (b)

Figure 10: Gaussian pdf and CF.

From Fig. 10, the reverse roles of 0% in fx (z) and ® x (w) are noteworthy (02, vs.1/0?).
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Chebychev Inequality

We conclude this section with a bound that estimates the dispersion of the r.v beyond a

2

certain interval centered around its mean. Since 0“ measures the dispersion of the RV X

2

around its mean i, we expect this bound to depend on o as well.

Consider an interval of width 2e symmetrically centered around its mean p shown as in Fig.
11. What is the probability that X falls outside this interval? We need

P(X —pf =€) =7 (44)

To compute this probability, we can start with the definition of o2

a

C (oo e

Figure 11: Chebyshev inequality.
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(0. @)

s = E(X-pP)= [

— 0

@ x@dez [ - de @

|z—p|>e

> /x_pe e fy (z) dr = 62/ Fy(z)de = EP(|IX — p| > ¢

|z—p|>e

From (45), we obtain the desired probability to be

P(X —pl>e) <%
(46)

(46) 1s known as the chebychev inequality. Interestingly, to compute the above probability
bound, the knowledge of fx () is not necessary. We only need o2, the variance of the RV. In
particular with € = ko in (46) we obtain
1
P(|X —pul > ko) < 2 47)
Thus with k£ = 3, we get the probability of X being outside the 30 interval around its mean to

be 0.111 for any RV. Obviously this cannot be a tight bound as it includes all RVs. For
example, in the case of a Gaussian RV, from Table (u = 0,0 = 1):

P(|X — u| > 30) = 0.0027
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which is much tighter than that given by (47). Chebychev inequality always underestimates
the exact probability.

Example 7: I
If the height X of a randomly chosen adult has expected value E[X]| = 5.5

feet and standard deviation o x = 1 foot, use the Chebyshev inequality to find an upper
bound on P(X > 11)

Solution: Since X is nonnegative, the probability that X > 11 can be written as
PIX>11]=P|X —ux > 11 — ux]| = P[|X — ux| > 5.5]

Now we use the Chebyshev inequality to obtain

Var[X]
5.52

We can see that the Chebyshev inequality is a loose bound. In fact, P[X > 11] is orders of

P[X >11] = P[|X — ux| > 5.5 <

= 0.033 ~ 1/30

magnitude lower than 1/30. Otherwise, we would expect often to see a person over 11 feet
tall in a group of 30 or more people!
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Example 8: I
If X is uniformly distributed over the interval (0, 10), then, as E[X]| = 5,

Var(X)=25/3, it follows from Chebyshev’s inequality that

2 25 1
= —— =~ 0.52

o
Pl X —-5>4) < —=
( | )—62 3 16

whereas the exact result is
P(|X —5|>4)=0.20

Thus, although Chebyshev’s inequality is correct, the upper bound that it provides is not
particularly close to the actual probability.

Similarly, if X is a normal random variable with mean p and variance o2, Chebyshev’s
inequlity states that

1
P(|X = p[>20) < 7
whereas the actual probability is given by

P(|X —p|>20)=P (\X RN 2) = 21 — ®(2)] ~ 0.0456

o

Chebyshev’s inequality is often used as a theoretical tool in providing results.
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Functions of a Random Variable

Let X be aRV, and suppose g(x) is a function of the variable
x. Define

Y =g(X)
Y is a derived random variable. what is its CDF Fy (y), pdf fy (y)?

Example9'
Y =aX +0b

Solution: Suppose a > 0

Fy<y>=P<Y3y>=P<ax+bsy>=P(Xsy_b) =Fx(y_b)

and

On the other hand if a < 0, then

FY(y)_P(YS?J)—P(aX+b§y)—p(X>yb) :1_FX(yb)
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and hence

Therefore, we obtain (for all a)

Example 10.
Y = X?

Fy(y) = P(Y <y) = P(X* <y) (48)
If y < 0, then the event { X% < y} = ¢, and hence
Fy(y)=0 y<0

For iy > 0, from Fig. 12, the event {Y < y} = {X? < y} is equivalent to {71 < X < x5}.
Hence,

Fy(y) = P(331 < X SLUQ) :Fx(xg)—Fx(ZCl) (49)
= Fx(Vy)—Fx(=vy) y>0
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By direct differentiation, we get

7= (VB) + fx ()] y >0

fy(y) = (50)
0 0.W.
If fx (x) represents an even function, then (50) reduces to
1
= — U 51
Iy (y) NG fx(Vy) U(y) (51)

Figure 12: Example Y = X2,
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In particular if X ~ N (0, 1), so that

= —a'/2 52
xr) = e
and substituting this into (50) or (51), we obtain the pdf of Y = X2 to be
1
= —v/2y 53
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General Approach

As a general approach, given Y = ¢(X), first sketch the graph y = g(), and determine the
range space of y. Suppose a < y < b is the range space of y = g(x).

fory < a, Fy(y) =0
fory > b, Fy(y) =1
Fy (y) can be nonzero only ina < y < b.

