
COE538 Microprocessor Systems
Lab 5: Robot Roaming Program1

Peter Hiscocks
Department of Electrical and Computer Engineering

Ryerson University
phiscock@ee.ryerson.ca

Contents
1 Overview 1

2 A Robot Control Program 2
2.1 The State Machine . 2
2.2 The Robot State Diagram . 3
2.3 State Machine Structure: First Attempt . 4
2.4 State Machine Structure: Using a Dispatcher . 5
2.5 The State Dispatcher in Assembly Language . 6
2.6 The State Routines in Assembly Language . 9
2.7 Organization of the State Machine Program . 10
2.8 A Strategy for Building the Robot Roaming Program . 12
2.9 Bench Testing . 12
2.10 Operating the eebot . 12

3 The Assignment 13

4 Appendix A 14

5 References 18

List of Figures
1 Robot State Machine . 3
2 Robot State Controller: First Attempt . 5
3 Dispatcher Concept . 6
4 State Machine Pseudocode . 7
5 State Dispatcher in Assembly Language . 8
6 START State Routine . 9
7 Initializing the FORWARD State . 10
8 Forward State Handler . 11
9 Realistic Robot State Machine . 14

1 Overview
The objective of this programming exercise is to design, install and test a program to guide the eebot robot in a
simple roaming pattern.

1This lab was adapted to be used with the HCS12 microcontroller by V. Geurkov.

1

Robot roaming behavior can be obtained with a very simple set of rules. Initially, the robot drives in a straight
line. If it doesn’t encounter any obstacles, after a certain interval it stops, executes a turn, and then runs again in
a straight line.

If the robot encounters an obstacle, it executes a back-and-turn manoeuvre. It drives straight backward for a
fixed interval and then briefly disables one motor to cause the vehicle heading to change. Then it resumes driving
straight forward again.

This behavior must be translated into a working control program.

2 A Robot Control Program
A frontal attack on the robot control program would be to

• translate the description into pseudocode, using structured decision statements such as If...Then...Else,
While...Do or Repeat...Until.

• further convert the pseudocode into assembly language.

However, the robot control program is complicated, with lots of decision branches. As a result, the code has
the potential to become difficult to understand, and therefore difficult to debug. It is especially difficult to add
features to this type of program. For example, what does the robot do if it encounters a disturbance while backing
away from a previous obstacle? Adding code to take care of this situation or others like it can introduce bugs that
are difficult to eradicate.

There is a better approach: the state machine.

2.1 The State Machine
The basic idea is this:

• The behavior of the robot is treated as a series of states – DRIVING_FORWARD, DRIVING_BACKWARD,
BACKING_TURN, FORWARD_TURN and ALL_STOP. At any given time, the robot is in one of these states.

• The conditions that cause the robot to change from one state to another must be defined. These are known
as the transition conditions.

• The machine starts in a particular state. When the appropriate transition condition occurs, the machine
moves to a new state.

There are a number of advantages in structuring the program as a state machine:

• Some variable MACHINE_STATE can be made to contain the current state of the machine. This can be
displayed to monitor what the machine is actually doing (as opposed to what we think it should be doing!)
Being able to determine the current state of the machine is an invaluable debugging tool, especially in
complicated machines.

• When adding new features to the program, new states and transition conditions can be added without intro-
ducing bugs in other parts of the program.

• It is possible to encode the state diagram into a data structure known as a state table. When the state
machine is encoded into a state table, it is straightforward to check for improper behavior. The table is
a 2 dimensional matrix of possible states in one dimension versus possible input conditions in the other
dimension. The action of the state machine is entered at each row-column intersection. If there is a blank
entry, then the behavior of the machine in that state and transition condition, is undefined. For mission
critical applications, this would identify a possible fault situation that must be rectified.

We will not use a table driven approach, but for the curious the table driven approach is described in the
References, section 5 on page 18.

2

The state machine can be used in various ways. At its most basic, it can be used as design tool to identify in
a very systematic way what should be the behavior of the device. Then the state diagram could be translated into
structured pseudocode.

State machines are useful for handling a wide variety of programming applications, not just the operation of
robots. They are particularly useful in handling input signals from a human-computer interface. They are also the
key component in parsing commands strings, as in a software interpreter.

