Activation Records
The storage (for formals, local variables, function results etc.) needed for execution of a
subprogram is organized as an activation record.

An Activation Record for “Simple” Subprograms

Local variables

Parameters

Returm address

Activation Record for a Language with Stack-Dynamic Local Variables

Local variables

Parameters T

Dynamic link Stack top

Returm address

Dynamic link. points to the top of an activation record of the caller

Activation Record for Recursion

Functional value

Local Variables

Parameter

Dynamic link

Returm address

Allocation of activation records can be:

* on the heap

— used in Modula-3, LISP, Scheme, ...

* on the stack

—used in C, C++, Java, C#, Pascal, Ada, ...

Subprogram in C

» the lifetime of local variables is contained within one activation (except for static
variables)
* locals can be allocated at activation time and deallocated when the activation ends

e activation records can be allocated on a stack

Memory layout for C programs:

static variables
globals

stack

heap

Shows the Activation Record during the first and second execution of printx():

#include <stdio.h>
int X = 4;

void printx(void) {printf("%d\n", x);}

void foo(int y) {
int x = 4;
X=X+X* Yy,
printx();

by

void main() {
intz=3;
printx();
foo(z);

¥

A

globals x—4
printx] Dynamic link
Return address
@i Local vanable: Z: 3
S Dynamic link
globals x=4 b
1intx Dynamic link
Return address
fgg| Local vanables: x=4
Parameters: v=3
Dynamic link
Return address
Local vanable: Z= 3
main Dynamic link

Nested Subprograms

-Some non-C-based static-scoped languages (e.g., Fortran 95, Ada, JavaScript)
use stack-dynamic local variables and allow subprograms to be nested
- All variables that can be non-locally accessed reside in some activation record
instance of enclosing scopes in the stack
- A reference to a non-locally variable in a static-scoped language with nested
subprograms requires a two step access process:

1.Find the correct activation record instance

2.Determine the correct offset within that activation record instance

Static Scoping of Nested subprograms
. In this approach, a new pointer, called a static link, is added to the
activation record.

Local Variables

Parameter

Dynamic link

Static link

Returm address

- The static link in an activation record instance for subprogram A points to the
bottom of the activation record instances of A's static parent

program MAIN_2; //Example Pascal Program
var X : iInteger;

procedure BIGSUB;
var A, B, C : iInteger;
procedure SUB1;

var A, D : iInteger;
begin { SUB1 }

A:=B+C; <o 1

end; { SUB1 }
procedure SUB2(X : i1nteger);
var B, E : integer;
procedure SUB3;
var C, E : integer;
begin { SUB3 }
SUB1;

E :=B + Al <—————————v 2

end; { SUB3 }
begin { SUB2 }
SUB3;

A:=D+E; <= 3

end; { SUB2 }
begin { BIGSUB }
SUB2(7);
end; { BIGSUB }
begin
BIGSUB;
end; { MAIN_2 }

- Call sequence for MAIN_2 ?

Activation Records at Position 1

ARI for
sSsUB1

ARI for
SUB3

ARI for
suUuB2

ARI for
BIGSUB

ARI for
MAIN_ 2

N

A

Local

Local

Dynamic link -1
Static link -
Return (to SUB3)
Local E
Local C
Dynamic link -
Static link -
Return (to suB2)
Local _‘E
Local B
Parameter 7) 4
Dynamic link -
Static link - —
Return (to BIGSUB) >
Local c
Local B
Local n

Dynamic link

Static link

Return (to MAIN_2)

Local

Scoooooccoooooodscob

L L L L L L Ty

N e e e R R M A R R Em Em A Em M Em

- A static chain is a chain of static links that connects certain activation record

instances
- The static chain from an activation record instance connects it to all of its static

ancestors

Sub3 Sub2 BigSub — ~ Main2

Finding the correct activity record instance of a nonlocal variable using static links is

relatively straightforward.

Point 1:

To access nonlocal variable B? C?

After Sub1 complete its execution, the activation record instance for Sub1 is removed from
the stack, and control return to Sub3.

Point 2: to access E? B? A?

Blocks

-Blocks are user-specified local scopes for variables. It is legal to declare variables
within blocks contained within other blocks.

- An example in C

void SquareTable(int lower, int upper){
int n;
for (n = lower; n <= upper; n++) {
int square;
square = n * n;
printf("%8d%8d\n", n, square); }
}

(a) When does square get allocated and deallocated?
The memory is allocated and deallocated on each pass through the inner block.

