Assembly language programming using
modules

Ken Clowes (kclowes@ee.ryerson.ca)

November 22, 2000

Contents
1 Introduction 1
2 A simple example 2
2.1 Exercise 3
2.2 Some nitty gritty details 3
2.3 What modules and subroutines are available? 3
3 A second example (myName.asm) 3
3.1 Exercise 5
4 Modifying a module 5
5 Creating a module 5
A Object code and linking 5

1 Introduction

This tutorial demonstrates how to use, modify and create modules in as-
sembly language programming. The assembly language used is the DECUS
variant of the 6811 assembly language used in ELE538. The reader should

DRAFT November 22, 2000

2 A simple example

also have some familiarity with the assembly language coding standards|[Clo]
that are used here.
Before beginning, we briefly define what we mean by a module:

A module is object code and documentation. The object code
provides useful subroutines that can be used by programmers to
simplify their own programs. The way the module and its routines
are implemented is of no concern to the user of the module. (In-
deed, the implementation language need not even be assembler.)
All the user needs is clear documentation about the contents of
the module. The routines can then be used and executable code
produced by linking the application program with the module(s)
used.

You can obtain the source code and try out the examples here by copying
the file "kclowes/public/modEx.tgz into a directory and unpacking the files
with the command:

zcat modEx.tgz | tar xvf -

2 A simple example

As a simple example, consider the first program that should be written in
any language—getting the computer to say “Hello world”.

If there are no existing subroutines or modules, this is a complex process
at the assembly language level. The programmer would have to know the
details of the serial communication device being used, test the status register
and wait until it was empty before sending each character, loop through the
characters in the string and so forth.

However, if there is an existing subroutine called putstr that sends each
character in a null-terminated string whose starting address is specified by
register IX to the serial port, the program becomes trivial as illustrated by
the following code:

.area _CODE
main: :
1dx #hi ; IX = address of "Hello world!" string

DRAFT November 22, 2000

2.1 Exercise

jsr putstr
swi

.area DATA
hi: .asciz "Hello world!"

Using a module (i.e. object code) instead of cutting and pasting the
source code for an existing subroutine offers the advantages of encapsulation
and information hiding.

2.1 Exercise

To ensure that this works, type make hello in the directory where you un-
packed the examples. You can then download the hello.s19 file to the 6811
and run it with the Buffalo monitor command go 6200.

Edit the source code (file: hello.asm) to (for example) change the string
or print it out twice and check that your version of “hello” works.

2.2 Some nitty gritty details

Notice that the assembly code is divided into two areas (with the .area
directives.) Data goes into the eponymously named segment and the actual
instructions go into the _CODE segment. The starting addresses of these
segments are assigned at link time (by default, we start the DATA segment at
0x6000 and the _CODE segment at 0x6200). We suggest you follow the same
conventions. The concepts of segments or areas and the linking process are
described in greater detail in Appendix A.

2.3 What modules and subroutines are available?

Look at the on-line documentation. on-line documentation on the ELE 538
home page.
3 A second example (myName.asm)

In this example, we print a greeting prompting the user for their name. We
then calculate the number of characters in the name and print a reply. The
following modules and subroutines are used:

DRAFT November 22, 2000

3 A second example (myName.asm)

stdio module Uses:

putstr: To output a null-terminated string.

getline: Reads a line (terminated by hitting return or enter).
stdlib Uses:

atoi_ul6: Converts a 16-bit unsigned integer to a string of ascii digits
of the number’s decimal representation.

strings Uses:

strlen: Determines the number of characters (length) of a string.

.area DATA
greeting: .asciz "Enter your name: "
replyStart: .ascii "Hi "
me: .ds 60
replyMid: .ascii ". (Your name has "
len: .ds 6
replyEnd: .asciz " characters in it.)\n"
; Actual code
.area _CODE
main::
ldx #greeting
jsr putstr
ldx #me

jsr getline
jsr strlen
clra

1dx #len

jsr itoa_ul6
ldx #replyStart
jsr putstr
1dx #replyMid
jsr putstr
1ldx #replyEnd
jsr putstr
swi

DRAFT November 22, 2000

3.1 Exercise 5

3.1 Exercise

Write a program that prompts the user to enter two numbers (one per line),
calculate the sum and print the result. Your program should work for both
positive and negative numbers.

4 Modifying a module
5 Creating a module

A Object code and linking

;file foo.asm
.area F0O
.asciz "F0OO ONE"

.area BAR
.asciz "BAR ONE"

;file bar.asm
.area F0O
.asciz "F0OO TwO"

.area BAR
.asciz "BAR TWO"

/usr/local/gnu6811/bin/as6811 foo.asm
/usr/local/gnu6811/bin/as6811 bar.asm

/usr/local/gnu6811/bin/aslink -bF00=0x6000 -bBAR=0x7000 -o foobar foo.0 bar.o

/usr/local/gnu6811/bin/aslink -bF00=0x6000 -bBAR=0x7000 -o barfoo bar.o foo.o

vt6811 foobar.sl19

DRAFT November 22, 2000

REFERENCES

>md 6000 600f

6000 46 4F 4F 20 4F 4E 45 00 46 4F 4F 20 54 57 4F 00 FOO ONE FOO TWwO
>

vt6811 barfoo.s19
>md 6000 600F

6000 46 4F 4F 20 54 57 4F 00 46 4F 4F 20 4F 4E 45 00 FOO TWO FOO ONE
>
md 7000 700F

7000 42 41 52 20 54 57 4F 00 42 41 52 20 4F 4E 45 00 BAR TWO BAR ONE
>

References

[Clo] Ken Clowes. Assembly Language Coding Standards.
file: “kclowes/public/CodingStds/CodingStdAsm.ps

DRAFT November 22, 2000