2.2 The Robot State Diagram
A state diagram for the robot behavior is shown in figure 1 on page 3. Each circle represents a possible state of the

START 1

START 2

FORWARD

ALL

REVERSE

STOP

FORWARD

TURN

REVERSE

TURN

FWD_BUMP

FWD_BUMP

FWD_BUMP

REAR_BUMP

T>Treverse T>Trevturn

T>Tfwd

T>Tfwdturn

REAR_BUMP

FWD_BUMP

T>Tfwdturn

T>Tfwd

T>Trevturn

T>Treverse

Rear Bumper actuated

Front Bumper actuated

Time for forward turn during roaming

Roaming time before new direction

Time backing and turning

Backup time after bump

Figure 1: Robot State Machine

robot. The labels next to the directed arcs represent transition conditions that cause the robot to move to another
state. For example, the transition condition T > Tend means when the current time T exceeds the ending time
Tend, make the transition to the next state.

The default condition is to not change states. If the transition condition does not occur, the state machine stays
in its current state. Some people like to show a transition looping back into the state, but that’s only necessary if
there is another transition condition to consider.

3

Roaming Behavior

When roaming, the the robot proceeds in a straight line for a few seconds, then turns to a new vehicle direction,
and then resumes moving in a straight line.

• The machine begins in the START 1 state. When the operator actuates the FRONT BUMPER, the state
machine unconditionally moves into the state START 2. When the operate releases the FRONT BUMPER,
the machine moves into the FORWARD state. This activates both the motors and the robot begins to move
forward in an approximately straight line.

Why do we need the state START 2? Without it, the state machine will move directly into the FORWARD
state, detect the FRONT BUMPER again, and immediately go into the REVERSE state. This is not what is
wanted, so the state machine must wait for the FRONT BUMPER switch to be released before it transitions
into the FORWARD state.

• When the time interval Tfwd elapses, the robot moves into state FORWARD_TURN. The starboard motor
stops briefly, which causes the robot to pivot to starboard (clockwise rotation, viewed from the top)2.

• When the Tfwdturn interval is complete, the robot moves back into the FORWARD state, both motors are
running, and the robot again proceeds in a straight line.

Obstacle Behavior

When the robot is moving forward and it encounters an obstacle, it should back up and then make a backing turn.
Then it should resume moving forward. This occurs in two steps.

• Obstacles are only detected when the robot is in the FORWARD state. When a FWD_BUMP condition occurs,
the machine transitions to the REVERSE state. It stays in this state until time Treverse elapses.

• The robot enters state REVERSE_TURN, which causes the starboard motor to stop briefly and a backing
turn to occur.

• When the Treturn interval is complete, the machine moves back into the FORWARD state and proceeds again
in a straight line.

Finishing Up

When the machine is in the FORWARD state and the REAR BUMPER is actuated by the operator, the machine
stops both motors and comes to rest.

2.3 State Machine Structure: First Attempt
The obvious way to write the state machine is to use goto statements to transfer control among the state routines.
As a block diagram, this program looks exactly like the state diagram of figure 1. As pseudocode, the program
might look like figure 2.

Each state is a block of code with a starting address named after the state and GOTO exit instructions. (In
assembly language, the GOTO’s would be coded as JMP or BRA instructions.) The program loops in each state
until some transition condition becomes true and then it transfers to the next state.

(For simplicity here, we show only how the flow of the program transfers control between the various states.
We have left out the commands to actuate the motors. There would need to be commands to turn on the motors
appropriately when entering each of these states. We’ll deal with this later.)

This program will work and it has the virtue of simplicity. However, it has a severe limitation: while it’s
looping in a state, it’s not doing anything useful. For example, suppose we want the program to read and display
the battery voltage on a continuous basis. How could we do this? Because the program could be tied up in

2For a sharper turn, you may wish to reverse the direction of the starboard motor, instead of turning it off completely

4

Start GOTO Forward

Forward IF {Fwd Bumper Detected} THEN GOTO Reverse
ELSEIF {Rear Bumper Detected} THEN GOTO All_Stop
ELSEIF {Time > Forward Time} THEN GOTO Forward_Turn
ELSE GOTO Forward

Reverse IF {Time > Reverse Time} THEN GOTO Reverse_Turn
ELSE GOTO Reverse

Reverse_Turn IF {Time > Reverse Turn Time} THEN GOTO Forward
ELSE GOTO Reverse_Turn

Forward_Turn IF {Time > Forward Turn Time} THEN GOTO Forward
ELSE GOTO Forward_Turn

All_Stop GOTO All_Stop

Figure 2: Robot State Controller: First Attempt

some of these states for long periods of time, we’d have to call the Battery_Display subroutine from those
subroutines. This is inconvenient and awkward3.

There is a better way to do this, using a state dispatcher.

2.4 State Machine Structure: Using a Dispatcher
According to The Canadian Oxford Dictionary, a dispatcher is

a person who coordinates the departure of taxis, busses, trains, etc.