(b) How should the memory diagram be drawn?

Implementing Blocks

1.Treat blocks as parameter-less subprograms that are always called from the same

location.

— Every block has an activation record; an instance is created every time the block is

executed
void main(){

intx,y, z;
while (... {

inta, b, c;

Figure 10.10

Block variable storage
when blocks are not
treated as
parameterless
procedures

Block
variables

Locals

2. Since the maximum storage
required for a block can be
statically determined, this amount
of space can be allocated after the
local variables in the activation
record

=<

<

AV

band g

aand £

=

Y

=

Activation
record instance
for
main

10

Implementing Dynamic Scoping

One way that local variables and non-local references can be
implemented in a dynamic-scoped language:

- Deep Access: non-local references are found by searching the activation record

instances on the dynamic chain

void sub3(){
int X, vy;
X = u+v;}

void sub2(){
intw, x;}

void sub1(){
int v, w;}

void main(){
intv, u;}

Figure 10.11

Stack contents for a
dynamic-scoped
program

main calls sub1
subl calls subl
subl calls sub2
sub?2 calls sub3

Access U in sub3?
AcCCcess Vv in sub3?
Access X in sub3?

ARI
for sub3

ARI
for sub2

ARI
subl

f':’r subl

ARI for

main

|
|
|

{

Local

Local

Dynamic link

Return (to sub2)

Local

Local

Dynamic link

Return (to subl)

Local

Local

eeh) e wh) x o

Dynamic link

Return (to subl)

Local

Local

Dynamic link

-

Return (to main)

Local

Local

< c'u 4 S:Jk

ARI = activation record instance

11

Show the stack with all activation record instances, including static and dynamic chains, when execution

reaches position 1 in the following skeletal program.

program MAIN;
var X : integer;
procedure Bigsub is
procedure A is
procedure B is

begin ---of B
end; - of B
procedure C is
begin ---of C
end; ---of C
begin --- of A
end; ---of A
begin ---- of Bigsub
end --- of Bigsub
begin
BIGSUB;

end; { MAIN }

dynamic link

ari for B static link

return (to C)

dynamic link

ari for C static link

return (to A)

dynamic link

ari for A static link

return (to BIGSUB)

dynamic link

ari for static link
BIGSUB return
stack

ari: activation record instances

Show the stack with all activation record instances when execution reaches position 1

program MAIN;
var X : integer;
procedure Bigsub is
procedure A(flag : Boolean) is
procedure B is
begin ---of B
A(false)
end; ----of B
begin ---of A
if flag
then B;
else C;
end; ---of A
procedure C is
procedual D is

end; ---of D
D;

end; ----- of C

begin ---- of Bigsub
A(true) ;

end --- of Bigsub
begin
BIGSUB;

end; { MAIN }

ari forD

ari forC

ari for A

ari for B

ari for A

ari for
BIGSUB

dynamic link

static link

return (to C)

dynamic link

static link

return (to A)

parameter (flag)

dynamic link

static link

return (to B)

dynamic link

static link

return (to A)

parameter (flag)

dynamic link

static link

return (BIGSUB)

dynamic link

static link

return (to caller)

stack

13

Chapter 11 Abstract Data Types and Encapsulation Constructs
e Abstract Data Type
o lIterators of Collection ADT
e Parameterized Abstract Data Types
e Encapsulation Constructs
e Naming Encapsulations

Abstract Data Types

Abstract data type (ADT) is a set of data and the set of operations that can be performed
on the data.

Built-in ADTs

boolean

— Values: true and false

— Operations: and, or, not, etc.

integer

— Values: Whole numbers between MIN and MAX values
— Operations: add, subtract, multiply, divide, etc.

14

arrays
— Values: Homogeneous elements, i.e., array of X. ..
— Operations: initialize, store, retrieve, copy, etc.

User-defined ADTs invokes operations on the data
Allows us to extend the programming language with new data types.
stack, symbol table, account, polynomial, matrix...

- The choice of what ADT to create depends on the application

Compiler writing: tables, stacks, ...
Banking: accounts, customers, ...
Mathematical computing: matrices, sets, polynomials, ...

- The choice of operations of the ADT depends on how you want to manipulate the

data
Bank accounts: open, close, make a deposit, make a withdrawal, check the balance,

15

- Repesentation of data: the data as represented in the computer

® Example: A "list” information structure, to give a few of
many possible data structures:

® could be an array
a|b |c|d

® or could be a linked list

— = ——m b — s —
® Each of these is an representation or implementation of
the abstraction.