Next, determine whether there are discontinuities in the range space of y. If so evaluate
P(Y (&) = y;) at these discontinuities.

In the continuous region of y, use the basic approach

Fy(y) = P(g(X) <)

and determine appropriate events in terms of the RV X for every y. Finally, we must
have Fy (y) for —oo < y < +00 and obtain

_ dFy (y)

fy(y) 0y

n a<y<b
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However, if Y = ¢g(X) is a continuous function, it is easy to establish a direct procedure to
obtain fy (y).

Consider a specific y on the y-axis, and a positive increment Ay as
shown in Fig. 13.

S
Figure 13: Y = g(z).
fy (y) for Y = g(X), where g(-) is of continuous type. we can write
y+Ay
Ply<Y<y+By)= [ fr(wdu=fr(y)- Ay (54)
y
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But the event P{y < Y <y + Ay} can be expressed in terms of X (£) as well. To see this,
referring back to Fig. 13, we notice that the equation y = g(x) has three solutions x1, 3, T3
(for the specific y chosen there). As a result when {y < Y <y + Ay}, the RV X could be in
any one of the three mutually exclusive intervals

{ry < X <z + Az} { XA <X<Xx2} {r3< X <ux3+ Azs}

Hence the probability of the event in (54) is the sum of the probability of the above three
events, 1.€.,

Ply<Y <y+Ay} = Pl <X <z +Ar}+P{ x2+Ax2<X<x2 }
—|—P{ZL‘3 < X <ux3+ A[Eg} (55)

For small Ay, Ax;, making use of the approximation in (54), we get
fr(W)Ay = fx(@1)Az1 + fx(22)(—Ax2) + fx(23)Azs (56)

In this case, Ax; > 0, Azo < 0 and Axz > 0 so that (56) can be rewritten as

) = 3 a5 57)
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and as Ay — 0, (57) can be expressed as
1
y) = ———fx (%)
)= 2 fagja X @) = 2

The summation index ¢ in (58) depends on ¥, and for every y the equation y = g(x;) must be

fx (x;) (58)
|g

solved to obtain the total number of solutions at every ¥, and the actual solutions z1, x2, - - -
all in terms of y.
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For example, if Y = X2, then forally > 0,2, = —/y and 21 = \/y represent the two
solutions for each y. Notice that the solutions x; are all in terms of y so that the right side of
(58) is only a function of y. Referring back to the example Y = X2 here for each y > 0, there

are two solutions given by x1 = —,/y and x2 = +,/y (fy (y) = 0 for y < 0 ). Moreover
d d
% = 2z so that % . =2y

and using (58) we get

fy(y) = (59)

which agrees with earlier result.

Figure 14: Y = X2,
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Example 11.
:LetY =1/X, find fy(y).

Solution: Here for every y, x1 = 1/y is the only solution, and

dy 1 dy 1 5
— = —— sothat |-= = =y
dx x? d|,_,  1/y?
and substituting this into (58), we obtain
1 1
frin =t (1), (60)
Y (
In particular, suppose X is a Cauchy r.v with parameter « so that
Fr(a) = 2T <a<
x)=—F"-75 —00<zx<00
X a2 + 12

In that case from (60), Y = 1/X has the pdf

_ Lo __Wew o
MU= T T W TS
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Functions of A Discrete-type RV

Suppose X is a discrete-type RV with
P(X:LUz):pza LT = T1,X2," " y L4, "" ,

and Y = g(X). Clearly Y is also of discrete-type, and when = = z;,y; = g(x;), and for

those v,
Example 12.
: Suppose X ~ P()), so that
)\k
P(X =k) :e_Aﬁ k=0,1,2,--

Define Y = X2 4 1. Find the pmf of Y.
Solution: X takes the values 0,1,2,--- | k,---, so that Y only takes the values
1,2,5,- - k2+1,---,

PY =k +4+1)=P(X =k)
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so that for j = k2 + 1

j:172757"'7k2+17'”
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