In this case, the state dispatcher is a block of software that directs the flow of the program to the correct state.
The key concept of the state dispatcher is this: rather than have the program loop in any given state, loop the

program through the dispatcher and some state subroutine. This nets us a big advantage: any routine that must
be updated on a regular basis can be included in this loop by prepending it to the dispatcher. A diagrammatic
representation of the program is shown in figure 3 on page 6.

The structure of the state machine for the START, FORWARD, FORWARD_TURN, REVERSE, REVERSE_TURN
and ALL_STOP states is shown as the pseudo-code given in figure 4 on page 7. In this diagram, the states are
given names. These states would be the names of various routines which would be called by branch or jump
instructions from the dispatcher.

(Again, the motor commands are omitted for clarity.) The State Dispatcher is at the heart of the state machine.
Its function is very simple: it calls the appropriate subroutine based on the CURRENT_STATE. In a high level
language, this would be a CASE statement. We’ll see in a moment how it translates into assembly language source
code.

Each state is implemented as a subroutine. A state subroutine checks the various transition conditions and
if none of them are met the routine simply returns. However, when a state subroutine detects that a particular
transition condition has been met it changes the CURRENT_STATE to the appropriate new value and returns.
This new value of CURRENT_STATE then causes the state dispatcher to transfer control to some other state
subroutine 4.

Notice that the program never loops in a delay in any of the state subroutines or anywhere else. It loops
through the state dispatcher and the current state subroutine.

3It is possible to use the real-time interrupt to solve this problem. The program is interrupted at regular intervals (typically 60 times per
second) and the real-time interrupt handler routine then executes tasks that need to be serviced on a regular basis. The HCS12 has hardware
specifically designed to provide this feature. However, interrupts have their own problems so we’ll chose a non-interrupt solution for this
particular application.

4Strictly speaking, the state machine represented in figure 3 moves to the START state immediately after the microcontroller has been
RESET (without waiting for the FWD BUMP signal). To make it more realistic, the initial current state assignment must look like this:
CURRENT STATE := ALL STOP. The corresponding state diagram is given in figure 9 on page 14.

5

DISPATCHER LOOP

UPDATE DISPLAY (etc)

DISPATCHER

START FORWARD REVERSE ALL_STOP REVERSE_TURNFORWARD_TURN

STATE: 0 1 2 3 4 5

Figure 3: Dispatcher Concept

2.5 The State Dispatcher in Assembly Language
Now that we have some idea of the structure of the state machine controller, let us examine how the state dispatcher
translates into assembly language.

The state dispatcher, represented in the pseudocode of figure 4 by the statement CALL CURRENT_STATE,
can be implemented as a giant IF statement where each state is represented by a number and the dispatcher calls
the appropriate subroutine based on the current state. This is shown in figure 5 on page 8.

Things to notice:

• The CURRENT_STATE is allocated one byte in RAM with an RMB 1 assembler directive. For monitoring
purposes, some other routine (not shown) could read this variable and put something on a display to indicate
the current state of the robot.

• The various possible states are defined in assembler directive EQU statements. The microprocessor can only
work with binary numbers so it is necessary that each state be represented by a number eventually. However,
in the assembly language source code it facilitates reading the code if the states are given symbolic names.
Then the reader doesn’t have to remember that the state number 1 is the FORWARD state.

This illustrates the general concept that we should write the assembly language in the form that is clearest
to a human reader and let the assembler turn that information into a stream of bytes that the machine can
interpret. More succinctly: Let the assembler do the work.

• The dispatcher is implemented as a subroutine, starting with the routine name DISPATCHER and ending
with an RTS statement. So the dispatcher would be called with the invocation

LDAA CURRENT_STATE
JSR DISPATCHER

Any routine that has to be called on a regular basis would be placed before these statements.

• The routine has one entrance and one exit point. Each successful test for a state comparison calls the
appropriate subroutine and then exits via the DISP_EXIT address (the RTS instruction). We could have
placed an RTS instruction at the conclusion of each test, instead of the JMP DISP_EXIT instruction.
However, it simplifies debugging if the dispatcher is structured with only one entry and one exit point: it
simplifies the placing of breakpoints during debugging. This is a general rule that should be followed in the
construction of all subroutines.