 Array Is better for:
—Accessing a randomly desired element

e Linked list is better at:
—Inserting

—Deleting

—Dynamic resizing

16

- Using ADT, we don’t need to care about the representation of objects (linked list,

array, ets), we want to hide all the details about how dates are represented and
access the object through the methods.

Call operations —p* Add ()
n/ P Set () Data
Progra o)
Find () Representation
Result Display() of Data

The advantages of ADT

- extend the programming language with new data type.
- valuable during problem modification and maintenance.

17

ADT for Stack and Queue

Stack
push: add info to the data structure
pop: remove the info MOST recently added
initialize, test if empty

Queue
put: add info to the data structure
get: remove the info LEAST recently added
initialize, test if empty

Could use EITHER array or "linked list™ to implement EITHER stack or queue.

18

Iterator
A generalization of the iteration mechanism available in most programming languages.

e Provide a way to access each item in a collection ADT (Arraylist, List, Tree, etc)
The code of iterator contains a looping structure like follows,

for each item i produced by iterator A
do perform some action on i

To iterate through List L:
Import java.util.*
Iterator it = L.iterator(); //create the Iterator
while (it.hasNext()) { // see if finished
Object ob = it.next(); // get the next item

19

Iterators support abstraction by hiding how elements are produced.

e The user don’t need to know the data type, and the collection type, vector, array or
list, the user only choose a suitable iterator to access every element of the collection.

e [terator is defined as an interface in Java, it returns a generator object.

e The generator’s type is a subtype of Iterator. Different kinds of generator may use

the same Iterator interface but different generators and different hasNext() and
next() methods.

public interface Iterator {
public boolean hasNext ();
/I Returns true if there are no more elements else returns false

public Object next () throws NoSuchElementException;

I/ If there are more results to yield, returns. The next result and modifies the state of
this to record the yield. Otherwise, throws NoSuchElementException

20

Specifying lterators

public class IntSet {
public Iterator elements ()

// Returns a generator that will produce all elements of this (as Integers), each exactly once,
Il in arbitrary order.

Using lIterators

public static int setSum (IntSet s) {
Iterator g = s.elements ();
int sum = 0;
while (g.hasNext())
sum = sum + ((Integer) g.next()) . intValue;
return sum;}

9

|

21

public static int max (Iterator g) throws EmptyException, NullPointerException {
/if g is null throw NullPointerException; if g is empty, throws EmptyException; else consumes all
element of g and returns the largest int in g.
try {

int m= ((Integer)g.next()).intValue();

while (g.hasNext()) {

int x= g.next();
if (m<x) m=x;;}

return m; }
Catch (NoSuchElementException e)

{ throw new EmptyException (“Comp.max); }}}

22

Inner class in Java

(1) In Java, an inner class is a class nested within another class:

class C {
class D {
by

¥

(2) Objects of the inner class are attached to objects of the outer class

You can't have an instance of the inner class without an instance to the outer one. This reference will
keep the outer class instance around as long as the inner class instance exists. An instance of an inner
class can only live attached to an instance of the outer class:

Cc=newC()
D d =c.new D()

(3) The inner class is considered part of the implementation of the outer class, it has access to
all of the outer class's instance variables and methods.

23

Implementing lterators

To implement an iterator, one needs to write its code and define a class for its generator.
e An lterator’s implementation requires a class for the associated generator
e The generator class is a static inner class: it is nested inside the class containing the iterator and
can access the private information of its containing class
e The generator class defines a subtype of the lterator interface

Public class IntSet {
private Vector els;
public Iterator elements () { return new IntGenerator (this); }
/l inner class
private static class IntGenerator implements lterator {
private IntSet s; // the IntSet being iterated
private int n; // index of the next element to consider

public boolean hasNext () { return n <els.size(); }

IntGenerator (IntSet is) { public Object next () throws NoSuchElementException {

S =15, if (n<s.els.size()) {
n=0; Integer result = s.els.get(n);
} n++;
return result;
} else

throw NoSuchElementException(“IntSet.elements”);}
} /[s can access the private variable els from its outer class.

24

	Activation Records
	An Activation Record for “Simple” Subprograms
	Subprogram in C
	• activation records can be allocated on a stack
	Sub3 Sub2 BigSub Main2

	Blocks
	Built-in ADTs
	User-defined ADTs invokes operations on the data

	Using Iterators
	Inner class in Java
	Implementing Iterators
	Public class IntSet {