6

CURRENT_STATE := START

LOOP: CALL CURRENT_STATE ; Call the ’CURRENT STATE’ subroutine
GOTO LOOP ; forever

START: CURRENT_STATE := FORWARD ; The START state subroutine
Return

FORWARD: If FWD_BUMP then ; The FORWARD state subroutine
CURRENT_STATE := REVERSE
Mark the time
Return

If REAR_BUMP then
CURRENT_STATE := ALL_STOP
Return

If T>Tfwd then
CURRENT_STATE := FORWARD_TURN
Mark the time
Return

Else
Return

FORWARD_TURN: If T>Tfwdturn then ; The FORWARD_TURN state subroutine
CURRENT_STATE := FORWARD
Mark the time
Return

Else
Return

REVERSE: If T>Treverse then ; The REVERSE state subroutine
CURRENT_STATE := REVERSE_TURN
Mark the time
Return

Else
Return

REVERSE_TURN: If T>Trevturn then ; The REVERSE_TURN state subroutine
CURRENT_STATE := FORWARD
Mark the time
Return

Else
Return

ALL_STOP: CURRENT_STATE := ALL_STOP ; The ALL_STOP state subroutine
Return

Figure 4: State Machine Pseudocode

• If the CURRENT_STATE is not successfully compared with any of the states (say it had become the value
37, for example), then the program will arrive at the address NOT_FORWARD_TURN, in which case we
break to the monitor program with an SWI instruction. The chances of this happening are remote, especially
once the program is debugged, but it is better to have this simple error-checking feature than nothing at all.
An even better solution would be to call some routine to display an error message.

• The comments do not mimic the code operation. For example, the following comment is not useful:

LDAA FOOBAR ; Load the accumulator with FOOBAR

Presumably, we can determine what the instruction does exactly by reading the code, so the comment is not
helpful. What we really need to know is what is intent or objective of this instruction in the context of the
larger program? So, much more helpful is a comment like

LDAA FOOBAR ; Set up for calling the state dispatcher

7

Further, you can see that some instructions are not commented. Sometimes, it is clearer not to comment at
all. And a few clear comments are much more valuable than unclear comments on every line.

Good comments take careful thought and creativity.

; Current state
CURRENT_STATE RMB 1

; Definitions of the various states
START EQU 0
FORWARD EQU 1
REVERSE EQU 2
ALL_STOP EQU 3
FORWARD_TURN EQU 4
REVERSE_TURN EQU 5

**
* State Dispatcher

*
* This routine calls the appropriate state handler based on the current

* state.

* Input: Current state in ACCA

* Returns: None

* Clobbers: Everything

; State Dispatcher
DISPATCHER CMPA #START ; If it’s the START state

BNE NOT_START
JSR START_STATE ; then call the START routine
JMP DISP_EXIT ; and exit

NOT_START CMPA #FORWARD ; Else if it’s the FORWARD state
BNE NOT_FORWARD
JSR FORWARD_STATE ; then call the FORWARD routine
JMP DISP_EXIT ; and exit

NOT_FORWARD CMPA #REVERSE ; Else if it’s the REVERSE state
BNE NOT_REVERSE
JSR REVERSE_STATE ; then call the REVERSE routine
JMP DISP_EXIT ; and exit

NOT_REVERSE CMPA #ALL_STOP ; Else if it’s the ALL_STOP state
BNE NOT_ALL_STOP
JSR ALL_STOP_STATE ; then call the ALL_STOP routine
JMP DISP_EXIT ; and exit

NOT_ALL_STOP CMPA #FORWARD_TURN ; Else if it’s the FORWARD_TURN state
BNE NOT_FORWARD_TURN
JSR FORWARD_TURN_STATE ; then call the FORWARD_TURN routine
JMP DISP_EXIT ; and exit

NOT_FORWARD_TURN CMPA #REVERSE_TURN ; Else if it’s the REVERSE_TURN state
BNE NOT_REVERSE_TURN
JSR REVERSE_TURN_STATE ; then call the REVERSE_TURN state
JMP DISP_EXIT ; and exit

NOT_REVERSE_TURN SWI ; Else the current state is not defined, so stop
DISP_EXIT RTS ; Exit from the state dispatcher

Figure 5: State Dispatcher in Assembly Language

8

2.6 The State Routines in Assembly Language
Now we examine the internal details of some state routines.

The START Routine

This routine immediately transitions into the FORWARD routine, so it’s very simple (see figure 6).

**
* START STATE HANDLER

*
* Advances state to the FORWARD state if /FWD-BUMP.

* Passed: Current state in ACCA

* Returns: New state in ACCA

* Clobbers: None

START_STATE BRCLR PORTAD0,$04,NO_FORWARD ; If /FWD_BUMP
JSR INIT_FWD ; Initialize the FORWARD state
MOVB #FORWARD,CURRENT_STATE ; Go into the FORWARD state
BRA START_EXIT

NO_FORWARD NOP ; Else
START_EXIT RTS ; return to the MAIN routine

Figure 6: START State Routine

The routine is about to transition into the FORWARD state, so it should do the initializations required by that
state. The routine to initialize the FORWARD state is shown in figure 7 on page 10.

The routine INIT_FWD turns on both the motors and then sets alarm time, Tfwd, in the way that was discussed
in Lab 4. We assume that the subroutine BOTH_MOTORS_ON exists somewhere else in the program. The routine
calls this to enable the motors.

Notice that the initialization of the FORWARD state occurs in the states that call it. It can’t occur in the
FORWARD state itself because then it would be initialized repeatedly, every trip around the dispatcher-state loop,
which is not what we want.

Back now to START_STATE: having initialized the FORWARD state it advances the state to FORWARD and
exits. The state dispatcher that we discussed earlier will send the program to the FORWARD_STATE routine.

The FORWARD Routine

This state routine is shown in figure 8 on page 11. It’s complicated by the number of possible branches out of the
FORWARD state to other states.

Notes:

• The bumper is checked with the instruction

BRSET PORTAD0,$04,NO_FWD_BUMP ; If FWD_BUMP then

You used such an instruction in Lab 3.

• The last conditional branch is BNE NO_FWD_TURN. We could have written this as BNE FWD_EXIT.
However, as a minor matter of style, the NO_FWD_TURN label is more informative and we can associate
it with a NOP instruction so that the effect is equivalent. This gives us a place to put the ELSE comment,
which improves readability. (Your opinion may differ.)

• Notice that the order in which these various conditions are checked implicitly sets a priority to the events.
For example, the first condition checked is whether the bumper is actuated. If it is set, that determines the
next state, regardless of the state of the various timers.

9

**
* INITIALIZE ’FORWARD’ STATE

*
* This routine is called whenever the ’FORWARD’ routine is entered.

* It turns both the motors ON

* It initializes the alarm used in by the FORWARD state.

* Passed: Nothing

* Returns: Nothing

* Clobbers: None

INIT_FWD JSR BOTH_MOTORS_ON ; Turn on the drive motors (if theyre off!)
LDAA TOFCOUNTER ; Mark the fwd time Tfwd
ADDA #FWD_INTERVAL
STAA T_FWD
RTS

Figure 7: Initializing the FORWARD State

2.7 Organization of the State Machine Program
From top to bottom, the Robot Roaming program will consist of:

• Equates and Main Loop

• Dispatcher and State Subroutines

• Utility Subroutines

The program is organized as it would be decomposed: from top to bottom, starting with the main routine
through to the utility subroutines. The contents of each of those three sections are now listed in greater detail.

Equates and Main Loop

• equates of the symbolic addresses, using EQU directives. For example, the various machine registers such
as ATDxCTLy would be defined here5.

• definitions of constants such as the time delays, also using EQU directives

• start of the DATA area at $3850 using an ORG directive.

• the working registers in RAM, using ds.b directives

• pre-initialized message strings (for the LCD) using dc.b"...",0 directives.

• start of the CODE or TEXT area at $4000 using an ORG directive. A good name for the entry point of this
code would be STARTUP: this is where the program starts.

• instructions that initialize the system. For example, this is where the TOF counter interrupt would be
initialized and global interrupts enabled.

• the main loop routine, named MAIN. This calls any subroutines that must operate on a repetitive basis (such
as updating the LCD), followed by the state dispatcher. The state dispatcher is called as a subroutine with
the instruction sequence:

LDAA CURRENT_STATE
JSR DISPATCHER

5Many of the required equates are done in the .inc file, therefore you don’t need to re-define these definitions in your program

10

**
* FORWARD STATE HANDLER

*
* Algorithm:

* If FWD_BMP then

* Initialize the REVERSE state

* Change the state to REVERSE

* Return

* If REAR_BUMP then

* Initialize the ALL_STOP state.

* Change the state to ALL_STOP

* Return

* If Tc>Tfwd then

* Initialize the FORWARD_TURN state

* Change the state to FORWARD_TURN

* Return

* Else

* Return

*
* Passed: Current state in ACCA

* Returns: New state in ACCA

* Clobbers: Everything, probably. Make no assumptions.

FORWARD_ST BRSET PORTAD0,$04,NO_FWD_BUMP ; If FWD_BUMP then
JSR INIT_REVERSE ; initialize the REVERSE routine
MOVB #REVERSE,CURRENT_STATE ; set the state to REVERSE
JMP FWD_EXIT ; and return

NO_FWD_BUMP BRSET PORTAD0,$08,NO_REAR_BUMP ; If REAR_BUMP, then we should stop
JSR INIT_ALL_STOP ; so initialize the ALL_STOP state
MOVB #ALL_STOP,CURRENT_STATE ; and change state to ALL_STOP
JMP FWD_EXIT ; and return

NO_REAR_BUMP LDAA TOFCOUNTER ; If Tc>Tfwd then
CMP T_FORWARD ; the robot should make a turn
BNE NO_FWD_TURN ; so
JSR INIT_FORWARD_TURN ; initialize the FORWARD_TURN state
MOVB #FORWARD_TURN,CURRENT_STATE ; and go to that state
JMP FWD_EXIT

NO_FWD_TURN NOP ; Else
FWD_EXIT RTS ; Return to the MAIN routine.

Figure 8: Forward State Handler

The DISPATCHER subroutine calls the appropriate state subroutine, which executes and returns to the
dispatcher. The dispatcher subroutine then completes and returns control back to the main loop.

The last instruction in the main loop is a JMP MAIN instruction to return control back to the start of the
main loop.

Dispatcher and State Subroutines

These subroutines make up the state machine.

• The dispatcher directs control to the appropriate subroutine based on the variable CURRENT_STATE. It’s
the traffic cop of the state machine.

• There is one state routine, one for each state in the diagram. Each state routine examines various transition
conditions, selects what should happen next (the next state), and initializes the necessary conditions when
state transition is to occur.

• Various state initialization subroutines contain the instructions that set up for entry into a new state.

11

Utility Subroutines

This area of the program is a collection of all the other subroutines necessary to make the program a working
robot. For example, the following subroutines would be found here:

• Initialize and service the interrupt driven Timer Overflow counter.

• Read the A/D converter (used optionally to read the battery voltage).

• Actuate the robot motors.

• Check the various alarm timers.

2.8 A Strategy for Building the Robot Roaming Program
1. The first step involves no programming as such. Ensure that you understand very clearly how the program

is supposed to operate. There is no way to debug a program when you do not understand every detail of it’s
operation. If something is obscure, get help from your lab instructor.

2. Collect and organize the Utility Subroutines section of the program. These are subroutines that were devel-
oped in previous lab exercises, so they should be functional as is. If there is any doubt that they are working
properly, retest them. Make sure it is clear what each routine is passed and returns. Problems often occur at
the interfaces to routines.

3. Build a subsection of the state machine. Implementing the START, FORWARD and ALL_STOP states might
be a good choice. This will require writing the section of the dispatcher that deals with these states and
the three state routines themselves. Debug this by breakpointing the dispatcher and checking that the state
advances as it is supposed to do.

4. Add in the remaining states and test the completed state machine.

2.9 Bench Testing
You will not have a lot of time to debug this program on the actual robot. However, you can assemble the program
and run it on the microprocessor bench systems.

Modify the bumper detect routine to use the potentiometer on channel AN05 of the bench system, and then
you can test whether the bumper routines work by rotating the pot up and down.

If your main loop includes some sort of a display routine of the current state, then you can check that the entire
program, except for the motor drive routines, is operating correctly.

You should have some indication on the LCD of what state the machine is in. This is a very helpful indication
of what the machine is doing at any given time. A one-digit number or letter is sufficient.

It is also very helpful if your program triggers the ALIVE indicator to show that it is looping through the state
machine dispatcher. Then, if the program crashes for some reason, you will know immediately.

At this point, you are ready to move the program onto a robot. The only things left to test should be that the
bumper routine and the motor drive instructions work on the actual hardware. Since these were developed and
tested earlier, they should be working correctly.

2.10 Operating the eebot
Here are the steps in operating the mobile eebot.

1. Ensure that your program is debugged to the extent possible on the bench system. It is much more difficult
diagnosing software problems on the mobile robot.

2. Ensure that the robot battery is charged.

3. Disconnect the serial cable from the bench system and plug it into the mobile robot.

12

4. Turn on the robot LOGIC power.

5. Use CodeWarrior to download the working program into the mobile robot.

6. Start the program.

7. Disconnect the serial cable.

8. Move the robot over to the demo area.

9. Turn on the robot MOTOR power. The motors should not run at this point.

10. Place the robot in the demo area and actuate the front bumper.

11. The robot should start running in the FORWARD state and go through its paces.

12. When you want to stop the robot, actuate the rear bumper. If the robot is out of control, switch off the
MOTOR power.

3 The Assignment
Your assignment is to write the Robot Roaming program as described in the state diagram of figure 9 on page 14.

• A passing grade will be assigned if the machine can correctly move through two states on the microproces-
sor bench system.

• A full mark will be assigned if the machine executes all the states on the microprocessor bench system.
In this case, you will be provided a battery powered robot and can turn it loose with the Robot Roaming
program providing guidance.

• Bonus marks will be given if the machine can simultaneously show battery voltage and current state on the
display while operating the guidance program.

Some hints on creating the program can be found in Appendix A.

13

Backup time after bump

Time backing and turning

Roaming time before new direction

Time for forward turn during roaming

Front Bumper actuated

Rear Bumper actuated

T>Treverse

T>Trevturn

T>Tfwd

T>Tfwdturn

FWD_BUMP

REAR_BUMP

START

FORWARD

ALL

REVERSE

STOP

FORWARD

TURN

REVERSE

TURN

FWD_BUMP

FWD_BUMP

FWD_BUMP

REAR_BUMP

T>Treverse T>Trevturn T>Tfwdturn

T>Tfwd

RESET

Figure 9: Realistic Robot State Machine

4 Appendix A
The general structure of the program is given below.

* Lab 5: Robot Roaming Program (9S32C) *

; equates section

LCD_DAT ...
LCD_CNTR ...
LCD_E ...
LCD_RS ...
FWD_INT EQU 69 ; 3 second delay (at 23Hz)
REV_INT EQU 69 ; 3 second delay (at 23Hz)
FWD_TRN_INT EQU 46 ; 2 second delay (at 23Hz)
REV_TRN_INT EQU 46 ; 2 second delay (at 23Hz)

14

START EQU 0
FWD EQU 1
REV EQU 2
ALL_STP EQU 3
FWD_TRN EQU 4
REV_TRN EQU 5

; variable section

ORG $3850 ; Where our TOF counter register lives

TOF_COUNTER dc.b 0 ; The timer, incremented at 23Hz
CRNT_STATE dc.b 3 ; Current state register
T_FWD ds.b 1 ; FWD time
T_REV ds.b 1 ; REV time
T_FWD_TRN ds.b 1 ; FWD_TURN time
T_REV_TRN ds.b 1 ; REV_TURN time
TEN_THOUS ds.b 1 ; 10,000 digit
THOUSANDS ds.b 1 ; 1,000 digit
HUNDREDS ds.b 1 ; 100 digit
TENS ds.b 1 ; 10 digit
UNITS ds.b 1 ; 1 digit
NO_BLANK ds.b 1 ; Used in ’leading zero’ blanking by BCD2ASC

; code section

ORG $4000 ; Where the code starts --------------------

Entry: ; |
_Startup: ; |

CLI ; Enable interrupts |
LDS #$4000 ; Initialize the stack pointer

; I
BSET DDRA,%00000011 ; STAR_DIR, PORT_DIR N
BSET DDRT,%00110000 ; STAR_SPEED, PORT_SPEED I

; T
JSR initAD ; Initialize ATD converter I

; A
JSR initLCD ; Initialize the LCD L
JSR clrLCD ; Clear LCD & home cursor I

; Z
LDX #msg1 ; Display msg1 A
JSR putsLCD ; " T

; I
LDAA #$C0 ; Move LCD cursor to the 2nd row O
JSR cmd2LCD ; N

LDX #msg2 ; Display msg2 |
JSR putsLCD ; " |

; |
JSR ENABLE_TOF ; Jump to TOF initialization ---------------

MAIN JSR UPDT_DISPL ; --- M
LDAA CRNT_STATE ; A
JSR DISPATCHER ; I
BRA MAIN ; --- N

; data section

msg1 dc.b "Battery volt ",0
msg2 dc.b "State ",0
tab dc.b "START ",0

dc.b "FWD ",0
dc.b "REV ",0
dc.b "ALL_STP",0
dc.b "FWD_TRN",0
dc.b "REV_TRN",0

15

; subroutine section

DISPATCHER CMPA #START ; If it’s the START state -----------------

BNE NOT_START ; |
JSR START_ST ; then call START_ST routine D
BRA DISP_EXIT ; and exit I

; S
NOT_START ... ; P

... ; A
; T

NOT_FWD_TRN CMPA #REV_TRN ; Else if it’s the REV_TRN state C
BNE NOT_REV_TRN ; H
JSR REV_TRN_ST ; then call REV_TRN_ST routine E
BRA DISP_EXIT ; and exit R

; |
NOT_REV_TRN SWI ; Else the CRNT_ST is not defined, so stop |
DISP_EXIT RTS ; Exit from the state dispatcher ----------

START_ST ...

...

NO_FWD NOP ; Else
START_EXIT RTS ; return to the MAIN routine

FWD_ST ...

...

NO_FWD_TRN NOP ; Else
FWD_EXIT RTS ; return to the MAIN routine

REV_ST LDAA TOF_COUNTER ; If Tc>Trev then

CMPA T_REV ; the robot should make a FWD turn
BNE NO_REV_TRN ; so
JSR INIT_REV_TRN ; initialize the REV_TRN state
MOVB #REV_TRN,CRNT_STATE ; set state to REV_TRN
BRA REV_EXIT ; and return

NO_REV_TRN NOP ; Else
REV_EXIT RTS ; return to the MAIN routine

ALL_STP_ST BRSET PORTAD0,$04,NO_START ; If FWD_BUMP

BCLR PTT,%00110000 ; initialize the START state (both motors off)
MOVB #START,CRNT_STATE ; set the state to START
BRA ALL_STP_EXIT ; and return

NO_START NOP ; Else
ALL_STP_EXIT RTS ; return to the MAIN routine

FWD_TRN_ST LDAA TOF_COUNTER ; If Tc>Tfwdturn then

CMPA T_FWD_TRN ; the robot should go FWD
BNE NO_FWD_FT ; so
JSR INIT_FWD ; initialize the FWD state
MOVB #FWD,CRNT_STATE ; set state to FWD
BRA FWD_TRN_EXIT ; and return

NO_FWD_FT NOP ; Else
FWD_TRN_EXIT RTS ; return to the MAIN routine

REV_TRN_ST LDAA TOF_COUNTER ; If Tc>Trevturn then

CMPA T_REV_TRN ; the robot should go FWD

16

BNE NO_FWD_RT ; so
JSR INIT_FWD ; initialize the FWD state
MOVB #FWD,CRNT_STATE ; set state to FWD
BRA REV_TRN_EXIT ; and return

NO_FWD_RT NOP ; Else
REV_TRN_EXIT RTS ; return to the MAIN routine

INIT_FWD BCLR PORTA,%00000011 ; Set FWD direction for both motors

BSET PTT,%00110000 ; Turn on the drive motors
LDAA TOF_COUNTER ; Mark the fwd time Tfwd
ADDA #FWD_INT
STAA T_FWD
RTS

INIT_REV BSET PORTA,%00000011 ; Set REV direction for both motors

BSET PTT,%00110000 ; Turn on the drive motors
LDAA TOF_COUNTER ; Mark the fwd time Tfwd
ADDA #REV_INT
STAA T_REV
RTS

INIT_ALL_STP BCLR PTT,%00110000 ; Turn off the drive motors

RTS

INIT_FWD_TRN BSET PORTA,%00000010 ; Set REV dir. for STARBOARD (right) motor

LDAA TOF_COUNTER ; Mark the fwd_turn time Tfwdturn
ADDA #FWD_TRN_INT
STAA T_FWD_TRN
RTS

INIT_REV_TRN BCLR PORTA,%00000010 ; Set FWD dir. for STARBOARD (right) motor

LDAA TOF_COUNTER ; Mark the fwd time Tfwd
ADDA #REV_TRN_INT
STAA T_REV_TRN
RTS

; utility subroutines

initLCD ...

clrLCD ...

del_50us PSHX ; (2 E-clk) Protect the X register
eloop LDX #300 ; (2 E-clk) Initialize the inner loop counter
iloop NOP ; (1 E-clk) No operation

DBNE X,iloop ; (3 E-clk) If the inner cntr not 0, loop again
DBNE Y,eloop ; (3 E-clk) If the outer cntr not 0, loop again
PULX ; (3 E-clk) Restore the X register
RTS ; (5 E-clk) Else return

cmd2LCD: ...

putsLCD ...

putcLCD ...

17

dataMov ...

initAD ...

int2BCD ...

BCD2ASC ...

ENABLE_TOF ...

TOF_ISR ...

* Update Display (Battery Voltage + Current State) *

UPDT_DISPL MOVB #$90,ATDCTL5 ; R-just., uns., sing. conv., mult., ch=0, start

BRCLR ATDSTAT0,$80,* ; Wait until the conver. seq. is complete

LDAA ATDDR0L ; Load the ch0 result - battery volt - into A
... ; Display the battery voltage

;-------------------------
LDAA #$C6 ; Move LCD cursor to the 2nd row, end of msg2
JSR cmd2LCD ;

LDAB CRNT_STATE ; Display current state
LSLB ; "
LSLB ; "
LSLB ; "
LDX #tab ; "
ABX ; "
JSR putsLCD ; "

RTS

* Interrupt Vectors *

ORG $FFFE
DC.W Entry ; Reset Vector
ORG $FFDE
DC.W TOF_ISR ; Timer Overflow Interrupt Vector

5 References
State Machines in Software
Peter Hiscocks
Circuit Cellar: The Computer Applications Journal
Issue 26, April/May 1992, pp 52-60

Microcomputer Technology: The 68HC11
Second Edition
Section 13.3, Sequential Machines
Peter Spasov
Prentice Hall, 1996

18

